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• Main problem

– Picking the features to use in a model

– Wide data sets

• Main examples

– Simulated idealized problems

– Predicting credit risk

• Themes

– Modifying familiar tools for data mining

– Changing the approach to inference
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Questions

Credit scoring
Can you predict who will declare bankruptcy?

Drug safety
Do reported adverse experiences suggest a systematic
problem?

Identifying faces
Is this a picture of a face?

Genomics
Does a pattern of genes predict higher risk of a disease?

Text processing
Which references were left out of this paper?

These are great statistics problems, so...
Why not use our workhorse, regression?

• Different flavors (least squares, logistic, ...)

• Calculations well-understood.

• Results are familiar.

• Diagnostics are available.
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Models

Simple structure
A linear or logistic regression ...

• n independent observations of m features

• q predictors in model with error variance σ2:

Y = β0 + β1X1 + · · ·+ βqXq + ε

Calibrate predictions Allow for various link functions ...

• Linear regression has identity link, logistic has logit.

E(Y |X) = h(β0 + β1X1 + · · ·+ βqXq)

• “One-step” solution at end of selection.

Rich feature space
Allow large, diverse set of features

• Usual mix: continuous, categorical, dummy vars, ...

• Missing data indicators

• Combinations (principal components) and clusters

• Nonlinear terms, transformations (quadratics)

• Interactions of any of these

Which features generate best predictions?
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Stock Market

Where’s the stock market headed in 2005?

Daily percentage changes in the closing price of the S&P 500
during the last 3 months of 2004 (85 trading days) ...
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Predicting the Market

Problem
Predict returns on S&P 500 in 2005 using features built
from a collection of 12 exogenous factors.

Regression model
R2 = 0.85 using q = 28 predictors.
With n = 85, F = 12 with p-value < 0.00001.

Coefficients are impressive...

Term Estimate Std Error t-Ratio p-value

Intercept 0.323 0.078 4.14 0.0001

X3 0.095 0.039 2.45 0.0175

X4 0.172 0.040 4.34 0.0000

(X1)*(X1) -0.202 0.039 -5.16 0.0000

(X1)*(X5) 0.256 0.048 5.34 0.0000

(X2)*(X6) 0.289 0.044 6.59 0.0000

(X4)*(X6) -0.222 0.050 -4.43 0.0000

(X4)*(X7) -0.213 0.047 -4.54 0.0000

(X5)*(X9) -0.192 0.044 -4.35 0.0000

(X7)*(X9) 0.249 0.046 5.37 0.0000

...
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Model Fit and Predictions

Predictions from the model track the data closely, even
matching turning points.
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Looks like we should bet against the market on that day...

No guts, no glory!
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Prediction Errors are LARGE

In-sample prediction errors are small, out-of-sample much
larger.
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How’d you lose the house?

How could this happen?

Significant fit, even by Bonferroni standards.
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What was that model?

Exogenous base variables
12 columns of random Gaussian noise.

Null model is the right model.

Selecting predictors
Turn stepwise regression lose m = 90 constructed features

12 linear + 12 Squares + 66 Interactions
with “promiscuous” settings for adding variables,

prob-to-enter = 0.16 (AIC)

Then run stepwise backward to remove extraneous effects.
Result is an impressive-looking fit.

Why does this fool Bonferroni?
Once stepwise adds a predictor, s2 becomes biased down,
making the remaining predictors appear more significant.
Often “cascades” into a perfect fit.

Cannot fit saturated model to get unbiased estimate of σ2

because m > n.

Easy fix
Control the fitting process. Use Bonferroni from the
start, not after the fact.

Morals
Stepwise regression can make a silk purse from sow’s ear.

Must control the process, not diagnose the final model.
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Second Example: Predicting Bankruptcy

Predict onset of personal bankruptcy
Estimate probability use of credit card declares
bankruptcy during the next billing cycle.

Challenge
Can stepwise regression predict as well as commercial
“data-mining” tools or substantive models?

Many features
About 350 “basic” variables

• Short time series for each account

• Spending, utilization, payments, background

• Missing data and indicators

• Interactions are important (LV and cash adv)

m = 67,000 predictors!

• Transaction history would vastly expand the problem.

Bankruptcy is rare
2,244 bankruptcies in

12× 250, 000 = 3 million account-months

Trade-off
Profitable customers look risky. Want to lose them?
“Borrow lots of money and pay it back slowly.”

