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• Outline

– Predictive risk (out-of-sample accuracy) as criterion

– Unbiased estimates:

Mallows’ Cp, Akaike’s AIC, C-V ⇒ |z| >
√

2

– Adjusting for selection:

Risk inflation, hard thresholding ⇒ |z| >
√

2 log p

• Goals

– Convey origins of the methods

– Characterize strengths, weaknesses
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Regression Model

True Model

Rather than assume E Y = Xβ, leave mean unspecified:

Y = η + ε, E ε = 0, Var ε = σ2In,

Out-of-sample prediction error

Given p covariates X = [X1, X2, . . . , Xp], prediction MSE

PMSE(X) = E‖Y ∗ −Xβ̂‖2/n, Y ∗ ind Y

where norm is the sum of squares, ‖Y ‖2 = Y ′Y =
∑
i y

2
i .

Projection error Denote “hat matrix” Hx = X(X ′X)−1X, then

nPMSE(X) = E‖Y ∗ − η‖2 + E‖η −Xβ̂‖2

= nσ2 + E‖η −Hxη +HXη −Xβ̂‖
2

= nσ2 + ‖η −Hxη‖2 + E‖Hxη −HxY ‖2

= nσ2︸︷︷︸
common

+ ‖(I −Hx)η‖2︸ ︷︷ ︸
wrong X’s

+ (E‖Hxε‖2 = pσ2)︸ ︷︷ ︸
est error

Working Model

Avoid common projection error (I −Hx)η, and let β denote

projection of η into column span of X:

Y = Xβ + ε where Xβ = Hxη .
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More on the Regression Model

Covariates

Collection of p potential predictors, X = [X1, . . . , Xp].

Working Model Add normality,

Y = Xβ + ε , εi ∼ N(0, σ2)

Robustness?

Central limit theory handles estimates, but one might question

squared error as the right measure of loss.

Subset/selection coefficients

Let γ = (γ1, . . . , γp) denote a sequence of 0’s and 1s. Then

define a subset of X and β by (miss APL compress notation!)

Xγ , βγ defined by βj ∈ βγ ⇐⇒ γj = 1

The number of fitted coefficients is q =
∑
j γj = |γ|.

True subset

Some of the members of β are possibly zero. Want to avoid this

subset (perhaps) and isolate the meaningful predictors. Denote

the subset of βj 6= 0 by γ∗.
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Orthogonal Regression

Selecting basis elements

n orthogonal predictors Xj , X ′X = n In

Estimates

β̂j =
X ′jY

X ′jXj
=
X ′j(Xβ + ε)

n

= βj +
X ′jε

n
CLT

= βj +
σZ√
n

Z ∼ N(0, 1)

Test statistic

Note the “mean-like” standard error SE(β̂j) = σ/
√
n. If we

know σ2, then test H0 : βj = 0 with

zj =
β̂j

SE(β̂j)
=
√
nβ̂j
σ

Contribution to fit

Regression SS is

β̂′(X ′X)β̂ = n
∑

β̂2
j

so Xj improves fit by adding

nβ̂2
j = σ2 (

√
nβj
σ

+ Z)2︸ ︷︷ ︸
non-central χ2
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Mallow’s Cp

Problem (Mallows 1964, Technometrics 1973)

Given a model with p covariates, Y = Xβ + ε, find an unbiased

estimate of the prediction MSE.

Prediction MSE

nPMSE(β̂) = E‖Y ∗ −Xβ̂‖2

= nσ2 + E‖Xβ −Xβ̂‖2

= nσ2 + E‖Hxε‖2

= (n+ p)σ2

Residual SS suggests an estimator:

E(RSSp) = E‖Y −Xβ̂‖2

= E‖(I −Hx)ε)‖2

= (n− p)σ2

leading to the unbiased estimator

pmse(X) =
RSSp + 2pσ̂2

n
, σ̂2 = RSSp/(n− p)

Mallows’ Cp

Cp =
RSSp
σ̂2

+ 2p− n

so that assuming we have the right model Cp ≈ p.
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Cp in Orthogonal Regression

Orthogonal setup

Xj adds nβ̂2
j = σ2

(√
nβj
σ

+ Z

)2

to Regr SS

Coefficient threshold

• Add Xp+1 to a model with p coefficients?

