Text Mining Using Linear Models of Latent States

Bob Stine
Department of Statistics
The Wharton School, University of Pennsylvania
www-stat.wharton.upenn.edu/~stine
Topics

- Application
 - Statistical named entity recognition

- Feature creation
 - Preprocessing
 - Converting text into numerical data

- Exploiting the features
 - Estimators, standard errors
 - Auctions and experts

- Collaborators
 - Dean Foster in Statistics
 - Lyle Ungar in CS
Application and Motivation
Text Mining Applications

- Cloze
 - What’s the next word?
 - “...in the midst of modern life the greatest, ___”
 - Data compression

- Word disambiguation
 - Meaning of a word in context
 - Does “Washington” refer to a state, a person, a city or perhaps a baseball team? Or politics?

- Speech tagging
 - Identifying parts of speech
 - Distinguishing among proper nouns

- Grading papers, classification, ...
Named Entity Recognition

- Annotate plain text in a way that identifies the words that refer to a person (Obama) place (France) organization (Google) or something else.

- Wiki example
 Jim bought 300 shares of Acme Corp in 2006.
 person company year

- Customized systems build on grammatical heuristics and statistical models.
 - Time consuming to build
 - Specific to training domain
Second Example

- You get some text, a sequence of “words”
 - bob went to the 7-11 . he was hungry

- Task is to tag proper nouns, distinguishing those associated with people, places and organizations.

- No other information in the test set

- Training data
 - Marked up sequence that includes the tags that you’d ideally produce
 - bob went to the 7-11 . he was hungry
 - person
 - organization

- Test data is just a sequence of “words”
Approaches

- Numerous methods used for NER
 - Gazette
 - lists of proper words/businesses, places
 - Formal grammar, parse trees
 - off the shelf parsing of text into subject/verb
 - Stemming
 - such as noting prior word ends in -ing
 - Capitalization

- Not using any of these...
 - Things like capitalization are not available in some formats, such as text from speech
 - Generalization: gazettes depend on context
 - Languages other than English

Could add these later!
Statistical Models for Text

- Markov chains
 - Hidden Markov models have been successfully used in text mining, particularly speech tagging
- Hidden Markov model (HMM)
 - Transition probabilities for observed words $P(w_t|w_{t-1},w_{t-2},...)$ as in $P(\text{clear}|\text{is,sky, the})$
 - Instead specify model for underlying types $P(T_t|T_{t-1},T_{t-2},...)$ as in $P(\text{adj|is,noun,article})$
 with words generated by the state

Concentrate dependence in transitions among relatively few states
State-Based Model

- Appealing heuristic of HMM
 Meaning of text can be described by transitions in a low-dimensional subspace determined by surrounding text
- Estimation of HMM hard and slow
 - Nonlinear
 - Iterative (dynamic programming)
- Objective
 - Linear method for building features that represent underlying state of the text process.
 - Possible? Observable operator algebras for HMMs.
 - Features used by predictive model. Pick favorite.
Connections

- Talks earlier today...
- Probabilistic latent semantic analysis
- Non-negative matrix factorization (NMF)
- Clustering
Building the Features
Summary of Method

- Accumulate correlations between word occurrences in n-grams
 - Preprocessing, all n-grams on Internet
 - Trigrams in example; can use/combine with others
- Perform a canonical correlation analysis (CCA) of these correlations
 - Singular value decomposition (SVD) of corr mat
- Coordinates of words in the space of canonical variables define “attribute dictionary”
- Predictive features are sequences of these coordinates determined by the order of the works in the text to be modeled
Canonical Correlation

- CCA mixes linear regression and principal components analysis

- Regression
 Find linear combination of X_1, \ldots, X_k most correlated with Y
 \[
 \max \text{corr}(Y, \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_k X_k)
 \]

- Canonical correlation
 Find linear combinations of X's and Y's that have maximal correlation
 \[
 \max \text{corr}(\alpha_1 Y_1 + \ldots + \alpha_j Y_j, \beta_1 X_1 + \ldots + \beta_k X_k)
 \]

- Solution is equivalent to PCA of
 \[
 (\Sigma_{XX})^{-1/2} \Sigma_{XY} (\Sigma_{YY})^{-1/2}
 \]
 covariance matrices
Coincidence Matrices

<table>
<thead>
<tr>
<th>Pre-word</th>
<th>Word</th>
<th>Post-word</th>
</tr>
</thead>
<tbody>
<tr>
<td>(w_1, w_2, w_3, \ldots, w_d)</td>
<td>(w_1, w_2, w_3, \ldots, w_d)</td>
<td>(w_1, w_2, w_3, \ldots, w_d)</td>
</tr>
</tbody>
</table>

- \(w_1, w_2, w_3\)
- \(w_{t-1}, w_t, w_{t+1}\)
- \(w_{n-2}, w_{n-1}, w_n\)

\[
\begin{array}{cccccccc}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
\end{array}
\]

\[
\begin{array}{cccc}
& B_1 & & \\
& & & B_w \\
& B_2 & & \\
\end{array}
\]

\(d = 50,000\)

\(d\) is the size of our dictionary.

