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Abstract

Streaming feature selection is a very greedy approach to variable selection that eval-

uates potential explanatory variables sequentially. It selects significant features as soon

as they are discovered rather than testing them all and picking the best one. Because

it is so greedy, streaming selection can rapidly explore large collections of features. If

significance is defined by an alpha investing protocol, then the rate of false discoveries

will be controlled. The focus of attention in variable selection, however, should be on

fit rather than hypothesis testing. Unfortunately, little is known about the estimation

risk produced by streaming selection and how the configuration of these procedures

influences the risk. To meet these needs, we provide a computational framework based

on stochastic dynamic programming that allows fast calculation the minimax risk of

a sequential estimator relative to an alternative. The alternative can be data-driven

or derived from an oracle. This framework allows us to compute and contrast the

risk inflation of sequential estimators derived from various alpha investing rules. We

find that a universal investing rule performs well over a variety of models and that

estimators allowed to have larger than conventional rates of false discoveries produce

generally smaller risk.

Key Phrases: Bellman equations, stochastic dynamic programming, testimator, variable

selection
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1 Introduction

Our analysis concerns the risk of sequential estimators in which characteristics of later

estimates depend on the outcomes of earlier estimates. Our interest in the risk of

such estimators arises from their use in streaming feature selection. Streaming fea-

ture selection constructs a predictive model by greedily choosing explanatory variables

from a sequence offered by an exogenous source. Think of forward stepwise regression,

but without knowledge of the complete domain of explanatory variables. Rather than

evaluate the collection of possible explanatory variables together, streaming selection

evaluates them one-at-a-time. Searches like stepwise regression consider the full batch

of, say, p potential explanatory variables together, choosing at the first step the pre-

dictor X(1) that obtains the best fitting model. In contrast, streaming selection is

even more greedy and evaluates features sequentially as X1, X2, . . ., judging Xj having

observed X1, . . . , Xj−1. Hence, streaming selection does not wait to examine every

explanatory variable. It is also free to use the results of evaluating initial variables to

guide the search for those to consider subsequently. For example, a streaming search

might test the interaction Xj Xk after finding significant effects for Xj and Xk. Stream-

ing selection can thus adaptively explore collections of explanatory variables that are

larger than typically considered with conventional methods. For large samples, the

slowest step in forward stepwise regression is the calculation of the X ′X matrix. Lin,

Foster, and Ungar (2011) demonstrate the speed attained by sequential selection when

picking a regression from up to 100,000 explanatory variables.

Streaming selection poses a challenge, however, for variable selection. Although one

gains advantages by avoiding simultaneously evaluating every predictor, the absence

of a fixed set of features in streaming selection requires a different type of selection

criterion from those commonly used. For example, suppose the search begins with a

list of p possible features X1, X2, . . . , Xp. As mentioned, the search could expand to

include interactions in Xj once Xj joins the model. If the search is limited to second-

order interactions, then the maximum number of possible explanatory variables is

m = p(p + 1)/2 variables. One could allow higher order interactions as well. Because

a streaming search may not consider all of these, it would be conservative to combine

m with a criterion such as AIC, BIC, or RIC. Similarly, selection using FDR requires

the complete set of p-values at the start of the search.

Alpha investing (Foster and Stine, 2008) is a sequential testing procedure that we

designed to work with streaming feature selection. Because alpha investing can test an

infinite sequence of hypotheses, it is well-matched to a search of a possibly unbounded

collection of features. Rather than test multiple hypotheses at once, alpha investing
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tests hypotheses one-at-a-time in a specified order. Alpha investing begins with an

initial allowance for Type I error that is called its alpha wealth. Each test consumes

some of the available alpha wealth, as in alpha spending rules used in clinical trials.

Alpha investing overcomes the conservatism of alpha spending rules, which include the

Bonferroni method, by earning a contribution to the alpha wealth for each rejected null

hypothesis. Thus rejections beget more rejections. Alpha investing further allows one

to test an infinite stream of hypotheses, accommodate dependent tests, and incorporate

domain knowledge.

Like other procedures for multiple testing, alpha investing controls the expected

number of false rejections. Controlling the false discovery rate protects against over-

fitting in variable selection. One can guarantee that on average not more than, say,

5% of the rejected hypotheses spuriously add a predictor to the model. When build-

ing a predictive model, however, we find that controlling the false discovery rate is

secondary to obtaining a more predictive model. Control of the false discovery rate

does not imply that one finds the most predictive model. It only guarantees that a

high percentage of chosen features are in fact useful. The quadratic risk of the implied

estimator is more relevant. Furthermore, alpha investing is not one method, but rather

a general approach to testing a sequence of hypotheses. It offers a modeler a variety

of choices that vary how the procedure sets the level for the next test. The impact of

these choices on the risk of the resulting model is by-and-large unknown.

