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Opportunities for Using Domain Knowledge in Testing

Situations in applications
Clinical trial

I Choice of secondary hypotheses to test in a clinical trial depends
on the outcome of the primary test.

Variable selection
I Pick interactions to add to a regression model after detect

interesting main effects (select from p rather than p2).
Data preparation

I Construct retrieval instructions for extraction from database.
I Geographic search over region based on neighbors.

Sequential decisions
Choice of next action depends on what has happened so far.
Maintain control chance for false positive error.
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Keeping Track of a Sequence of Tests and Errors

Collection of m null hypotheses

H1, H2, . . . , Hm, . . .

specify values of parameters θj (Hj : θj = 0).
Tests produce p-values p1, p2, . . . , pm, . . .

Reject Hj if pj is smaller than αj

R(m) =
∑

j

Rj , Rj =

{
1 if pj < αj
0 otherwise

How to control the unobserved number of incorrect rejections?

V θ(m) =
∑

V θ
j , V θ

j =

{
1 if pj < αj but θj = 0
0 otherwise
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Several Criteria Are Used to Control Error Rates
Family-wise error rate, the probability for any incorrect rejection

FWER(m) = P(V θ(m) > 0)

Conservative when testing 1,000s of tests.
False discovery rate, the expected proportion of false rejections
among the rejected hypotheses

FDR(m) = E
(

V θ(m)

R(m)
|R(m) > 0

)
P(R(m) > 0)

Less conservative with larger power.
Marginal false discovery rate, the ratio of expected counts

mFDRη(m) =
E V θ(m)

E R(m) + η

Typically set η = 1− α ≈ 1. (Convexity: FDR ≥ mFDR)
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Batch Procedures Vary the Level αj

“Batch” procedures have all m p-values at the start.
Bonferroni (alpha-spending) controls FWER(m) < α.

Reject Hj if pj < α/m

Benjamini-Hochberg “step-down” procedure (BH) controls
FDR(m) < α for independent tests (and some dependent tests).
For the ordered p-values p(1) < p(2) < · · · < p(m)

Reject H(j) if p(j) < jα/m

Weighted BH procedure (wBH, Genovese et al, 2006) controls
FDR(m) < α using a priori information to weight tests.

Reject H(j) if p(j) < W(j) j α/m

More power: Wj > 1 for false nulls, else Wj < 1.
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Alpha-Investing Resembles Alpha-Spending

Initial alpha-wealth to “invest” in testing {Hj}

W (0) = α

Alpha-investing rule determines level for test of Hj , possibly using
outcomes of prior tests

αj = IW (0)({R1, R2, . . . , Rj−1})

Difference from alpha-spending:
Rule earns more alpha-wealth when it rejects a null hypothesis

W (j)−W (j − 1) =

{
ω if pj ≤ αj ,

−αj/(1− αj) if pj > αj .

Earns payout ω if rejects Hj ; pays αj/(1− αj) if not.
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Examples of Policies for Alpha-Investing Rules

Aggressive policy anticipates clusters of θj 6= 0
I Investing rule: If last rejected hypothesis is Hk∗ , then

IW (0)({R1, R2, . . . , Rj−1}) =
W (j − 1)

1 + j − k∗
, j > k∗

I Invest most immediately after reject Hk∗ :
Invest 1

2 of current wealth to test Hk∗+1

Invest 1
3 of current wealth to test Hk∗+2

. . .

Revisiting policy mimics BH step-down procedure
I Test every hypothesis first at level α/m.
I If reject at least one, alpha-wealth remains ≥ W (0).
I Test remaining hypotheses conditional on pj > α/m.
I Rejects Hj if pj ≤ 2 α/m (like BH).
I Continue while at least one is rejected until wealth is spent.
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Theory: Alpha-Investing Uniformly Controls mFDR

Stop early: Do you care about every hypothesis that’s rejected, or
are you most interested in the first few?

I Scientist studies first 10 genes identified from micro-array.
I What is FDR when stop early?

Uniform control of mFDR
A test procedure uniformly controls mFDRη at level α if for any
finite stopping time T ,

sup
θ

Eθ

(
V θ(T )

)
Eθ (R(T )) + η

< α

Theorem
Any alpha-investing rule IW (0) with initial alpha-wealth W (0) ≤ α η and
pay-out ω ≤ α uniformly controls mFDRη at level α.
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Why control mFDR rather than FDR?

FDR(m) ≈ E
(

V θ(m)

R(m)

)
mFDRη(m) =

E V θ(m)

E R(m) + η

They produce similar control in the type of problems we consider,
as shown in simulation. See simulation results

By controlling a ratio of means, we are able to identify a
martingale:

Lemma
The process

A(j) = αR(j)− V θ(j) + η α−W (j)

is a sub-martingale

E(A(j) | A(j − 1), . . . , A(1)) ≥ A(j − 1) .
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Two Simulations of Alpha-Investing

Comparison to batch
Fixed collection of
hypotheses
H1, . . . , H200

Hj : µj = 0
Spike and slab mixture,
iid sequence

µj =

{
N(0, 2 log m)
0

10,000 replications

Testing an infinite stream
Infinite sequence of
hypotheses
H1, . . . , H4000, . . .

Hj : µj = 0
Hidden Markov chain

I 10% or 20% µj = 3
I Average length of

cluster varies

1,000 replications,
halted at 4,000 tests
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Procedures That Use Domain Knowledge

Oracle-based Weighted BH
Oracle reveals which
hypotheses to test
Only test m −m0 that
are false
Threshold for p-values

j α/m ⇒ jα/(m−m0)

Spread available
alpha-level over fewer
hypotheses

Alpha-investing
Scientist able to order
hypotheses by µj

Test them all, but start
with false
Aggressive investing

α/2 ⇒ (α + ω)/2

Initial rejections produce
alpha-wealth for
subsequent tests.
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Alpha-Investing+Order Outperforms wBH+Oracle

Test m = 200 hypotheses, µj ∼ spike–and–slab mixture
Step-down: BH, wBH with oracle,
Alpha-investing: aggressive(O,M), mimic BH (◦)
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Testing an Infinite Stream of Hypotheses
Generate µj from Markov chain

I 10% (◦) or 20% (×) non-zero means
I Fixed alternative: µj = 0 or 3

1,000 sequences of hypotheses, snapshot at 4,000 tests
Investing rule: Aggressive alpha-investing
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Summary

Alpha-investing ...
Allows testing of a dynamically chosen, infinite stream of
hypotheses
Underlying martingale proves alpha-investing obtains uniform
control of mFDR (≈ FDR)
Exploits domain knowledge to improve power of tests
Further details in paper at

stat.wharton.upenn.edu/∼stine

What’s next?
I Applications in variable selection
I Universal policies for alpha-spending
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FDR and mFDR Produce Similar Types of Control

Simulation of tests
m = 200 hypotheses
Proportion π1 false
Spike–and–slab mixture

µj =

{
N(0, 2 log m)
0

10,000 replications
Procedures

Naive, Bonferroni,
BH step-down,
wBH with oracle
Solid: FDR
Dashed: mFDR

Return
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