Billions of n-grams:

- \(w_1, w_2, w_3\)
- \(w_{t-1}, w_t, w_{t+1}\)
- \(w_{n-2}, w_{n-1}, w_n\)

- \(w_1, w_2, w_3, \ldots, w_d\)
- \(w_1, w_2, w_3, \ldots, w_d\)
- \(w_1, w_2, w_3, \ldots, w_d\)
Using CCA

- Which words, or groups of words, co-occur?
- Linear

 Find α_1 in \mathbb{R}^d and β_1 in \mathbb{R}^{2d} that together

 maximize $\text{corr}(B_w \alpha, [B_1, B_2] \beta)$

 (α_1, β_1) defines first pair of canonical variables

- Subsequent pairs as in principle components

 Find (α_2, β_2) which

 maximize $\text{corr}(B_w \alpha, [B_1, B_2] \beta)$

 while being orthogonal to (α_1, β_1).

- We compute about $K=30$ to 100 of these canonical coordinates
Canonical Variables

- SVD of correlations $C \approx B_w'[B_1 \ B_2]$

 $$C = \begin{bmatrix} U & D & V' \end{bmatrix} = UD[V'_1 \ V'_2]$$

- Attribute dictionary

Words in dict | w_1 | w_2 | w_{50000}

$K=50$ columns in each bundle
Random Projections

- Faster calculation of CCA/SVD
- Computing canonical variables
 \[C = B_w'[B_1 \ B_2] \]
 50,000 x 100,000 is large
- Random projection
 - Low rank approximations
 - Reference Halko, Martinsson, Tropp 2010
 - Two stage approach
 (1) Project into “active” subspace
 (2) Do usual operation
Algorithm for SVD

- Want SVD of correlations (omit scaling)
 \[C = B_w'[B_1 \ B_2] = UDV' \]
- Find orthonormal Q with K+m columns for which
 \[||C - QQ'C||_2 \text{ is small} \]
- Random projection
 \(Q \sim N(0,1) \) works very well!

Steps
- Compute coefficients \(H = Q'C \)
- SVD of \(H \) is \(U_1DV' \)
- Compute \(U = QU_1 \)
- To get rank K, need a few extra columns (m)
Plots of Attribute Dict

- Isolate the coordinates in the attribute dictionary assigned to “interesting words”
 - Words were not picked out in advance or known while building the attribute dictionary

- Several views
 - Grouped/colored by parts of speech
 - Names
 - Common US names, casual and formal
 - Bob and Robert
 - Numbers

- Plots show projections of the coordinates in the attribute dictionary...
Parts of Speech

- Projection from attribute dictionary

- Words from d=10,000 dictionary
- Not in dictionary

noun
verb
adj
unk
Closer Look at Features

Focus on a few names
Closer Look at Features

Numbers as words and digits
Features

- Sequence of words in the document determine the features in the predictive model.
- Further processing, such as exponential smoothing of various lengths

<table>
<thead>
<tr>
<th>Document</th>
<th>Features from Attr Dictionary</th>
</tr>
</thead>
<tbody>
<tr>
<td>(w_1)</td>
<td>(UD[w_1]) (V_1[w_1]) (V_2[w_1])</td>
</tr>
<tr>
<td>(w_2)</td>
<td>(UD[w_2]) (V_1[w_2]) (V_2[w_2])</td>
</tr>
<tr>
<td>(w_3)</td>
<td>(UD[w_3]) (V_1[w_3]) (V_2[w_3])</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>(w_n)</td>
<td>(UD[w_n]) (V_1[w_n]) (V_2[w_n])</td>
</tr>
</tbody>
</table>

3K features
Predictive Models
Components

- Multiple streaming variable selection
 - Depth-first, guided selection

- Auction framework
 - Blend several strategies
 - raw data, calibration, nonlinearity, interaction
 - Formalize external expert knowledge

- Statistics: Estimates and standard errors
 - Sandwich estimator for robust SE
 - Shrinkage

- Sequential testing
 - Alpha investing avoids need for tuning data
 - Martingale control of expected false discoveries

- Or your favorite method (e.g. R package glmnet)
Based on Regression

- Familiar, interpretable, good diagnostics
- Regression has worked well
 - Predicting rare events, such as bankruptcy
 - Competitive with random forest
- Function estimation, using wavelets and variations on thresholding
- Trick is getting the right explanatory variables
- Extend to rich environments
 - Spatial-temporal data
 - Retail credit default
 - MRF, MCMC
 - Linguistics, text mining
 - Word disambiguation, cloze
 - TF-IDF
- Avoid overfitting...