To evaluate the risk of alpha investing estimators and identify the impact of choosing

among various options, the methods shown here find the cumulative risk of a sequence

of testimators implied by testing a sequence of null hypotheses. A testimator is also

known as a keep-or-kill estimator or a hard thresholding estimator. The estimator of

the parameter µ is zero unless H0 : µ = 0 is rejected. For this paper, we consider a sim-

plified version of the variable selection problem that avoids issues related to collinearity

among explanatory variables. Rather than observe a sequence of slope estimates, we

assume that the observed data are a sequence of p random variables Yj ∼ N(µj , 1).

Within this context, our algorithm reveals the attainable risks of a testimator for any

choice of parameters. We accomplish this task by adopting the perspective of risk

inflation and comparing the competitive performance of two sequential estimators. For

any pair, we find the set of risks attainable for the underlying parameters. Given the

sequential nature of the problem, it should not be surprising that we rely on stochastic

dynamic programming. The risks so obtained are exact (up to computational accu-

racy) rather than asymptotic. We further show a probabilistic model for the underlying

parameters that approximates those risks. Although we consider sequential estimators,

we find that bounds for the risk inflation of conventional testimators also characterize
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the risk of sequential testimators.

The following section provides further introduction to alpha investing. We derive

two alpha investing strategies from continuous probability distributions. Our construc-

tion of these strategies in Section 2 is novel and allows us to minimize the state space

required in the dynamic program. Section 3 describes the risk of a sequence of testi-

mators. Section 4 defines the feasible set of possible risks and uses these to compare

testimators to an oracle and to each other. Section 5 describes the computations in

more detail. We conclude in Section 6 with a brief discussion of the results and pose

conjectures motivated by our computations.

2 Alpha-investing

An alpha-investing rule (Foster and Stine, 2008) determines the levels for testing a

sequence of hypotheses H1, H2, . . . ,. The procedure is most easily described by showing

a few steps. The process begins with an initial allocation W0 > 0 of alpha wealth.

An alpha-investing rule can test H1 at any level α1 up to the initial alpha wealth,

0 ≤ α1 ≤ W0. The level α1 is ‘invested’ and cannot be used for subsequent tests. We

say that α1 is invested rather than spent because rejecting H1 produces an increment

in the alpha wealth, a return on the investment. Let p1 denote the p-value of the test

of H1. If p1 ≤ α1, the test rejects H1, and the alpha investing rule earns a contribution

ω ≥ 0 to its alpha wealth. Otherwise, the alpha wealth available to test H2 falls to

W1 = W0 − α1. In general, the alpha wealth available for testing Hj+1 is given by the

stochastic process

Wj = Wj−1 − αj + ω I{pj≤αj}, j = 1, 2, . . . , (1)

with the initial condition that specifies the initial wealth W0. Alpha spending rules are

alpha investing rules that constrain ω = 0.

Because rejecting a null hypothesis makes it easier to reject other null hypotheses,

it is essential for alpha investing to control the rate of false rejections. To this end,

Foster and Stine (2008) show that alpha investing controls a sequential version of the

expected false discovery rate, mFDR. Let T (j) count the number of hypothesis rejected

among the first j tests, and let V (j) ≤ T (j) denote the total number of false rejections

among the first j tests. The sequential mFDR is

mFDRη(j) =
EV (j)

η + ET (j)
, η > 0. (2)

In contrast, FDR is the expected value of the ratio V (j)/T (j) conditional on T (j) > 0

rather than the ratio of expected values. The constant η in the denominator of mFDR
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avoids dividing by values near zero under the complete null hypothesis in which all

µj = 0. If W0 ≤ η ω, then alpha-investing rules control mFDRη(p) ≤ ω, and this result

implies weak control of the family wide error rate. Because these properties of alpha

investing originate in a martingale, the index j in (2) is allowed to be an arbitrary

stopping time, such as the occurrence of the kth rejection.

Alpha-investing rules are quite general. The underlying theory requires only that

the level of the test of Hj is bounded by the available wealth Wj−1 and that the test

indeed have level αj , conditional on the outcomes of prior tests. Otherwise, an alpha

investing rule can use the pattern of prior rejections. We represent this dependence

by writing an alpha investing rule A as a function of the sequence of prior wealths

W0:j−1 = {W0,W1, . . . ,Wj−1}. The rule A maps this history to the interval from zero

to the current wealth:

A : W0:j−1 7→ [0,min(Wj−1, 1)] (3)

For example, A can set the level of the next test higher or lower depending upon

the number of tests since the last rejection or the number of rejections accumulated

so far. Although alpha investing allows this generality, we focus on a simpler class

of investing rules that have a path independent, Markovian structure. The amount

invested by these rules depends only on the current wealth rather than the full path,

αj = A(W0:j−1) = α(Wj−1). The only requirement is that 0 ≤ α(w) ≤ w; a rule

cannot invest more wealth than the amount possessed. It does seem natural, however,

for α(w) to be monotone increasing in w.

