Bootstrap methods are a collection of sample re-use techniques designed to
estimate standard errors and confidence intervals. Making use of numerous
samples drawn from the initial observations, these techniques require fewer
assumptions and offer greater accuracy and insight than do standard methods in
many problems. After presenting the underlying concepts, this introduction fo-
cuses on applications in regression analysis. These applications contrast two
forms of bootstrap resampling in regression, illustrating their differences in a
series of examples that include outliers and heteroscedasticity. Other regression
examples use the bootstrap to estimate standard errors of robust estimators in
regression and indirect effects in path models. Numerous variations of bootstrap
confidence intervals exist, and examples stress the concepts that are common to
the various approaches. Suggestions for computing bootstrap estimates appear
throughout the discussion, and a section on computing suggests several broad
guidelines.
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he bootstrap is an approach to estimating sampling vari-

ances, confidence intervals, and other properties of statis-
tics. Just as maximum likelihood refers to an estimation strategy rather
than to any specific estimator, bootstrapping is a methodology for
evaluating statistics based on an appealing paradigm. This paradigm
arises from an analogy in which the observed data assume the role of
an underlying population. As a result, bootstrap variances, distribu-
tions, and confidence intervals are obtained by drawing samples from
the sample.

Data analysis seeks answers to questions such as “Does a new drug
cure more people than the old one?” or “What factors affect how
someone votes in an election?” Statistical answers to such questions
require models that characterize the random behavior of observed
factors. Estimates of the model arise from observed data and lead to
description or inference. The importance of the bootstrap lies in this
inferential step: The bootstrap gives standard errors and confidence
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intervals that are typically better than alternatives that rely on untested
assumptions. The flexibility of the bootstrap gives the data analyst the
freedom to choose statistics whose standard errors would otherwise be
difficult to measure. The bootstrap offers reliability and brings new
insights to some of the difficult problems of data analysis.

Bootstrap calculations are typically computationally demanding.
The bootstrap replaces difficult mathematics with an increase of several
orders of magnitude in the computing needed for a statistical analysis.
Rather than computing one or two sets of regression cocfficicnts,
bootstrapping easily entails several thousand. The computing demands
of the bootstrap made such a strategy unthinkable until recently (Efron,
1979a). This trend toward greater use of computers can be cxpected to
continue. As Tukey (1986) put it “In a world in which the price of
calculation continues to decrease rapidly, but the price of theorem
proving continues to hold steady or increasc, elementary economics
indicates that we ought to spend a larger and larger fraction of our time
on calculation” (p. 74).

THE KEY IDEAS: BOOTSTRAPPING THE MEAN

The problem of estimating the variance of a sample mean illustrates
the basic ideas. This friendly context permits the introduction of new
topics without the added complexity of intricate statistical methods.
The example also introduces some needed notation.

Probability distributions play a large role in the bootstrap. First let
X = (X4, X5, . . ., X,) denote a random sample of size n from the same
population with mean u and variance o®. If we let F denote the cumu-
lative distribution function of the population, then F(x) = Pr(x; < x). In
this notation, each x; is a random variable having the cumulative distri-
bution F, which is abbreviated x; ~ F. Very often the population is
assumed to be Gaussian (or normal), in which case F(x) is the function
that appcars in tables at thc back of many statistics texts.

The sample-to-sample variation of the sample average is well known.
If X = X x;/n denotes the sample mean, then its variance is

VAR(X) = 2 VAR (x;)/n* = 0%/ n

When o is not known, the sample variance s? = 2(x;-X)%/(n-1) replaces
it, giving the familiar estimator var(x) = s?>/n. How well var(X) estimates
VAR(x) depends on how close the distribution of the x; is to being
Gaussian with variance o?; the distribution does not need to drift far for
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var(X) to perform poorly.! Notice the notation: “VAR” written in upper
case denotes the true variance, whereas “var” in lower case denotes an
estimator of “VAR.”

The bootstrap approach to estimating VAR(X) is suggested by think-
ing about what var(X) estimates: the variability of X across samples from
the population with distribution F. In a utopian setting in which many
samples from the population are available, formulas like that for var(x)
are unnecessary because one could compute the mean of many samples
and estimate its variability directly. Many samples from the same
population are seldom available, however, for a variety of reasons
ranging from temporal changes to financial hurdles (see Finifter, 1972,
which also refers to resampling as bootstrapping). Although it is not
possible to get many samples from ihe population described by F, it is
possible to get repeated samples from a population whose distribution
approximates F. This is the idea behind the bootstrap: Replace the
unknown function F, which describes a population that cannot be
resampled, with an estimator of F, which describes a population that
can be sampled repeatedly.