TF-IDF: term frequency-inverse document frequency
frequency in document relative to frequency in corpus
MRF: Markov random fields
Lessons from Prior Work

- “Breadth-first” search
 - Slow, large memory space
 - Fixed set of features in search
 - Severe penalty on largest z-score, $\sqrt{2 \log p}$

- If most searched features are interactions, then most selected features are interactions
 - $\mu \gg 0$ and $\beta_1, \beta_2 \neq 0$, then $X_1^* X_2 \Rightarrow c + \beta_1 X_1 + \beta_2 X_2$

- Outliers cause problems even with large n

Real p-value $\approx 1/1000$, but usual t-statistic ≈ 10
Feature Auction

Collection of experts bid for the opportunity to recommend feature

Auction collects winning bid α_2

Expert supplies recommended feature X_w

Expert receives payoff ω if $p_w \leq \alpha_2$

Experts learn if the bid was accepted, not the effect size or p_w.
Experts

- Strategy for creating sequence of possible explanatory variables.
 - Embody domain knowledge, science of application.

- Source experts
 - A collection of measurements (CCA features)
 - Subspace basis (PCA, RKHS)
 - Multiple smooths of context variables
 - Interactions between within/between groups

- Scavengers
 - Interactions
 - among features accepted/rejected by model
 - Transformations
 - segmenting, as in scatterplot smoothing
 - polynomial transformations

- Calibration
Calibration

- Simple way to capture global nonlinearity
 - aka, nonparametric single-index model

- Predictor is calibrated if
 \[\mathbb{E}(\hat{Y}) = Y \]

- Simple way to calibrate a model is to regression \(Y \) on \(\hat{Y}^2 \) and \(\hat{Y}^3 \) until linear.
Expert Wealth

* Expert gains wealth if feature accepted
 - Experts have alpha-wealth
 - If recommended feature is accepted in the model, expert earns ω additional wealth
 - If recommended feature is refused, expert loses bid

* As auction proceeds...
 - Reward experts that offer useful features. These then can afford later bids and recommend more X’s
 - Eliminate experts whose features are not useful.

* Taxes fund parasites and scavengers
 - Continue control overall FDR

* Critical
 - control multiplicity in a sequence of hypotheses
 - p-values determine useful features
Robust Standard Errors

- p-values depend on many things
 - p-value = f(effect size, std error, prob dist)
 - Error structure likely heteroscedastic
 - Observations frequently dependent

- Dependence
 - Complex spatial dependence in default rates
 - Documents from various news feeds
 - Transfer learning
 When train on observations from selected regions or document sources, what can you infer to others?

- What are the right degrees of freedom?
 - Tukey story
Sandwich Estimator

- Usual OLS estimate of variance
 - Assume your model is true

 \[
 \text{var}(b) = (X'X)^{-1}X'\text{E}(ee')X(X'X)^{-1}
 = \sigma^2(X'X)^{-1}(X'X)(X'X)^{-1}
 = \sigma^2(X'X)^{-1}
 \]

- Sandwich estimators
 - Robust to deviations from assumptions

 \[
 \text{heteroscedasticity}
 \]

 \[
 \text{var}(b) = (X'X)^{-1}X'\text{E}(ee')X(X'X)^{-1}
 = (X'X)^{-1}X'D^2X(X'X)^{-1}
 \text{diagonal}
 \]

 \[
 \text{dependence}
 \]

 \[
 \text{var}(b) = (X'X)^{-1}X'\text{E}(ee')X(X'X)^{-1}
 = \sigma^2(X'X)^{-1}X'BX(X'X)^{-1}
 \text{block diagonal}
 \]

Essentially the “Tukey method”
Flashback...

- Heteroscedastic errors
 - Estimate standard error with outlier
 - Sandwich estimator allowing heteroscedastic error variances gives a t-stat ≈ 1, not 10.