9



Approach

Stepwise search
Forward search with p-values to determine whether to add
predictors rather than cross-validation.

Testimators rather than model averaging, MCMC.

Risk inflation criterion (RIC)
Select predictor if (m = number possible predictors)

p-value ≈ 1/m

Obtains RIC bound (Foster & George 1994)

min
β̂

max
β

E
‖Y −Xβ̂‖2

|β| σ2
≤ 2 log p

a.k.a.: hard thresholding, Bonferroni, Fisher’s method

Adaptive thresholding
RIC best when “truth” is sparse, but lacks power if much
signal. False discovery rate motivates an alternative.

If you’ve added q predictors, add the next if:
p-value ≈ q/m

Further motivation...

• Half-normal plot (Cuthbert Daniel?)

• Generalized degrees of freedom (Ye 1998, 2002)

• Empirical Bayes (George & Foster 2000)

• Information theory (Foster, Stine & Wyner 2002)
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Adaptive Variable Selection

Hard thresholding
Which predictors minimize max ratio of MSEs?

min
β̂

max
β

E ‖Y −Xβ̂‖2

|β|σ2

Donoho&Johnstone, Foster&George 1994 answer (using
t-stat)

Pick Xj ⇔ |tj | >
√

2 log p

Almost Bonferroni! (
√

2 log p is a bit less strict)

Adaptive thresholding
Let π denote a symmetric, unimodal prior on for β and let
Ŷ (π) denote predictor based on π. Which predictors
minimize ratio?

min
q̂

max
π

E ‖Y − Ŷ (q̂)‖2

E ‖Y − Ŷ (π)‖2 for β ∼ π

Pick q such that for |t1| ≥ |t2| ≥ · · · ≥ |tp|,

|tq| ≥
√

2 log p/q but |tq+1| <
√

2 log p/(q + 1)

Details in Foster & Stine manuscript.
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Example: Finding Subtle Signal

Signal is a Brownian bridge
Stylized version of financial volatility.

Yt = BBt + σ εt
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Example: Finding Subtle Signal

Wavelet transform has many coefficients
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Comparison of MSEs
Boxplots show MSE of reconstructions using

adaptive (top) vs. hard (bottom)
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Does it really work?

Theory usually presumes...

• Normal distribution on error (thin tailed).

• Know “true” error variance σ2.

• Error variance is constant.

• Predictors are orthogonal.

Combination of these mean that parameter estimates are
independent with known sampling distributions.

⇒ know the p-values.

In practice...

• Is anything normally distributed?

• Don’t believe model, much less error variance.

• Suspect measurements of varying accuracy.

• Collinear features, frequently with m > n.

⇒ don’t necessarily have p-values.

Questions
How to handle the collinearity?
How to get p-values (or test statistics) to plug into
adaptive selection?
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Honest p-values for Testing H0 : β = 0

Three methods
Each method makes some assumption about the data in
order to produce reliable p-value.

Method Requires

White estimator Symmetry

Bennett bounds Bounded Y

Robust estimator (e.g. ranks) Homoscedastic

Concern from stock example
Have to avoid “false positive” that leads to inaccurate
predictions, cascade of mistakes.

Need to be sure that if select a feature as a predictor, it
genuinely improves accuracy of fit.

Initial approach to bankruptcy
Thresholding with OLS worked fine there, lets use it here.
With very large n, CLT surely protects us.
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Test Problem

Motivation
Used 5-fold “reversed” cross-validation to confirm results,

fit on 600,000, predict 2,400,000.
As fitting proceeds, monitor out-of-sample error.

Sudden spike in prediction error
Diagnostic plots reveal problem due to sparse nature of
interactions, even though n=600,000.

Stylized problem
n = 10, 000 and X1 = 1, X2, . . . , X10,000 ∼ N(0, 0.025)
P (Y = 1) = 1/1000, independent of X. (dithered in plot)
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Usual t-statistic
se = 0.016 ⇒ t = 14 for a p-value of 0.0000000...
Common sense suggests p-value ≈ 1/1000.
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White Estimator

Least squares estimator

Y = β̂0 + β̂q,1Xq,1 + · · ·+ β̂q,qXq,q + ε

⇒ estimator β̂q with design matrix Xq.