Given a minimum of assumptions, the optimal estimator of F is the
empirical distribution function (EDF). For a sample of size n, the EDF
is denoted F,, and it is the cumulative distribution of the sample,

F, (x) = #(x;sx)/n

where #(x;=x) is the number of times that the inequality holds as
i ranges from 1 to n. Thus, F (10) is the proportion of the n sample
observations that are less than or equal to 10. Unlike smooth distribu-
tions, such as the Gaussian, an empirical distribution has a “jump” at
each observed value. For example, if the sample X consists of the five
observations (1, 3, 4, 5.5, 8), then F5(0.5) = 0, because none of the
x; are less than or equal to 0.5, and F5(5.5) = 4/5. The jumps reflect
the fact that only n distinct values are possible from this approxima-
tion to the true population F. Figure 1 shows the empirical distribution
and the underlying population distribution for a sample of 25 Gaussian
observations. Generally, F, resembles F, but the jumps make it
“rougher.”

Given our willingness to approximate the population distribution F
by the empirical distribution F, two avenues are available for finding
bootstrap variances. One is based on mathematics similar to those
leading to var(X), and the second relies on simulation. The latter com-
putational approach to the bootstrap is a Monte Carlo simulation in
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Figure 1 The empirical distribution of a sample of 25 observations tracks
the cumulative Gaussian but is rougher.

which a multitude of samples are drawn from the observed data rather
than from some hypothetical distribution. One draws repeated samples
of the same size as the observed sample with replacement from the data,
computes the mean of each such bootstrap sample, and then calculates
the variance of this set of means. This variance estimate replaces var(X).
Because each bootstrap sample consists of n observations that are drawn
with replacement from the data, each bootstrap sample typically omits
several observations and has multiple copies of others. If n is 5, for
example, two bootstrap samples are (x4, X;, X3, X4, X,) and (X3, Xy, Xy,
Xs, X3). In the following algorithm, a superscript “*” distinguishes
bootstrap quantities, as in var* and x*. The superscript b always ranges
from 1 to B, indexing the bootstrap samples. The bootstrap algorithm
for estimating the variance of X is:

(1) Use a random number generator to create bootstrap samples of size n by
sampling with replacement from the observations. The bth bootstrap sample
is denoted

X*O) = (x*®), x* ) x,* ()

where each x;*® is a random selection from the original sample.
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(2) Compute the mean x*®) from each of the bootstrap samples

n
;*(b) = 2 xi*(b)/n

i=1

(3) Usethe Bbootstrap means x*(1), ... x*®B)to calculate the simulated bootstrap
variance estimate
B
varg*(X) = 2 [xx(®) _ avg(x*®))2/(B - 1)
b=1
B
where avg(x*(®)) = 2 x*®)/B
b=1

The number of bootstrap replications B depends on the application, but
for standard error estimates, B ~ 100 is generally sufficient. Because
one can seldom draw every possible bootstrap sample, varg*(X) esti-
mates the bootstrap variance of the mean, VAR*(X), that we would get
if B were infinitely large.?

In the setting of the sample mean, we can mathematically derive
VAR*(X) without a computer simulation. Computer simulation is no
more needed to find VAR*(X) than to determine VAR(X). The mathe-
matics are just like those leading to VAR(X) = o%/n, once we accept
replacing the theoretical distribution F with the empirical distribution
F,. In as much as the bootstrap samples are drawn with replacement
from the observed sample, the empirical distribution function F, de-
fined by the original data is the cumulative distribution of the bootstrap
samples. Rather than having samples in which x;~F, we have bootstrap
samples in which x,*~F,. Thus, the population distribution is known for
the bootstrap samples, and various theoretical calculations are possible.
For example, the expectation of an observation from the population
with distribution F is E(x;) = u. Because F is not known, we do not know
this expectation. On the other hand, let E* denote expectation with
respect to the bootstrap population that is defined by F,. Because F, is
known, we can find expectations such as E*(x;*).