Remark A. To avoid adding notation, we overload the symbol α. Throughout these

uses, the symbol α consistently gives the level of a test; only the context of the test

changes. By itself, α represents the generic level of a test. When given an integer

subscript, αj is the level of the jth test in sequence of tests, as in (1). Finally, denoting

a function, α(w) is the level invested in a test by an alpha investing rule that has

available wealth w, as in (4) that follows.

The simplest representatives of this class of alpha investing rules are geometric

rules. These invest a fixed percentage of the available wealth on each test:

αg(w,ψ) = ψw, 0 < ψ < 1. (4)

Since the alpha wealth increases after a rejection (provided αj < ω), a geometric rule

αg invests more following a rejection and then gradually – at the rate determined by

ψ – reduces the level of subsequent tests.
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Alternatively an alpha investing rule can vary the share of the current wealth to

invest in the next test. Rather than invest a fixed share of the available wealth, the

following rule invests progressively less wealth as the wealth drops. The rule is defined

by

αu(w) = w − log 2

log(1 + 21/w)
. (5)

Because we obtained this investing rule from the universal prior for integers defined by

Rissanen (1983), we call this a universal investing rule and identify it by a subscript

u. (See the following remark.)

Figure 1 contrasts the investments of the universal and several geometric alpha

investing rules. The figure conveys the sense in which αu is universal in the way that it

mimics a collection of geometric rules. For convenience, the initial wealth for all rules

shown in Figure 1 is W0 = 1. On a log-log scale, the amounts invested by the universal

rule fall off approximately linearly. These amounts are initially larger than those of any

of the geometric rules. Starting from W0 = 1, the universal rule invests about 0.369,

0.131, 0.0693, 0.0438, and 0.0306 in the first five tests before its spending gradually

slows. After this initial period, there is a range of tests over which each geometric rule

invests the largest alpha level. For tests in this range, that rule is the most able to find

signal. The universal rule invests almost as much as each geometric rule when that

rule invests the most, and ultimately, the universal rule invests more. For example, the

geometric rule that invests 1% of its wealth at each test (ψ = 0.01) invests more than

the universal rule when testing H11 through H581; otherwise it invests less. The graph

shows that the universal rule saves enough so that it can spend close to the rate of the

maximal geometric.

Remark B. We obtained the universal rule αu defined in (5) by the following construc-

tion. The idea is to define a spending rule by a probability distribution that allocates

wealth over subsequent tests and then shift from discrete to continuous distributions.

We illustrate the construction for the geometric rule. If the initial wealth is W0, then

the alpha wealth invested in the jth test (assuming no intervening test rejects) is

αj = W0 ψ (1− ψ)j−1 , j = 1, 2, . . . . (6)

Rather than define the investing rule using a discrete distribution on j = 1, 2, . . . as in

(6), consider the continuous density

Ag(x) = cg ψ (1− ψ)x−1, 1 ≤ x , (7)

where the normalizing constant cg = − log(1− ψ)/ψ implies
∫∞
1 Ag(x)dx = 1. Notice

that the wealth invested in the jth test (6) matches W0 times the integral of Ag(x)
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Figure 1: Each geometric alpha investing rule has a range of hypotheses where it invests the

most and hence is the most sensitive to detecting signal. The universal rule spends almost

as much as each geometric when that geometric is the highest spender. The graph shows

the alpha levels assuming no intervening test rejects and the initial wealth W0=1.
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from x = j to j + 1,

αj = W0

∫ j+1

j
Ag(x)dx = W0 ψ (1− ψ)j−1 . (8)

To move away from discrete indexing, we use the following tail integral,

Wg(x) = W0

∫ ∞
x

Ag(t, ψ)dt = W0(1− ψ)x−1 . (9)

For integers j, Wg(j) is the wealth available to test Hj if none of H1, H2, . . . , Hj−1 are

rejected. By inverting this tail integral, we can write the investing rule as a function

of just the available wealth,

αg(w,ψ) = Ag(W
−1
g (w)) = ψw , (10)

as in (4). This construction uses the inverse of the tail wealth to determine a ‘hypothesis

index’ W−1g (w) that corresponds to wealth w. The universal rule αu(w) follows from

the same construction, but starts with the density

Au(x) =
log 2

(x+ 1)(log(x+ 1))2
, 1 < x,

in place of Ag. Au(x) is a continuous version of the distribution defined by the penulti-

mate code of Elias (1975). Rissanen (1983) obtains the universal code as a refinement

of the penultimate code.
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Figure 2: The risk of testimators peaks near zα due to a large contribution from the bias as

the level α decreases. (a) Risk of testimators with α = 0.05, 0.20 versus µ. (b) Squared bias

and variance components of the risk of µ̂0.05.
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3 Risk Analysis