Sandwich formula (H. White, 1980, Econometrica)

Var(β̂q) = (X ′
qXq)−1X ′

q Var(ε)︸ ︷︷ ︸ Xq(X ′
qXq)−1

Estimate variance using the residuals from prior step:

Var(β̂q) = (X ′
qXq)−1X ′

q Diag(e2
q−1)︸ ︷︷ ︸ Xq(X ′

qXq)−1

Result in stylized problem
Estimated std error is 10 times larger, ŝe = 0.16, giving a
more modest (and appropriate) p-value.

Working under null
Residuals from prior step eq−1 computes SE under null,
not under the alternative.

Idea is to test only

H0 : βq,q = 0

rather than

H0 : βq,q = 0 & Var(εi) = σ2
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Example: Finding Missed Signal

Question
Does White estimator ever produce significant effect that
OLS misses?
In most cases, Var(εi) increases with ŷi, and OLS
underestimates SE.

Heteroscedastic data
High variance at 0 obscures the differences at extremes.
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Least squares
Standard OLS reports SE = 3.6 giving t = 1.2.

White SE is 0.9, so t is 4 times larger and finds the
underlying effect.
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Honest p-values for Testing H0 : β = 0

Three methods
Each method makes some assumption about the data in
order to produce reliable p-value.

Method Requires

White estimator Symmetry

Bennett bounds Bounded Y

Robust estimator (e.g. ranks) Homoscedastic

Concerns
Avoid “false positive” that leads to inaccurate predictions,
cascade of mistakes.

Need to be sure that if select a feature as a predictor, it
genuinely improves accuracy of fit.
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Aside...

Use OLS with 0/1 response?

Yes!
Weighted with Ŷ × (1− Ŷ ) to compute SE, but not to
pick variables or estimate parameters.

Context
Handful of bankrupt cases (yi = 1).
Most ŷi ≈ 0, the regular people.
Do you really want to minimize

∑
i

(yi − ŷi)2

ŷi(1− ŷi)

and put yet more weight on the least interesting cases?

Compromise
Minimize

∑
(yi − ŷi)2, but recognize heteroscedasticity

when computing SE.

If you’re going to be judged by squared error, minimize it!

Ideal
Choose economically correct loss function (from cost of
BR and cost of annoying others).
Lenders loath to reveal such details.
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Bennett Inequality

Think differently
Sampling distribution of β̂ is not normal because huge
leverage in one point contributes “Poisson-like” variation
to the estimator.

Bennett inequality (Bennett, 1962, JASA)
Bounded independent r.v. U1, . . . , Un with max |Ui| < 1,
E Ui = 0, and

∑
i E U2

i = 1,

P (
∑

i

Ui ≥ τ) ≤ exp
(

τ

M
−

(
τ

M
+

1
M2

)
log(1 + Mτ)

)
︸ ︷︷ ︸

P (
∑

i

Ui ≥ τ) ≤ exp(−τ2/2)

If M τ is small, log(1 + Mτ) ≈ Mτ −M2τ2/2

Allows heteroscedastic data
Free to divy up the variances as you choose, albeit only for
bounded random variables.

In regression (Foster & Stine, 2004, JASA)
Conditional on prior q − 1 variables,

β̂q,q =
∑

hieq−1

a weighted sum of prior residuals.

In stylized example assigns p-value ≈ 1/100.
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Honest p-values for Testing H0 : β = 0

Three methods
Each method makes some assumption about the data in
order to produce reliable p-value.

Method Requires

White estimator Symmetry

Bennett bounds Bounded Y

Robust estimator Homoscedastic

Concerns
Avoid “false positive” that leads to inaccurate predictions,
cascade of mistakes. Selected features genuinely improve
accuracy of fit.

Robustness of validity
Rank regression would also protect you to some extent,
but has problems dealing with extreme heteroscedasticity.

Bounded influence estimators
Another possibility, but can it be computed fast enough?
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Calibration

Low-hanging fruit
Model is calibrated if

E
(
Y | Ŷ

)
= Ŷ

Obtain with scatterplot smoothing
Find smooth/monotone function (inverse link) so that

E
(
Y | Ŷ

)
= h(Ŷ ) = ̂̂

Y

Example in bankruptcy application
We used simple implementation of pool-adjacent-violators
to obtain satisfactory results.
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Ideally ... Iterative, “self-consistent” search.