• Minimum Cp criterion implies

Add Xp+1 ⇐⇒ Cp+1 < Cp

0 < Cp − Cp+1 =
RSSp −RSSp+1

σ2
+ 2p− 2(p+ 1)

=
nβ̂2

p+1

σ2
− 2

= z2
p+1 − 2

• Add Xp+1 when |zp+1| >
√

2, (In the null case one chooses

about 16% of variables, P{|N(0, 1)| >
√

2} = 0.157.)

Adjusted R2 criterion (Theil 1961)

Add variables which increase adjusted R
2

(or decrease σ̂2):

Add Xp+1 ⇐⇒ σ̂2
p > σ̂2

p+1 ⇐⇒ 1 <
nβ̂2

p+1

σ̂2
p

= z2
p+1
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Discussion of Mallows’ Cp

Objective

Find unbiased estimate of PMSE for a given regression model.

Selection criterion

Minimize Cp (or unbiased estimate of PMSE).

Mallows’ caveats

“[These results] should give pause to workers who are tempted

to assign significance to quantities of the magnitude of a few

units or even fractions of a unit on the Cp scale...

Thus using the ‘minimum Cp’ rule to select a subset of terms for

least squares fitting cannot be recommended universally.”

Issues

• Consistency

Since testing at α = 0.16, will asymptotically overfit.

• Where’d you get σ̂2?

Fit the “full” regression model, assuming p << n.

• Effects of selection bias:

Estimate of PMSE for model with smallest observed pmse

is no longer unbiased.

• How to apply in problems other than regression?
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Akaike’s Information Criterion

Generalization (Akaike 1973)

Extends model selection beyond regression, motivated by notion

of model approximation rather than prediction. Origins in FPE

criterion for picking order of autoregression.

Kullback-Leibler divergence (aka, relative entropy)

How close are two models?

Let fθ∗ denote density of true model. How close is another

model/density fθ using parameters θ?

Akaike uses expected divergence, averaged over samplng dist of θ̂:

EYD(fθ∗‖fθ̂) = EY

∫
log

f(Y ∗, θ∗)

f(Y ∗, θ̂)︸ ︷︷ ︸
log L.R.

f(Y ∗, θ∗)dY ∗ ≥ 0

where Y ∗ ∼ fθ∗ is independent of θ̂ = θ̂(Y ).

Notes

Likelihood ratio Divergence is integrated log of the likelihood

ratio of the true model to the fitted model.

Out of sample LR evaluated at data Y ∗ using estimate θ̂(Y )

from independent sample Y .
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AIC in Gaussian Problems

Divergence

Abbreviate densities and focus on parameters,

EYK(θ∗, θ̂) = EY

∫
log

f(Y ∗, θ∗)

f(Y ∗, θ̂)
f(Y ∗, θ∗)dY ∗

Gaussian regression

Assume σ2 given, then with E Y = η and βp denoting projection

of η into p dimensional subspace,

EYK(β, β̂p) = EY ∗,Y log
e−1/2σ2‖Y ∗ − η‖2

e−1/2σ2‖Y ∗ −Xβ̂p‖
2

=
1

2σ2
EY ∗,Y ‖Y ∗ −Xβ̂p‖

2 − ‖Y ∗ − η‖2

=
1

2σ2
EY ‖η −Xβ̂p‖

2

=
1

2σ2
(pσ2 + ‖η −Xβp‖2)