Before turning to sequential estimators, we briefly review the quadratic risk of testima-

tors. We begin with the scalar case. Let Y ∼ N(µ, 1). The scalar testimator defined

by the two-sided test of H0 : µ = 0 at level α is

µ̂α(Y ) =

{
Y if z2α ≤ Y 2,

0 otherwise,
(11)

where zα denotes the two-sided critical value, zα = Φ−1(1− α/2). The risk of µ̂α is

R(µ̂α(Y ), µ) = E (µ̂α(Y )− µ)2

= µ2P (Y 2 ≤ z2α) +

∫
z2α<y

2

(y − µ)2φ(y)dy

= Bα(µ) + Vα(µ) (12)

The first summand Bα(µ) is the squared bias that arises if the test of H0 : µ = 0

does not reject when µ 6= 0; the second summand is the variance of the estimator.

Figure 2(a) shows a graph of the risk of testimators with α = 0.05 and α = 0.20. The

maximum risk occurs near zα and grows as α falls. Figure 2(b) shows the decomposition

of the risk of µ̂α into Bα(µ) and Vα(µ) for α = 0.05. Because the variance component

Vα(µ) increases smoothly to its maximum 1 for large |µ|, it is the bias that produces

the noticeable peak in the risk.

The risk of testimators is typically studied in the context of estimating a vector

of p means, µ ≡ µ1:p = (µ1, . . . , µp)
′. The available data is the vector Y ≡ Y1:p =

(Y1, . . . , Yp)
′ with distribution Y ∼ N(µ, Ip). In this context, the estimator of µ
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combines testimators with a common level, µ̂α = (µ̂α(Y1), . . . , µ̂α(Yp))
′. The estimator

µ̂α consists of zeros except for those coordinates where z2α ≤ Y 2
j . The risk of µ̂α is the

sum of the risks of the coordinate testimators,

R(µ̂α,µ) = E
p∑
j=1

(
µ̂α(Yj)− µj

)2
. (13)

Minimax bounds for the risk R(µ̂α,µ) are well-understood. We review the results

of Foster and George (1994) who introduced the concept of the risk inflation of an

estimator. (Donoho and Johnstone, 1994, obtain similar results.) The risk inflation of

µ̂α is the supremum of the ratio of the risk of µ̂α to that of a testimator that obtains

the optimal level from an oracle. Their results imply that the risk inflation of µ̂α is

asymptotically about 2 log p,

2 log p− o(log p) ≤ sup
µ

1 +R(µ̂α,µ)

1 + infη R(µ̂η,µ)
≤ 2 log p+ 1 . (14)

Foster and George further show that the testimator µ̂1/p – essentially the Bonferroni

estimator – obtains the risk inflation threshold. The constant 1 added to the risks in the

ratio of (14) arises in the context of regression models in which one always estimates

the intercept. As a practical device, its presence avoids dividing by zero under the

complete null model in which µj = 0 for all j.

Though suggestive, these results do not reveal the risk of the testimator derived from

alpha investing. The key distinction lies in the timing of the information revealed in Y .

The testimator µ̂α studied in risk inflation uses a fixed level α for all p coordinates, and

all of the elements of Y are available when choosing α. In sequential testing controlled

by alpha investing, the Yj are observed sequentially. The elements of the estimator

form a stochastic process, which we collect in a p-element vector as

µ̂(α(·),W0, ω) = (µ̂α(W0), µ̂α(W1), . . . , µ̂α(Wp−1))
′, (15)

where α(·) denotes the defining investing rule, W0 is the initial alpha wealth, and ω is

the payout earned when rejecting a hypothesis. We omit W0 and ω from this notation

when unambiguous.

The most convenient expression for the risk of µ̂(α(·),W0, ω) relies on a recurrence.

Let

rµ(α) = Φ(µ− zα) + Φ(−µ− zα)

denote the probability of rejecting H0 : µ = 0 using a two-sided z-test at level α (the

power of the test). The risk of the testimator given by alpha investing can then be

decomposed as

R(µ̂(α(·),W0, ω), µ1:p) = R(µ̂α(W0), µ1) + E
p∑
j=2

R
(
µ̂α(Wj−1), µj

)
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= R(µ̂α1 , µ1) + rµ1(α1) R
(
µ̂(α(·),W0 − α1 + ω, ω), µ2:p

)
+(1− rµ1(α1)) R

(
µ̂(α(·),W0 − α1, ω), µ2:p

)
, (16)

where α1 = α(W0) and we have suppressed the dependence of the estimator on Y . The

second expression for the risk emphasizes its recursive nature and motivates our method

of computation. The total risk of the estimator is the risk produced by the testimator

for H1 plus the cumulative risk of testing H2, . . . ,Hp. If the test of H1 rejects, which

happens with probability rµ1(α1), then testing the remaining hypotheses begins with

alpha wealth W1 = W0 − α1 + ω. Otherwise, with probability 1 − rµ1(α1), testing

begins with wealth w1 − α1.