To evaluate E*(x,*), recall that the expectation of a random variable
is a weighted average of the possible values, with weights given by the
probability of that value occurring. Under bootstrap resampling from
F,, each of the observed values x;, . . . , X, is equally likely to occur with
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probability 1/n. Thus the expected value of a random draw from the
population defined by F, (which is just a random draw from the original
observations) is the sample mean

E*(x;*) = x;(1/n) + x5,(1/n) + . . . + x,(1/n) = X

Just as w is the mean of the theoretic population, X is the mean of the
bootstrap population. Because the variance is also defined as an expec-
tation, it too is a weighted average

VAR*(x;¥) = E*{x;*-E*(x;*)|?
= (x;=X)2(1/n) + (x=X)? + .. . + (x,=X)*(1/n)

=sn

which is n/(n-1) times the usual variance estimator.’ The x;* are drawn
from the observations with replacement, so the x;* are independent of
each other, and the bootstrap variance of the sample mean is

VAR*(X*) = = VAR*(x;*)/n? = 5,%/n

which is almost the classical estimate of variance. For a large class of
familiar statistics which includes certain regression models, simulation
is not needed to obtain bootstrap variance estimates. (See the section
on bootstrapping a regression model.)

Whether the bootstrap estimate is obtained by mathematics or simu-
lation, the validity of bootstrap variance estimates requires that a key
analogy holds for the statistic of interest. The key step of the bootstrap
approach is to replace utopian sampling from the population defined by
F with bootstrap resampling from the data, the population defined by
F,.* When is this a reasonable thing to do? Clearly, it depends on F,
being a good estimator of F. Without making other assumptions about
the nature of the population, such as symmetry, F is about the best we
can do.® The key analogy is that the resampling properties of X*~X must
be similar to the sampling properties of X—u. This analogy does not hold
for every statistic. Because the bootstrap does not always give the
correct answer, it is important to recognize the limits of this mcthodol-
ogy, and some examples where it fails appear in the final section of this
article.
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TABLE 1
Summary of simulated lengths and coverages of
90% confidence intervals for the mean using 1000 samples of
size 20 from a standard Gaussian population.

Length
Method Average Std Dev_ Coverage
Classical t 0.761 0.12 0.90
BS Percentile
(B= 19) 0.795 0.20 0.87
(B= 99) 0.719 0.13 0.88
(B=499) 0.710 0.12 0.88

BOOTSTRAP DISTRIBUTIONS AND CONFIDENCE INTERVALS

The utility of a variance estimate depends upon how well we can use
that estimate to measure the uncertainty in a statistic. For example, a
common approximation uses the interval [estimator + 2(standard error
of estimator)] as a confidence interval. Under certain conditions — such
as the statistic being unbiased with a symmetric distribution, e.g.,
the Gaussian — this interval approximates a 95% confidence interval.
Whether we obtain the standard error via traditional methods or the
bootstrap, the interval requires certain assumptions.

The bootstrap distribution of the statistic permits a more direct
approach. The idea is to use percentiles of the bootstrap distribution of
x*, G*(x) = Pr*(x*sx) to determine a confidence interval. The 90%
bootstrap percentile interval for u is the interval that contains the
middle 90% of the B bootstrap means. Symbolically, this interval is
[G*-1(0.05), G*~1(0.95)], where G*~!(p) denotes the pth quantile of the
distribution of X*. Whereas G* is usually approximated by a simula-
tion, we estimate it with Gg*(x) = #{X*®=x}/B. Again, B denotes the
number of simulated bootstrap samples. The approximate bootstrap
interval is then [Gg*~1(0.05), Gg*~'(0.95)], the interval formed by the
5™ and 95" percentiles of the B bootstrap means x*(V), . . ., x*(®),

Table 1 compares the bootstrap 90% confidence intervals for the
mean to the usual t-interval. The population is Gaussian so that the t
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interval [X+t(.05, n-1) s/Vn, X+t(.95, n-1)s/Vn] is correct, where t(p,df)
is the pth percentile of a t distribution with df degrees of freedom. The
bootstrap interval is based on either B = 19, 99, or 499 bootstrap
samples. The results in the table are from 1000 simulated samples of
size 20 from a standard Gaussian distribution with u = 0and o = 1. The
coverage column for cach interval is the proportion of the 1000 intervals
that included the true mean 0. Even with only 19 bootstrap samples, the
bootstrap intervals nearly obtain the performance of the best interval in
this case, that given by knowing that the data are from a Gaussian
distribution. Because the standard error of the coverage estimates is
roughly {(.1)(.9)/1000}'2~0.01, the percentile intervals have coverage
significantly less than 0.9. Increasing the number of bootstrap replica-
tions B does little to improve the coverage, although it does lead to a
shorter interval whose length is more stable from sample to sample. The
slight lack in coverage and more variable length are the price we pay
for not assuming a Gaussian distribution —a small cost given that data
are seldom from a Gaussian distribution.