Unbiased estimate

Add 2pσ2 to residual SS (−2σ2× log likelihood) as in Cp,

E RSSp = E‖Y −Xβ +Xβ −Xβ̂p‖
2

= (n− p)σ2 + ‖Xβ −Xβp‖2

⇒ K̂ = 2σ2(p− log f(Y, β̂p︸ ︷︷ ︸
minimize

)
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General Form of AIC

Focus on varying part of criterion

EYK(θ∗, θ̂p) = EY

∫
log

f(Y ∗, θ∗)

f(Y ∗, θ̂p)
f(Y ∗, θ∗)dY ∗

= EY

∫
log f(Y ∗, θ∗)f(Y ∗, θ∗)dY ∗

−EY
∫

log f(Y ∗, θ̂p)f(Y ∗, θ∗)dY ∗

How to estimate EY log f(Y ∗, θ̂p)?

Use sample log likelihood (as in using RSS to estimate PMSE)∑
log f(Yi, θ̂p), Yi ∼ fθ∗

Penalty Use the quadratic approximation,

log f(Y, θ) = `(Y, θ) ≈ `(Y, θ̂) + 1
2‖θ − θ̂‖

2

I , θ̂ = MLE ,

and I is the information matrix at θ̂ with ||x||2I = x′Ix.

On avg E `(Y ∗, θ̂∗p) = E `(Y, θ̂p),

E`(Y ∗, θ̂p)− `(Y, θ̂p) ≈ (E ‖θ̂p − θ̂∗p‖
2

I
)/2

= (E ‖θ̂p − θp + θp − θ̂∗p‖
2

I
)/2

= E ‖θ̂p − θp‖
2

I = Eχ2
p = p ,

where θp is projection of θ into p dimensions (e.g., Brown,

Geometry of Exponential Families).
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Discussion of AIC

Objective

Minimize unbiased estimate of divergence via

Penalized log-likelihood: p−
∑

log f(Yi, θ̂p)

Comments

• Equivalence to Cp:

Out-of-sample log-likelihood ∝ prediction MSE for normal.

Threshold for orthogonal regression remains at |zj | >
√

2.

• Parametric:

Nested parametric models with known form of likelihood.

• Consistency:

Since amounts to a test with low threshold, will make some

type I errors regardless of n. Hence, not consistent.

Do I care?

• Origins and true model:

Fitting (nested) autoregressions, AR(1), AR(2), . . .. One

seldom believes any such model is “the true model.”

• Selection bias:

Estimate of relative entropy for model with smallest

observed penalized likelihood is no longer unbiased.
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Cross-Validation

Motivation Stone 1974

Estimate properties of prediction rule by direct calculation.

Leave-one-out

Estimate out-of-sample prediction squared error from

CV SS =
∑
i

(yi − x′iβ̂(−i))2

where β̂(−i) denotes slope estimate without using the ith

observation.

Simplified calculation

Use expressions for β̂(−i) in terms of β̂ and residuals,

CV SS =
∑
i

(yi − xiβ̂ + x′i(β̂ − β̂(−i)))2

=
∑
i

yi − x′iβ̂︸ ︷︷ ︸
ei

+x′i(X
′X)−1xi︸ ︷︷ ︸
hi

ei
1− hi


2

=
∑
i

e2
i

(
1 +

hi
1− hi

)2

=
∑
i

e2
i

(1− hi)2
,

where hi are the leverages associated with the fitted model.
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0 0.150.05 0.1

Cross-Validation ≈ Cp

Generalized cross-validation

Replace hi by its average p/n,

CV SS

n
=

1
n

∑
i

e2
i

(1− hi)2

≈ 1
n

∑
i

e2
i

(1− p/n)2

=
RSS

n− p

(
n

n− p

)
= s2

p

(
1 +

p

n

)
,

inflating s2
p by the Cp adjustment (1 + p/n).

How good are the approximations?

Histogram of hi for simulated analysis with n = 100, fitting a

constant and 4 “near orthogonal” predictors (p = 5):
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Cross-Validation Simulation

Estimates of PMSE

In a simulation of 250 trials, Cp and CV SS quite similar

(p = 5, σ2 = 1, and standard errors for means ≈ .01).