The calculation of the maximum risk of µ̂(α(·),W0, ω) is similarly recursive, and

we compute the sum by backward induction. Because the performance of subsequent

tests depends on the outcome of the first, the choice of µ1 is not so simple as setting

µ1 = arg maxR(µ̂0.05, µ). Doing so ignores the payoff ω obtained if H1 is rejected. By

rejecting the first test, alpha investing adds ω to its alpha wealth, allowing it to increase

the level – and so potentially reduce its risk – in subsequent tests. The problem to be

solved at the first test is to choose

µ1 = arg max
m

{
R(µ̂α1 ,m) + rm(α1) max

µ2:p
R(µ̂(α,W0 − α1 + ω, ω), µ2:p)

+(1− rm(α1)) max
µ2:p

R(µ̂(α,W0 − α1, ω), µ2:p)
}
.

Notice that the means µ1, µ2, . . . , µp that maximize the risk are not deterministic

because of the stochastic outcome of the tests. As a result, our calculations define a

stochastic process for the mean that obtains, on average, the maximum risk.

4 Feasible Risk Set

Our interest is not simply in the risk of a testimator, however, but in its risk when

compared to an alternative. We want to see how various sequential testimators perform

when estimating the same collection of means. In the style of risk inflation (14), we

want to contrast the risk of µ̂(α(·),W0, ω) to that of another realizable testimator or to

a testimator that benefits from an oracle that reveals µ. The oracle-based, risk-inflation

testimator µ̃ has elements

µ̃j(Yj) =

{
0 if µ2j ≤ 1,

Yj otherwise.
(17)

so that its risk is

R(µ̃,µ) =
∑
j

min(µ2j , 1) . (18)
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We summarize such comparisons of risks by finding the collection of all possible risks

that are obtainable under any mean process. We call this collection the feasible risk

set. Let µ̂1 and µ̂2 denote two sequential estimators of µ1:p. The feasible risk set for

these two is defined as

Rp(µ̂1, µ̂2) = {(r1, r2) : ∃µ s.t. r1 = EµR(µ̂1,µ), r2 = EµR(µ̂2,µ)} . (19)

In words, the point (r1, r2) lies in the feasible set Rp if there exists a stochastic process

of means µ of length p for which the risk of µ̂1 is r1 and the risk of µ̂2 is r2. A

randomization argument proves that the feasible risk set is convex. If x and y are two

points within Rp, then there exist stochastic processes µx and µy, say, that produce

these risks. The risk produced by the randomized process that picks µx with probability

0 ≤ a ≤ 1 and picks µy with probability 1− a is then a x+ (1− a) y.

Figure 3 shows two views of the feasible set that compares the oracle testimator µ̃

(x-axis) to the universal testimator µ̂(αu(·),W0, ω) (y-axis). For this figure, p=1,000

tests and the initial wealth and payout W0 = ω = 0.5. The feasible risk set is the shaded

region in each frame. The feasible risk set lies above the diagonal in this comparison; by

construction, no realizable testimator can have smaller risk than µ̃. The frame on the

left of Figure 3 shows the feasible set on the scale of risks; the frame on the right shows

Rp on log scales. (Rp is not convex on a log scale but the approximation is quite close

in practice.) We add 1 to the risks of both estimators, in the fashion of risk inflation,

in order to be able to show the feasible risk set near 0 on a log-log scale. Points in the

plot along the boundary of the feasible set identify locations at which we computed the

exact risks using the method described in the following section. Consequently, because

the shaded region in the graph is obtained by joining these points with lines, this region

is a convex subset within the interior of Rp. The actual risk set is slightly larger.

The two plots in Figure 3 emphasize models with substantial signal (non-zero

means) and those that are sparse or nearly black (most µj = 0). The frame scaled

by the risk itself emphasizes the performance in models with substantial signal. The

vertical right edge of the feasible set shows the risk for saturated models in which

|µj | ≥ 1; for these models, the risk of the oracle testimator is Rp(µ̃,µ) = p. The

plot on the log scale emphasizes sparse models. In this frame, the line parallel to and

above the diagonal is the risk-inflation boundary (14) that obtains for non-sequential

estimators. These bounds suggest that the worst case risk for the testimator should be

about 2 log p times the risk of the oracle. The feasible set calculations show that the

risk of µ̂(αu(·),W0, ω) does indeed fall below this boundary, but that is not true of all

estimators.