RELATIONSHIP TO THE JACKKNIFE

Sample re-use methods such as the bootstrap are not entirely new,
and perhaps the most well-known predecessor is the jackknife. The
jackknife shares the goal of easily obtained, trustworthy variance esti-
mates, but it relies on a less demanding computational algorithm.
Rather than compute the statistic for a large collection of bootstrap
samples from the original data, the jackknife relies on dividing the
sample observations into, say, S disjoint subsets, each having the same
number of observations. The statistic of interest is then computed S
times, each time omitting one of the subscts. Rather than having perhaps
100 repetitions of the statistic, the jackknife requires at most n when
each subset consists of a single observation. Many overviews of the
jackknife exist, such as that of Miller (1974) and the applications of
Mosteller and Tukey (1977). A recent study of the theoretical properties
of the jackknife and related methods appears in Wu (1986).

To illustrate the jackknife, consider again the problem of estimating
the variance of X. For this example, let each subset consist of one obser-

vation. Begin by computing the mean of (x,, X3, . . . , X,), the n-1
observations left after removing x;. Label the mean of these n-1 obser-
vations X(_;). Then compute X__,), the mean of (x;, X3, . . ., Xp).

Continuing in this fashion, the procedure leads to n “leave-one-out”
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means X(_y, . - . , X(-n). The jackknife combines these to obtain its
variance estimate. Unlike the bootstrap values X*®, which are indepen-
dent of each other (conditional on the observed sample), the jackknife
replicates X_;) are highly correlated; every pair of jackknife means has
n-2 observations in common. By comparison, given the values in the
sample, the bootstrap replicates X* are conditionally independent of
each other; two bootstrap samples may have no values in common. A
further difference from the bootstrap lies in the sample size. The
jackknife “samples” are of size n-1 rather than n. As a result, the
jackknife variance expression includes an adjustment factor of (1-1/n).
The jackknife variance estimate is

n
- _n-1 -
var(x) = n 2 KX
i=1

where X, is the average of X_), . . ., X(_p)-

Efron (1982) presents the bootstrap as a generalized framework
encompassing the jackknife. For example, he shows that the jackknife
estimate of variation is an approximation to the bootstrap estimate and
agrees with the bootstrap in large samples for statistics such as the
mean. Although such an embedding is possible, the jackknife takes a
fundamentally different view of the possible replicates of the statistic.
The jackknife treats them as a finite collection, whereas bootstrap
resampling assumes that the replicates are a sample from a population
of infinite size. As a result, the jackknife only uses at most n values of
the statistic, whereas the bootstrap considers a much larger collection.

The degree to which the bootstrap outperforms the jackknife (or vice
versa) seems to depend on the degree to which the data are really
independent observations from the same population. If some complex
structure or correlation exists among the observations, a grouped jack-
knife may be more appropriate (Tukey, 1987). Notice also that the
jackknife was never intended to be a method for estimating a distribu-
tion. The usual procedure for getting confidence intervals from the
jackknife is to use the jackknife standard error in a modified t-interval,
as described in the initial abstract of Tukey (1958).

THE ROLE OF MATHEMATICS

Most of the mathematical results about the bootstrap describe how
it performs as the sample size grows. For example, one can show that
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the bootstrap variance estimates in regression approach the correct
value as the sample size becomes arbitrarily large (Freedman, 1981).
Asymptotic, or large sample, properties of a statistic are important
theoretical results, but they arc not always indicative of the performance
of a statistic in applications. No one wants to use an estimator that is
not consistent, and asymptotics are needed to determine such large
sample properties. For data analysis, however, asymptotics are a guide
that can often be unreliable when confronted with small samples and
outlying values. Most asymptotic results describe how a statistic be-
haves under the best of circumstances: unlimited growth of the number
of independent observations from the same population.

These assumptions suggest two questions to ask when assessing the
relevance of asymptotics. First, How large a sample size is needed for
the asymptotics to be useful? Some asymptotic results, such as the
familiar Central Limit Theorem, are relevant even when the sample has
only 30 observations. In fact, until recently, a commonly used method
of using computers to gencrate samples from a normal distribution was
to take the average of 12 uniformly distributed observations. Other
asymptotic results require larger samples. For example, the asymptotics
that lead to the standard error estimates in the section on applications
in robust regression require larger samples than the 20 observations
used there. The second question asks: Can a large sample really consist
of independent observations from the same population? Such an ab-
straction is needed for the mathematics, but is unusual in practice. If it
requires six months to gather the data for a large survey, then the
underlying population may have changed over the course of the data
collection (see Cook and Campbell, 1976).