Mean SD

s2 0.996 0.143

Cp 1.046 0.150

CV 1.050 0.151

and corr(CV,Cp) = 0.998.

14



0 205 10 15
k

Criteria in McDonald’s Example

AIC

15



0 102.5 5 7.5
q-1

p = 10

 0  0 11 24 45 13  5  2  0  0

Impact of Selection

Variable selection

Suppose that q variables chosen from collection of p available

predictors using a stepwise method, then assessed using Cp.

Model In addition to fitting a constant,

p = 10 possible “near orthogonal” predictors, n = 100

True coefficient vector, on z score scale is

zβ = (5, 4, 3, 2, 1, 0, . . . 0)

Simulation results Based on 100 replications...
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0 102.5 5 7.5
q-1

p = 25

 0  0  2  4 18 20 12 14 19 11

Impact of More Selection

Variable selection

Suppose now that q variables chosen from larger collection of 25

predictors using a stepwise method, again assessed using Cp.

Model In addition to fitting a constant,

p = 25 possible “near orthogonal” predictors, n = 100

True coefficient vector, on z score scale is

zβ = (5, 4, 3, 2, 1, 0, . . . 0)

Simulation results Based on 100 replications...
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Summary of Predictive Risk

Penalize in-sample estimates

In-sample estimates of prediction error, e.g. residual SS, are

optimistic, suggesting the model predicts better than it with.

Unbiased estimates

Cp and AIC provide simple adjustments that lead to unbiased

estimates of predictive risk and relative entropy, for a given

model.

Cross-validation

Direct computation by leave-one-out cross-validation duplicates

Cp and AIC in the normal case.

Inconsistent model selection

Since choosing variables whose |z| >
√

2, 16% of predictors enter

in null case. Asymptotically overfits if one is willing to fix the

model as n grows.

Selection effects

Though unbiased for a given model, Cp and AIC are biased

when applied to the model which minimizes the criterion.

18



Incorporating Selection in the Criterion

Problem in using Cp, AIC

Unbiased estimate of the predictive risk of one model, but

• Estimate of risk is biased in presence of selection, and

• If all βj = 0, about 16% are accepted (P (|Z| >
√

2) ≈ 0.16).

Alternative threshold

If cannot construct an unbiased estimate in presence of

selection, can you guarantee a level of performance?

What threshold obtains this performance?

Minimax

Can we at least bound the worst-case predictive risk?

Minimax and model selection

Don’t always work too well together:

Use c Y to estimate µ

Squared error risk is

R(µ, Y ) = E(cY − µ)2 = E(cY − cµ)2 + (cµ− µ)2

= c2
σ2

n
+ µ2(c− 1)2

Unless c = 1, minimax risk R(µ, Y )→∞ as µ→∞.
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Testimators

Idea

Construct an estimator for µ from a test of H0 : µ = 0:

µ̂ =

 0, accept H0, |
√
nY /σ| < τ

Y , reject H0 .

Also known as “hard thresholding” with threshold τ .

Graph of testimator

Connection to model selection

In variable selection, each slope estimate is a testimator.

Key questions

What is the effect of the choice of the threshold τ on the

predictive risk of the regression estimator?

What can be guaranteed of the testimator with threshold τ?

Under what conditions?
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Risk of Testimator

Model and estimator

Orthogonal regression with n observations,

β̂j = βj +
σZj√
n
,

nβ̂2
j

σ2
=

√nβjσ︸ ︷︷ ︸
ζj

+ Zj︸︷︷︸
N(0,1)


2

Predictive risk

If I exclude βj , then have a bias term:

E‖Xjβj −Xj β̂j‖
2

= E‖Xjβj‖2 = nβ2
j

If I include βj , then have a variance term:

E‖Xjβj −Xj β̂j‖
2

= σ2

The risk combines these, weighted by probabilities of occurrence,

R(β, β̂τ ) = E ‖Xβ −Xβ̂τ‖
2

= σ2 + n
∑
j

β2
jP

(
nβ̂2

j

σ2
≤ τ2

)
︸ ︷︷ ︸

exclude

+n
∑
j

E((βj − β̂j)2 I{
nβ̂2

j

σ2
> τ2}︸ ︷︷ ︸

include

)

21



Risk Function

Essential risk function

R(β, β̂τ ) = E ‖Xβ −Xβ̂τ‖
2

= σ2

1 +
∑
j

R∗(ζj , τ)


where for Z ∼ N(0, 1),

R∗(ζ, τ) = ζ2P ((ζ + Z)2 ≤ τ2)︸ ︷︷ ︸
exclude → bias

+E (Z2I{(ζ + Z)2 > τ2})︸ ︷︷ ︸
include → var

Plot

Distribution of observed z-score
√
nβ̂/σ centered at

ζ =
√
nβ/σ = 1 and τ = 2:
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Risk Components

Variance E (Z2I{(ζ + Z)2 > τ2}) τ = 0, 1
2 ,
√

2, 3

Bias ζ2P ((ζ + Z)2 ≤ τ2)
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Risk Function

Components for τ =
√

2, threshold for Cp

Risk τ = 0, 1,
√

2, 3 (Mallows 1973)
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Where should we put the threshold?

For Z ∼ N(0, 1),

R∗(ζ, τ) = ζ2P ((ζ + Z)2 ≤ τ2) + E (Z2I{(ζ + Z)2 > τ2}) ,

Minimax

Set threshold τ = 0, using all variables: no bias, all variance.

R∗(ζ, 0) = 1 ⇒ R(β, β̂τ=0) = pσ2 .

Large Thresholds

Bias dominates, with relatively little variance since

E (Z2I{(ζ + Z)2 > τ2}) ≤ E Z2 = 1

If ζ = τ , miss half: R∗ = τ2/2.

If ζ = τ − 2, miss most:R∗ ≈ (τ − 2)2 ≈ τ2

Heuristic

For a large threshold, the maximum risk when fitting p

coefficients is near

sup
β
R(β, β̂τ ) ≈ p σ2 τ2
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Lower Bound for Minimax Risk

Theorem (Foster & George, 1994 )

For any estimator β̂, with |γ| = q nonzero true values,

sup
βγ

R(β, β̂) ≥ σ2(2q log p− o(log p)) ,

asymptotically as p→∞ for fixed q.

Simpler problem Help from an oracle...

Suppose you know q = 1 and that the non-zero βj = C > 0.

Do not know which coefficient 6= 0, and further treat γj as

independent trials, with prob 1/p.

What’s the minimax risk in this case?

Utopian estimator via Bayes (Donoho & Johnstone, 1994)

Bayes gives the best estimator via posterior mean, and will use a

rough approximation to this estimator.
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Lower Bound for Minimax Risk, cntd

Utopian estimator via Bayes

Assuming γ1, . . . , γp ∼ B(1/p), Bayes gives the best estimator

via posterior mean. Let zj =
√
nβ̂j/σ.

E(βj |β̂j) = 0× P (βj = 0|β̂j) + C P (βj = C|β̂j)

= C
P (β̂j |βj = C)P (βj = C)

P (β̂j |βj = C)P (βj = C) + P (β̂j |βj = 0)P (βj = 0)

= C
1

1 + (p−1) N0,1(zj)
NC,1(zj)

=
C

1 + (p− 1)e−C(zj−C/2)
,

Posterior mode step-function approx to the posterior mean,

M̂j =

 0, zj <
log p
C + C

2

C, otherwise.