Curves within the feasible set shown in Figure 3 identify the risks that result if the
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Figure 3: The shaded feasible set identifies the possible risks of the oracle estimator µ̃ and

universal testimator µ̂(αu(·),W0, ω)with W0 = ω = 0.5, p=1,000. The left frame emphasizes

models with substantial signal; the right frame (log scale) highlights nearly black models.

Curves within the feasible set show the risks as the signal levels varies in the model (20).

Boundary points show calculation locations described in Section 5; the line parallel to the

diagonal in the right frame is the risk-inflation boundary discussed in the text.
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means µ1:p are determined by a two-point model. Suppose that the stochastic process

that determines µ sets µj independently to some µ∗ 6= 0 with probability π and sets

µj = 0 otherwise:

µj = Bj µ
∗, Bj

iid∼ Bernoulli(π) . (20)

The smooth curves within the feasible set show the risks under this model, with µ∗ =

1.0 (red), 1.5 (magenta), or 3 (blue), and the probability of a non-zero mean varying

over the range 10−6 ≤ π ≤ 1 − 10−6. With µ∗ = 1.0, the risks nearly trace out the

lower boundary of the feasible set. The crossing of the paths for µ∗ = 1.5 and µ∗ = 3

shows, however, that no one value for µ∗ can reproduce the upper boundary of Rp.
Although the simple, two-point model (20) cannot fully characterize the feasible

set, the processes that define the boundary resemble its structure. For example, Figure

4 graphs a realization of the stochastic process that generates the risks on the boundary

of the feasible risk set. For this figure, we chose the process that produces the point

with expected risks (101, 657) which can be found along the left side of the feasible set

in Figure 3. The dots in Figure 4 graph the elements µj versus the test index j for

j = 1, 2, . . . , p = 1, 000. As in the two-point model, the means randomly shift between

0 and a value that fluctuates around 2.63. The figure also shows the cumulative risk
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Figure 4: The mean process associated with a boundary point of the feasible set produces

realizations that resemble those of the two-point model (20). The increasing trend shows

the accumulating risk of the testimator which reaches 688 in this example.
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obtained by the universal testimator for this realization, shown as the increasing trend

in the figure. Its risk in this instance reaches 688, whereas the oracle accumulates risk

123.

Displays that combine several feasible sets allow one to compare the effects of

various choices for W0 and ω. As an example, Figure 5 considers the effect of reducing

the initial wealth W0 and payoff ω from 0.50 down to 0.25 and 0.05. As before, the left

frame emphasizes estimation with greater levels of signal; the right frame on the log

scale emphasizes sparse models. Within the context of hypothesis testing, α = 0.05 is a

virtual default and one may be similarly tempted to control mFDR at 0.05. Unless one

believes that nature will play a nearly black strategy, however, setting W0 = ω = 0.05

generates greater risk than W0 = 0.25 or 0.50. With W0 = 0.05, the risks even escape

the bounds suggested by risk inflation in the non-sequential setting, shown here by a

portion of the feasible set above the bound provided in (14).

Remark C. Because the plots in Figure 5 show several feasible sets together, one can

no longer associate a point in the graph with a single mean process µ. Points within

each feasible set indicate that there exists a mean process that generates the shown

risks, but at a given (x, y) location, the mean processes that produce the risks for the

feasible sets may differ.

We have emphasized universal investing defined by αu(·), and Figure 6 offers a

partial explanation for our preference. Figure 6 superimposes the feasible sets obtained

by geometric investing with various rates versus the risk inflation testimator. The
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Figure 5: Varying the initial wealth and payout influence the feasible set of risks that contrast

the risk inflation oracle to the universal estimator µ̂(αu(·),W0, ω). The initial wealth varies

over W0 = 0.05, 0.25, and 0.50 with p=1,000 tests on the scale of risks (left) or log risks

(right).
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results are for a sequence of p = 500 tests. In general, increasing the spending rate

ψ from 0.001 up to 0.01 reduces the risk of the geometric testimator αg(w,ψ). The

feasible sets for ψ = 0.001, 0.005, and 0.01 progressively move toward the diagonal,

better competing with the risk-inflation testimator. The move to ψ = 0.05, however,

goes too far. The geometric estimator essentially exhausts its alpha wealth before the

testing is complete, and consequently its risk soars. Because this geometric estimator

essentially sets µ̂j ≡ 0 as its alpha wealth approaches 0, its risk exceeds the risk inflation

boundary (14).