- Dependent errors
 - Even more critical to obtain an accurate SE
 - Netflix example
 Bonferroni (hard thresholding) overfits due to dependence in responses.
 - Credit default modeling
 Everything seems significant unless incorporate dependence into the calculation of the SE
Estimators

- **Shrinkage**
 - Two estimates of β_j: 0 and b_j
 - Std error determines the amount of shrinkage
 - Larger the t-statistic, the smaller the shrinkage
 - Resembles Bayes estimator with Cauchy prior
 - “Smooth” version of hard thresholding

![Graph showing t-stat vs shrunken estimate](image-url)
Alpha Investing

Context

- Test possibly infinite sequence of m hypotheses $H_1, H_2, H_3, \ldots H_m \ldots$
- Obtaining p-values p_1, p_2, \ldots
- Order of tests can depend prior outcomes

Procedure

- Start with an initial alpha wealth $W_0 = \alpha$
- Invest wealth $0 \leq \alpha_j \leq W_j$ in the test of H_j
- Change in wealth depends on test outcome
- $\omega \leq \alpha$ denotes the payout earned by rejecting

$$W_j - W_{j-1} = \begin{cases}
\omega & \text{if } p_j \leq \alpha_j \\
-\alpha_j & \text{if } p_j > \alpha_j
\end{cases}$$
Martingale Control

- Provides uniform control of the expected false discovery rate. At any stopping time during testing, martingale argument shows

\[
\sup_{\theta} \frac{E(\text{#false rejects})}{E(\text{#rejects})+1} \leq \alpha
\]

- Flexibility in choice of how to invest alpha-wealth in test of each hypothesis
 - Invest more when just reject if suspect that significant results cluster.
 - Universal investing strategies
- Avoids computing all p-values in advance
Multiple Testing

- Other methods are special cases
 - Note: alpha-investing does not require the full set of p-values or estimates at the start.

- Bonferroni test of $H_1, ..., H_m$
 - Set initial $W_0 = \alpha$ and reward to $\omega = 0.05$.
 - Bid $\alpha_j = \alpha/m$

- Step-down test of Benjamini and Hochberg
 - Set initial $W_0 = \alpha$ and reward to $\omega = 0.05$.
 - Test $H_1, ..., H_m$ at fixed level α/m
 - If none reject \Rightarrow finished.
 - If one rejects, earn $\alpha = 0.05$ for next round
 - Test next round conditionally on $p_j > \alpha/m$
 \Rightarrow continue with remaining hypotheses.
Example...
Back to text processing
Named Entity Results

- **Model**
 - Approximate max entropy classifier
 - Fancy name for multinomial logit
 - Other predictive models can be used

- **Data**
 - Portion of the ConLL03 data
 - Training and test subsets

- **Dictionary**
 - d=50,000 words
 - Exponential smooths of content features
 - Interactions

- Precision and recall about 0.85
Auction Run

First 2,000 rounds of auction modeling.

P-Value vs. Auction Round

<table>
<thead>
<tr>
<th>P-Value</th>
<th>Alpha-Wealth</th>
</tr>
</thead>
<tbody>
<tr>
<td>.0000001</td>
<td>11024.2</td>
</tr>
<tr>
<td>.00001</td>
<td>12703.5</td>
</tr>
<tr>
<td>.001</td>
<td>14382.9</td>
</tr>
<tr>
<td>.05</td>
<td>CVSS</td>
</tr>
<tr>
<td>.5</td>
<td></td>
</tr>
</tbody>
</table>
What are the predictors?

- Interactions
 - Combinations of canonical variables
- Principal components of factors
 - Combinations of skipped features
 - RKHS finds some nonlinear combinations
- Calibration adjustments
 - Simple method to estimate single-index model
 \[\hat{y} = g(b_0 + b_1 X_1 + \ldots + b_k X_k) \]
 - Estimate \(g \) cheaply by building a nonlinear regression of \(y \) on linear \(\hat{y} \).
Closing Comments
Next Steps

- Text
 - Incorporate features from other methods
 - Understanding the CCA
 - Other “neighborhood” features

- Theory
 - Develop martingale that controls expected loss.
 - Adapt theory from the “nearly black” world of modern statistics to “nearly white” world of text

- Computing
 - Multi-threading is necessary to exploit trend toward vast number of cores in CPU
 - More specialized matrix code
Linguistics ≈ Spatial TS

Text
- Predict word in new documents, different authors
- Latent structure associated with corpus
- Neighborhoods: nearby words, sentences
- Vast possible corpus
- Sparse

Credit default
- Predict rates in same locations, but changing economic conditions
- Latent temporal changes as economy evolves
- Neighborhoods: nearby locations, time periods
- 70 quarters, 3000 counties. Possible to drill lower.
- May be sparse
References

- Feature auction
 - www-stat.wharton.upenn.edu/~stine

- Alpha investing
 - “α-investing: a procedure for sequential control of expected false discoveries”, JRSSB. 2008

- Streaming variable selection
 - “VIF regression”, JASA. 2011

- Linear structure of HMM

- Random projections
 - “Finding structure with randomness”, Halko, Martinsson, and Tropp. 2010

Thanks!