Risk (σ2 = 1)

R(β, M̂) = p C2[P (z1 >
log p
C

+
C

2
|β1 = 0)P (β1 = 0)

+P (z1 ≤
log p
C

+
C

2
|β1 = C)P (β1 = C)]

= C2

[
(p− 1)P (Z >

log p
C

+
C

2
) + P (Z ≤ log p

C
− C

2
)
]

= C2

[
(p− 1)

(
1− Φ

(
log p
C

+
C

2

))
+ Φ

(
log p
C
− C

2

)]
How large can “nature” make this risk by choice of C?
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Minimax Risk Threshold

Maximum risk (σ2 = 1)

If locate the non-zero value C =
√

2 log p, then

R(β, M̂) ≈ C2

[
p

(
1− Φ

(
log p
C

+
C

2

))
+ Φ

(
log p
C
− C

2

)]
≈ 2 log p

(
1√

2 log p
+ Φ(0)

)
= log p+

√
2 log p

At a slightly smaller value, say
√

2 log p− 2, increases to

sup
C
R(β, M̂) ≈ 2 log p

Results

• For small |γ| and any β̂, R(βγ , β̂) ≥ σ2|γ| (2 log p).

• For large thresholds, supβ R(β, β̂τ ) ≈ pσ2τ2.

Hard threshold, RIC criteria

Assume |γ| is small (as with wavelets) and pick τ to obtain

minimax risk:

τ =
√

2 log p

Close to the Bonferroni bound:

Φ(x) ≈ φ(x)
x
⇒ Φ−1(

1
p

) ≈
√

2 log p− 1
2

log(2 log p)√
2 log p
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“Ancient Model Selection”

Finding a cycle hidden in noise

• Power: sum of squares associated with pairs of coefficients in

a “full” orthogonal harmonic regression (n even)

Yt = A0 +
n/2−1∑
j=1

Aj cos
2πjt
n

+Bj sin
2πjt
n

+An/2(−1)t

Aj = (2/n)
∑
t

Yt cos
2πjt
n

• Regression SS for jth frequency:

SSj = n

(
A2
j +B2

j

2

)

• Question: Does the maxj SSj indicate significant variation?

R. A. Fisher’s 1929 method (Bloomfield 1976, Time Series)

• Under null model and normality, SSj/σ2 iid∼ E , ( 1
2χ

2
2).

• X = maxj SSj/σ2, max of m = n/2 standard exponentials

• P (X < x) = (1− e−x)m ⇒ P (X < x+ logm) ≈ exp(−e−x)

⇒ X ≈ logm

• Find “signal” if X > logm.

• Corresponds to RIC threshold 2 log p for regression SS, with

2 dropped since looking at the average of two coefficients.
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Less Conservative Procedure

Bonferroni For large p
RIC threshold ≈ Φ−1

(
p
p+1

)
Why use this hard threshold for all of the coefficients?

Half-normal method C. Daniel 1959

Order the absolute z scores,

|z(1)| > |z(2)| > · · · > |z(p)|

Compare

|z(1)| > Φ−1

(
p

p+ 1

)
≈
√

2 log p

|z(2)| > Φ−1

(
p− 1
p+ 1

)
≈
√

2 log p/2

|z(q)| > Φ−1

(
p− q + 1
p+ 1

)
≈
√

2 log p/q

Adaptive criterion

Leads to a selection criterion similar to those I’ll more carefully

formulate in empirical Bayes and information theory.

Multiple testing

Simes (1986) result from testing multiple hypotheses adapted to

variable selection by Abromovich and Benjamini (aka, step-up,

step-down tests).
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Conclusions

Orthogonal thresholds

Assuming n independent observations from identical model,

p potential predictors, thresholds for coefficient z-scores are

Method Threshold τ

Cp, AIC, cross-validation
√

2

RIC, hard thresholding
√

2 log p

Selection criteria

Built-in prejudices for certain kinds of models:

RIC: Ideal basis should have only a few large coefficients, and

obtains minimum risk against worst case model. (Oracle idea:

Does as well as knowing which to use in the worst case problem.)

Hidden biases

Other selection method have hidden biases toward certain types

of models, as suggested by RIC’s preference for few coefficients.

Bayesian ideas and information theory reveal more of these as

well as ways to adapt to problem at hand.

Remaining issue

Once you have chosen a model, how well will it predict?
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