For example, model with many interactions might not be
needed with a logistic link that describes multiplicative
structure more simply.
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Classification Results

Lots of lift
Not only did the model generate smaller costs than C4.5
(w/wo boosting), it also had huge lift:

20 40 60 80 100
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20

40
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% BR Found

But...

• Most predictors were interactions.

• Slowwwwww.

• Know that you missed other things.

Who to blame?
Attribute many problems to the greedy, “breadth-first”
search of the space of predictors.

Alternative?
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Sequential Selection

Search features in order rather than all at once.

Goal
Better predictions...

• Incorporate substantive knowledge

• Sequential selection of features based on current status

• Open vs. closed view of space of predictors

• Run faster

Heuristics

• Theory from adaptive selection suggests that if you can
order predictors, then little to be gained from knowing
β.

• Alpha spending rules in clinical trials.

• Depth-first rather than breath-first search.
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Multiple Hypothesis Testing

How to test a finite collection of hypotheses?

Notation
m null hypotheses {H1, . . . ,Hm}
Test results

Rj = 1 if reject Hj , 0 otherwise
and

Vj = 1 if falsely reject Hj , 0 otherwise
Accumulated counts

R(m) =
∑m

j=1 Rj V (m) =
∑m

j=1 Vj

False discovery rate (criterion)
Proportion of false positives among rejects

FDR(m) = E

(
V (m)
R(m)

| R(m) > 0
)

P (R(m) > 0) .

Step-up testing (procedure)
Order p-values of independent tests

p(1) ≤ p(2) ≤ · · · ≤ p(m)

Reject H(1), . . . ,H(j∗) for j∗ = max{j : p(j) < α j/m}.

Benjamini & Hochberg (1995, JRSSB) show that this
procedure satisfies FDR(m) < α.
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Sequential Discovery Rate

How to test an infinite sequence of hypotheses?

Same notation
R(m) total rejections with V (m) false positives.

Sequential discovery rate (criterion)
When testing a sequence of null hypotheses, difference in
counts rather than ratio

SDR(m) = E [V (m)− α R(m)]

and for all stopping times M ,

SDR = sup
M

E [V (M)− α R(M)] .

Alpha-investing rule (procedure)
Start with an initial “wealth” W (0). The rule “invests”
this allowance for Type 1 errors.

To test Hj ...

Before test, rule announces α-level αj ≤ W (j − 1).
After test, wealth is

W (j) = W (j − 1) +

 −αj , pj > αj

ω − pj , pj ≤ αj

If the test rejects, the rule “earns” payout ω for future
Type 1 errors. Otherwise, its wealth decreases.
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SDR, continued

Theorem
If the payoff for rejecting a null ω < α/2, then this
procedure meets the SDR criterion.

Generality
The tests need not be independent, just conditionally
correct in the sense that

E (Vj |R1, . . . , Rj−1) = αj under Hj

Proof of theorem by showing super-martingale.

Examples
FDR setting: Testing a fixed set of m hypotheses with m

independent p-values p1, p2, . . . , pm, pj∗ < α j∗/m.

Knowledgeable:
Order hypotheses in increasing p-value. Earns j∗ α/2
rejecting those that FDR rejects, so has “money to burn”
for more.

Random order:
Start testing at Bonferroni level α/m.
Expect to find p(1) < α/m after m/2 tests.
“Spend” α/m×m/2 = α/2, “earn” α/2. So, break-even.
Rejects those FDR rejects.
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Auction Strategies

Proliferation of interactions
So many among the choices, so inevitable to find them.

Sequential search Gradually search interactions, with
more emphasis to main effects.

• Start with raw variables.

• Once select X1 and X2, try interaction X1 ∗X2.

Multiple strategies
Use an auction to select the strategy.
Two strategies, one for X’s and second for interactions.
Each starts with wealth α/2.
First strategy can wager more because it has to explore
fewer possible effects.

Generalizes to many strategies. Strategy that finds the
most significant effects dominates choices.

Computing
Strategies ⇐⇒ Auction ⇐⇒ Model

Each step very fast since basically a simple
regression/one-dimensional calculation.
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Discussion

Adaptive variable selection
Powerful technique, strong theoretical basis

• Crucial role of standard error estimates

• Scales well to large predictor sets

• Fast

Strategies
Key becomes strategies for generating features.

• Substantive expert can order features (chemist)

• Allows narrow search of very-high order interactions

• Compete with SVM, others from machine learning
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