As a final example, feasible risk sets also allow us to directly compare realizable

testimators produced by different methods of alpha investing. Rather than compare a

realizable testimator to an oracle as in Figures 5 and 6, the feasible setRp(µ̂(αu), µ̂(αg))

shown in Figure 7 pits these two against each other in a head-to-head comparison. The

initial value and payout for both are W0 = ω = 0.25. The rates of the geometric strat-

egy are set to ψ = 0.001, 0.002, and 0.005. Small rates are necessary to avoid the surge

in risk illustrated in Figure 6 when the geometric strategy runs out of wealth. There

are clearly mean processes for which either choice, universal or geometric, dominate

the other. That said, this figure clarifies the relative advantages of universal investing

over geometric investing. A higher investing rate ψ for geometric investing reduces risk

for models with more signal, but doing so necessarily leads to higher risks in nearly
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Figure 6: A high spending rate ψ potentially exhausts the wealth of a geometric testimator

and produces excessive risks. These results are for p = 500 tests and rates ψ = 0.001, 0.005,

0.01, and 0.05.

100 200 300 400 500
RHΜ

�L + 1

1000

2000

3000

RIΜ
`IΑgHΨLMM + 1

Ψ

0.001

0.005

0.01

0.05

black models. For instance, the set in Figure 7 associated with ψ = 0.005 reduces the

bulge toward higher risks in the left frame, but this choice is soundly dominated by

slower spending rates in models with fewer non-zero parameters emphasized by the log

scale in the right frame. Universal investing removes this tuning parameter.

5 Computation

We describe first the calculation of the feasible set Rp(µ̂(α(·),W0, ω), µ̃) that contrasts

an alpha investing testimator with the risk-inflation estimator µ̃. The risk-inflation

estimator has no wealth constraint; calculations need only track the wealth of the

alpha investing estimator, which we abbreviate as µ̂ with the understanding that it

depends on the choice of the investing function α(·), W0, and ω throughout this section.

Let

Uθ(µ̂, µ̃) = maxEµ
(

cos(θ)R(µ̂,µ) + sin(θ)R(µ̃,µ)
)

(21)

denote the maximum expected value with respect to a stochastic process µ of the

weighted sum of risks defined by the angle 0 ≤ θ ≤ 2π. Let µθ denote the mean

process that maximizes Uθ. The point Eµθ (R(µ̂,µ), R(µ̃,µ)) lies on the boundary of

Rp(µ̂, µ̃) where the feasible risk set is tangent to the line defined by the mixture weights

in (21). Plots that show the feasible risk set, such as Figure 3, highlight the boundary

points that are explicitly computed. By varying θ over the circle, we approximate the
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Figure 7: The universal alpha investing testimator µ̂(αu(·),W0, ω) (y-axis) produces typically

smaller risks than geometric testimators µ̂(αg(·, ),W0, ω)(x-axis). The geometric rates are

ψ = 0.001, 0.002, and 0.005 with p =1,000.
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feasible risk set as the intersection of the resulting half-planes.

We compute Uθ via numerical backward induction. This induction approximates

the wealth of the alpha investing testimator on a grid. The wealth grid G spans the

minimal attainable wealth (W0 −
∑p

j=1 αj) to a maximum allowed wealth, which we

set to Wmax = 5. (Our results have not been sensitive to the choice of Wmax so long

as it is substantially larger than W0 + ω.) The wealth grid is ‘logarithmically’ spaced

at N points, with a finer spacing 0.0001 for small wealths below 0.001 and gradually

larger spacing as the wealth increases. We insure that the grid includes an element

Gk0 = W0.

The p × N matrix U θ holds intermediate calculations of the expected value Uθ.
The rows in this matrix identify the hypothesis Hj and the columns index the position

in the wealth grid G. We fill U θ from the ‘bottom up’ in a tail recursion. At the

completion of the calculations,

U θjk = max
µ

{
cos(θ)R(µ̂α(Gk), µ) + sin(θ)R(µ̃, µ)

+rµ (α(Gk))
(
cUθj+1,kc+1 + (1− c)U θj+1,kc

)
+ (1− rµ(α(Gk)))

(
dU θj+1,kd+1 + (1− d)U θj+1,kd

)}
(22)

for j = p, p− 1, . . . , 1 and k = 1, . . . , N and the boundary condition U θp+1,k = 0. Note

the similarity to expression (16). At the completion of the computation, Uθ = U θ1,k0 .

The first line of (22) adds the contribution to the weighted risk from testing Hj at the

alpha level α(Gk). The second line adds the expected subsequent risk if the test rejects
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Hj , which occurs with probability rµ(α(Gk)). If the test rejects, the alpha wealth

increases to Gk−α(Gk)+ω. This wealth is unlikely to match that at any grid position,

so we linearly interpolate between positions kc and kc+1 so thatGkc ≤ Gk−α(Gk)+ω ≤
Gkc+1 and set the weight c in (22) to c = (Gk − α(Gk) + ω)/(Gkc+1 −Gkc). Similarly,

the third line of (22) adds the expected contribution if the testimator does not reject

Hj and its wealth falls to Gk − α(Gk).

