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Plan
• Example of sequential tests

• Streaming feature selection

• Alpha investing
• Test a possibly infinite sequence of hypotheses
• Flexible control of expected false positives

• Risk analysis
• Exact analysis via Bellman equations
• Feasible set of possible risks
• Comparison of procedures
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Streaming Feature Selection
• Canonical problem

• Pick predictors for regression
	

 ŷ = b0 + b1 x1 + … ??? … + bk xk

• Streaming selection
• Have current model
• External source offers new candidate z
• Decide whether to add z to model

• Novelties
• Choice of z may depend on prior outcomes

Construction of interactions, transformations

• Can be done very fast
VIF regression

• Does not require all possible xj at start
Image processing, database query.  Collection may be infinite…
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Example
• Image processing

• Crater recognition 
WU et al (2013, IEEE Trans Pattern Analysis)

• Build features sequentially from image
• Too complex, slow to construct every feature

4Figures from Wu et al (2013)
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Question for Streaming
• How to control variable selection?

• Full domain of predictors not available

• Cross-validation
• Sacrifices data for fitting, estimation
• Need repeated CV to reduce variation

• Alpha investing
• Designed for sequential testing
• Proven to control expected false discovery ratio

• What about risk?
• Does control of mFDR at typical rates (e.g. 5%) 

produce estimates with small risk?
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Alpha-Investing
• Test sequence of hypotheses H1, H2, …

• Rejecting Hj provides power for subsequent tests
• Provable control of expected false discovery rate

• Alpha wealth
• Initial allowance  W0=ω for Type I error
• Invest some wealth 0 ≤ αi ≤ Wi-1 in test of Hi

• Compute p-value pi of test of Hi

• Gain wealth for subsequent tests if reject
	

 Wi = Wi-1   –   αi    +   ω I{pi ≤ αi}

• Comments
• Investing:  Spend αi to test, but can gain ω
• Flexible: Variety of rules for picking αi
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Risk
• Idealized problem

• Hj: μj = 0 vs μj ≠ 0
• Observe means
• Independent

• Estimator
• Testimator
• Hard thresholding

• Risk of testimator
• Well known in

conventional testing
• Unknown for

sequential
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Cumulative Sequential Risk
• Cumulative risk

• Recursion for risk

• Worst case mean process
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µ1 = argmaxm
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⇣
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Computation
• Bellman equations

• See paper (on-line)

• State dependent
• Carry all characteristics of estimator

• Size of state space
• Number tests × States of Est 1 × States of Est 2

• Implications
• Oracles are nice (no state space)
• Investing procedure depends only on wealth
• Wealth tracked on discrete grid
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Wealth Function
• Minimize state dependence

• Necessary in Bellman recursions

• Write spending rule as function of wealth
	

 	

 αj(history) = α(Wj-1)
• Sacrifice rejection history

• Two examples
• Geometric: Spend fraction of available wealth 
	

 	

 	

 	

 	



• Universal
Spend diminishing fraction of wealth
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Universal Rule
• Spends almost as much as each geometric 

when that geometric rule is most powerful
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Oracle
• Compare risk of realizable estimator to 

that obtained by an oracle.
Easier to compute since oracle has no wealth constraint

• Risk inflation oracle
• Knows whether  μj2 < 1
• Risk is min(μj2,1)   

Either all bias for small means or all variance for large means

• Bounds for conventional estimation
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Feasible Risk Set
• Definition

• Arbitrary stochastic process {μ1, μ2, … μn }
• Two “estimators”

• Graph (convex)
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Rp(µ̂1, µ̂2) = {(r1, r2) : 9µ s.t. r1 = EµR(µ̂1,µ), r2 = EµR(µ̂2,µ)}
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Feasible Risk Set
• Risks of universal and oracle, p=1000

• Paths associated with simple models

• Logs emphasize nearly black models
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Feasible Set, varying W0
• Impact of higher wealth W0 and payout ω

• W0 = ω
• Small W0,ω great for nearly black process
• Less useful if much signal (crosses RI threshold)
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Universal vs Geometric
• Direct comparison favors universal

• Only small geometric rates to be competitive
• Geometric has higher worst case risk
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Wrap-Up
• Streaming selection with alpha investing

• Fast variable selection with provable control

• Universal spending rule
• Competitive with best geometric rules
• Better overall with larger than expected W0

• Feasible set
• Computational exact risk inflation

• Conjectures
• Approximate boundaries using 2-point models
• Shape of the feasible set at origin: non-analytic?
• Proofs of the universality of investing rule

17Thanks for coming!


