Alpha-Investing
Sequential Control of Expected False Discoveries

Dean Foster Bob Stine

Department of Statistics
Wharton School of the University of Pennsylvania
www-stat.wharton.upenn.edu/~istine

Joint Statistics Meeting, Salt Lake City
August 2007
Overview

1. Background

2. Alpha-investing Rules

3. Simulations
 - Comparison to batch procedures
 - Applying to an infinite stream

4. Discussion
Opportunities for Using Domain Knowledge in Testing

Situations in applications

- Clinical trial
 - Choice of secondary hypotheses to test in a clinical trial depends on the outcome of the primary test.

- Variable selection
 - Pick interactions to add to a regression model after detecting interesting main effects (select from p rather than p^2).

- Data preparation
 - Construct retrieval instructions for extraction from database.
 - Geographic search over region based on neighbors.

Sequential decisions

- Choice of next action depends on what has happened so far.
- Maintain control chance for false positive error.
Keeping Track of a Sequence of Tests and Errors

- Collection of \(m \) null hypotheses

\[H_1, H_2, \ldots, H_m, \ldots \]

- Specify values of parameters \(\theta_j \) (\(H_j : \theta_j = 0 \)).

- Tests produce p-values \(p_1, p_2, \ldots, p_m, \ldots \)

- Reject \(H_j \) if \(p_j \) is smaller than \(\alpha_j \)

\[R(m) = \sum_j R_j, \quad R_j = \begin{cases} 1 & \text{if } p_j < \alpha_j \\ 0 & \text{otherwise} \end{cases} \]

- How to control the unobserved number of incorrect rejections?

\[V^\theta(m) = \sum V^\theta_j, \quad V^\theta_j = \begin{cases} 1 & \text{if } p_j < \alpha_j \text{ but } \theta_j = 0 \\ 0 & \text{otherwise} \end{cases} \]
Several Criteria Are Used to Control Error Rates

- Family-wise error rate, the probability for any incorrect rejection
 \[FWER(m) = P(\mathcal{V}^\theta(m) > 0) \]
 Conservative when testing 1,000s of tests.

- False discovery rate, the expected proportion of false rejections among the rejected hypotheses
 \[FDR(m) = E \left(\frac{\mathcal{V}^\theta(m)}{R(m)} \mid R(m) > 0 \right) P(R(m) > 0) \]
 Less conservative with larger power.

- Marginal false discovery rate, the ratio of expected counts
 \[mFDR_{\eta}(m) = \frac{E \mathcal{V}^\theta(m)}{E R(m) + \eta} \]
 Typically set \(\eta = 1 - \alpha \approx 1 \) (Convexity: \(FDR \geq mFDR \))
Batch Procedures Vary the Level α_j

- “Batch” procedures have all m p-values at the start.
- Bonferroni (alpha-spending) controls $FWER(m) < \alpha$.

 Reject H_j if $p_j < \alpha/m$

- Benjamini-Hochberg “step-down” procedure (BH) controls $FDR(m) < \alpha$ for independent tests (and some dependent tests).
 For the ordered p-values $p(1) < p(2) < \cdots < p(m)$

 Reject $H_{(j)}$ if $p_{(j)} < j\alpha/m$

- Weighted BH procedure (wBH, Genovese et al, 2006) controls $FDR(m) < \alpha$ using a priori information to weight tests.

 Reject $H_{(j)}$ if $p_{(j)} < W_{(j)} j\alpha/m$

More power: $W_j > 1$ for false nulls, else $W_j < 1$.
Alpha-Investing Resembles Alpha-Spending

- Initial alpha-wealth to “invest” in testing \(\{H_j\} \)
 \[
 W(0) = \alpha
 \]

- Alpha-investing rule determines level for test of \(H_j \), possibly using outcomes of prior tests
 \[
 \alpha_j = I_{W(0)}(\{R_1, R_2, \ldots, R_{j-1}\})
 \]

- Difference from alpha-spending:
 Rule earns more alpha-wealth when it rejects a null hypothesis
 \[
 W(j) - W(j - 1) = \begin{cases}
 \omega & \text{if } p_j \leq \alpha_j , \\
 -\alpha_j/(1 - \alpha_j) & \text{if } p_j > \alpha_j .
 \end{cases}
 \]
 Earns payout \(\omega \) if rejects \(H_j \); pays \(\alpha_j/(1 - \alpha_j) \) if not.
Examples of Policies for Alpha-Investing Rules

- Aggressive policy anticipates clusters of $\theta_j \neq 0$
 - Investing rule: If last rejected hypothesis is H_{k^*}, then
 \[
 I_{W(0)}(\{R_1, R_2, \ldots, R_{j-1}\}) = \frac{W(j - 1)}{1 + j - k^*}, \quad j > k^*
 \]
 - Invest most immediately after reject H_{k^*}:
 Invest $\frac{1}{2}$ of current wealth to test H_{k^*+1}
 Invest $\frac{1}{3}$ of current wealth to test H_{k^*+2}
 \[\ldots\]

- Revisiting policy mimics BH step-down procedure
 - Test every hypothesis first at level α/m.
 - If reject at least one, alpha-wealth remains $\geq W(0)$.
 - Test remaining hypotheses conditional on $p_j > \alpha/m$.
 - Rejects H_j if $p_j \leq 2 \alpha/m$ (like BH).
 - Continue while at least one is rejected until wealth is spent.
Theory: Alpha-Investing Uniformly Controls mFDR

Stop early: Do you care about every hypothesis that’s rejected, or are you most interested in the first few?
- Scientist studies first 10 genes identified from micro-array.
- What is FDR when stop early?