Remark D. One need not store the full matrix U θ, but its use simplifies the description

of the algorithm. One only needs the next row U θj+1,· to compute Uj,·. Such space

saving – using just two rows rather than the full matrix – becomes essential in problems

that track a larger state space. Note also that one can cache the indices and weights

(kc, c and kd, d) prior to the recursion because these can be determined from the grid

positions and ω and remain fixed throughout the backward recursion.

The feasible set that compares the testimators defined by two alpha investing rules

α(·) and β(·) requires a more complex recursion that must track the wealths of both.

The linear grid G remains, but the matrix U θ defined in (22) becomes a three dimen-

sional tensor of size p × N × N . The calculation is essentially a more messy version

of (22) but for one nuance that we want to emphasize. To simplify the presentation,

we suppress the linear interpolation and pretend that all of the concerned wealths are

represented in the wealth grid. If the alpha investing rule α(·) with wealth Gk rejects

Hj , its wealth goes from Gk to Gk+; if it fails to reject, its wealth falls to Gk−. Sim-

ilarly, we use `+ and `− for the positions for the rule defined by β(·). If we assume

α(Gk) < β(G`), then the recursion can be written as

U θjk` = max
µ

{
cos(θ)R(µ̂α(Gk), µ) + sin(θ)R(µ̂β(G`), µ)

+rµ (α(Gk)) Uj+1,k+,`+ + [rµ(β(G`))− rµ(α(Gk))] Uj+1,k−,`+

+ [1− rµ(β(G`))] Uj+1,k−,`−

}
, (23)

where the boundary condition is U θp+1,·,· = 0. The first line in (23) is the expected risk

produced by the test of Hj , and following summands denote the expected contributions

to the risk if both reject, if only the rule with the larger alpha level rejects, and if neither

rejects. The point of writing this out is to emphasize these testimators see the same

data, not independent samples. Hence, α(Gk) < β(G`) implies that if the first rule

α(·) rejects Hj , then the second rule must also reject Hj because it tests the same

hypothesis using the same data, but with a larger alpha level.
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6 Discussion

Feasible risk sets allow us to study the risks of testimators in sequential problems.

The comparisons shown here suggest that universal alpha investing does well and can

compete with the risks attained by any geometric procedure. It is also of interest

to point out that a large initial alpha wealth and payout W0 = ω = 0.25 produce a

noticeable reduction in the risk (Figure 5). This choice for ω implies that controlling

the expected false discovery rate at 25%, quite a bit larger than would usually be

chosen, produces lower risk unless the mean process is quite sparse.

A particular benefit of these computations is that they suggest conjectures about

asymptotic properties of these estimators. For example, it appears that we can ap-

proximate the boundary of the feasible risk set using two-point models defined in (20).

Figure 3 shows that by varying the signal probability π such a model can be found

that approaches the boundary of the feasible risk set. Further, the simulation shown

in Figure 4 shows that (at least for this location) the boundary mean process gen-

erates either zero or approximately a single, non-zero value. Hence, it would appear

that, asymptotically in p, there exists a two-point model (π, µ∗) for which the risks lie

within some epsilon ball of the boundary of the feasible risk set.

The shapes of the various feasible sets are also intriguing. For instance in Figure 3,

the set has a vertical segment where the risk of the oracle attains its maximum at p.

These risks occur when the mean process is saturated in the sense that every µ2j ≥ 1 so

that the risk-inflation oracle “fits everything.” Although the oracle then has fixed risk

p, the risk of the testimator varies with the size of µj . This property of the feasible

risk set for saturated mean processes is rather different from the behavior for sparse

processes. As the risk of the oracle estimator approaches its minimum, the feasible risk

set approaches a single point. That the set comes to a point is not surprising. Unlike

the saturated case, a unique process produces the minimum risk, namely the process

for which every µj = 0. What is surprising is the lack of evident curvature. Does the

feasible set come to a point or instead form a very tight curve?

As a final conjecture, the performance of testimators derived from the universal

rule αu(·) suggests that this investing rule can simplify the choice of an alpha investing

method. Figure 7 shows its ability to match the risks obtained by various geometric

testimators. Ideally, we would like to obtain results that show that universal alpha

investing is about as good as one can do, analogous to those in Rissanen (1983). Such

a proof would then simplify the use of alpha investing in practice as one would not need

to struggle with the choice of an investing rule but instead could focus on generating

a better stream of features.
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