Uniform control of mFDR
A test procedure uniformly controls $mFDR_\eta$ at level α if for any finite stopping time T,

$$\sup_\theta \frac{E_\theta (V_\theta (T))}{E_\theta (R(T)) + \eta} < \alpha$$

Theorem

Any alpha-investing rule $I_{W(0)}$ with initial alpha-wealth $W(0) \leq \alpha \eta$ and pay-out $\omega \leq \alpha$ uniformly controls $mFDR_\eta$ at level α.

Bob Stine (U Penn)
Why control mFDR rather than FDR?

\[FDR(m) \approx E \left(\frac{V^\theta(m)}{R(m)} \right) \quad \text{mFDR}_\eta(m) = \frac{E \ V^\theta(m)}{E \ R(m) + \eta} \]

- They produce similar control in the type of problems we consider, as shown in simulation. ▶ See simulation results
- By controlling a ratio of means, we are able to identify a martingale:

Lemma

The process

\[A(j) = \alpha R(j) - V^\theta(j) + \eta \alpha - W(j) \]

is a sub-martingale

\[E(A(j) \mid A(j - 1), \ldots, A(1)) \geq A(j - 1). \]
Two Simulations of Alpha-Investing

Comparison to batch
- Fixed collection of hypotheses \(H_1, \ldots, H_{200} \)
- \(H_j : \mu_j = 0 \)
- Spike and slab mixture, iid sequence
 \[\mu_j = \begin{cases} N(0, 2 \log m) & \text{if } \mu_j = 3 \\ 0 & \text{otherwise} \end{cases} \]
- 10,000 replications

Testing an infinite stream
- Infinite sequence of hypotheses \(H_1, \ldots, H_{4000}, \ldots \)
- \(H_j : \mu_j = 0 \)
- Hidden Markov chain
 - 10% or 20% \(\mu_j = 3 \)
 - Average length of cluster varies
- 1,000 replications, halted at 4,000 tests
Procedures That Use Domain Knowledge

Oracle-based Weighted BH
- Oracle reveals which hypotheses to test
- Only test $m - m_0$ that are false
- Threshold for p-values
 \[
 j \frac{\alpha}{m} \Rightarrow j \frac{\alpha}{m - m_0}
 \]
- Spread available alpha-level over fewer hypotheses

Alpha-investing
- Scientist able to order hypotheses by μ_j
- Test them all, but start with false
- Aggressive investing
 \[
 \frac{\alpha}{2} \Rightarrow \frac{\alpha + \omega}{2}
 \]
- Initial rejections produce alpha-wealth for subsequent tests.
Alpha-Investing+Order Outperforms wBH+Oracle

- Test \(m = 200 \) hypotheses, \(\mu_j \sim \) spike–and–slab mixture
- Step-down: BH, wBH with oracle,
- Alpha-investing: aggressive(\(\triangledown, \triangle \)), mimic BH (\(\circ \))
Testing an Infinite Stream of Hypotheses

- Generate μ_j from Markov chain
 - 10% (○) or 20% (×) non-zero means
 - Fixed alternative: $\mu_j = 0$ or 3
- 1,000 sequences of hypotheses, snapshot at 4,000 tests
- Investing rule: Aggressive alpha-investing

![Graph showing FDR and Mean Cluster Size relationship](image1)

![Graph showing Power and Mean Cluster Size relationship](image2)
Summary

Alpha-investing ...

- Allows testing of a dynamically chosen, infinite stream of hypotheses
- Underlying martingale proves alpha-investing obtains uniform control of mFDR (\approx FDR)
- Exploits domain knowledge to improve power of tests
- Further details in paper at stat.wharton.upenn.edu/~stine

What’s next?

- Applications in variable selection
- Universal policies for alpha-spending
FDR and mFDR Produce Similar Types of Control

Simulation of tests

- \(m = 200 \) hypotheses
- Proportion \(\pi_1 \) false
- Spike–and–slab mixture
 \[
 \mu_j = \begin{cases}
 N(0, 2 \log m) & \text{if } j \text{ is false} \\
 0 & \text{if } j \text{ is true}
 \end{cases}
 \]
- 10,000 replications

Procedures

- Naive, Bonferroni, BH step-down, wBH with oracle
- Solid: FDR
 Dashed: mFDR

Return