OVERVIEW OF THE REMAINING SECTIONS

The following section illustrates the bootstrap in regression and
constitutes the bulk of this article. The section on bootstrap confidence
intervals describes bootstrap confidence intervals in detail. The fourth
section, on computing bootstrap estimates, contains advice, including
deciding on how large to set the number of replications B. Finally, the
fifth section suggests where resampling methodology is moving, including
some adventurous applications. Other reviews of the bootstrap tend to
focus on the question, “Does the bootstrap work?” (e.g., Diaconis and
Efron, 1983; Efron, 1979b; Efron, 1982; Efron and Gong, 1983; Efron
and Tibshirani, 1986). With some exceptions, this review begins with
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the premise that the bootstrap is a good idea and focuses on how to use
it in data analysis, particularly regression.

APPLICATIONS OF BOOTSTRAP RESAMPLING IN REGRESSION

Regression models remain at the heart of applied statistics. Robust
estimation strategies and residual diagnostics have improved the use-
fulness of these techniques, and the bootstrap adds another dimension.
After a quick review of the basic regression model, we describe two
methods of bootstrap resampling. The nature of the data determines
which alternative is appropriate. Modeling assumptions are very impor-
tant with the regression model, and heteroscedasticity and serial corre-
lation present problems that the bootstrap, if properly used, often
handles better than classical methods. Once the model is chosen, the
bootstrap also allows us to compare different estimation strategies, such
as robust regression estimates to least squares. Some problems in
structural equations also are easily handled with the bootstrap.

BOOTSTRAPPING A REGRESSION MODEL

In the usual regression model, Y = (y, ¥, . . ., ¥,)' denotes the nx1
vector of the response, and the nxk matrix of regressors is X = (x;, x,,

. » X,)', where the kx1 vector x; denotes the regressors for the ith
observation. The usual linear model is then

Y=XB+eory,;=x{/B+¢,i=1,...,n nm

where € is an nx1 vector of uncorrelated error terms having mean 0 and
variance 0. The kx1 vector p holds the unknown parameters, for which
the ordinary least squares (OLS) estimator is

B=(X'X)!X'Y=p+(XX) 'X'e 2]

It follows that VAR(P) = 0® (X'X)"!. Because o? is not usually
known, VAR( f ) is estimated by

var(f}) = s3(X'X)"! 3]

where s? is theﬁunbiased variance estimator provided by the resid-
ualse;=y,-x;/B,i=1,...,n

s?= 2 (yi-x; B)? /(n-k) = = ¢/(n-k).
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Throughout this section, s? denotes this variance estimator, not the
sample variance estimator of the introduction. A general reference on
the theory of least squares estimation is Fox (1984).

Two methods exist for bootstrapping the regression model, and the
choice of which to use depends upon the regressors. If the regressors
are fixed, as in a designed experiment, then bootstrap resampling must
preserve that structure. Each bootstrap sample should have the same
regressors. On the other hand, regression models built from survey data
typically have regressors that are as random as the response, and
bootstrap samples should also possess this additional variation.

Resampling with random regressors. Bootstrapping regression mod-
els with random regressors follows the strategy of the introduction. Let
the (k+1)x1 vector z; = (y;, X;")’' denote the values associated with the
ith observation. Just as in the case for bootstrapping X, one samples with
replacement from the observations. Only in this case, the set of obser-
vations are the vectors (z;, . . ., z,) rather than a set of scalar values.
The three steps of the random regressor algorithm are:

(1r) Draw a bootstrap sample (z;*®), z;*®), ., z,*®) from the observations and
label the elements of each vector

7O = (30, x*CVy
From these form the vector Y*®) = (y; *®), y,*®) 'y *®)y and the matrix
X*0) = (x*®), x,*0) | x *O)y,
(2r) Calculate the OLS coefficients from the bootstrap sample:
B*() = (X*®YX*(b))=1 X*(b)'y*(b)

In a very small sample, the matrix (X*®'X*®) might be singular and would
necessitate drawing a new sample.
(3r) Repeat steps 1 and2forb=1,...,B,and use the resulting bootstrap estimates

A | . . . .
g*(), g*@, . .., B*® to estimate variances or confidence intervals. The
bootstrap estimate of the covariance matrix of f is

B
varg*(B*) = 3 dy*dy*/(B - 1) (4]
b=1
where the vector of deviations is dp* = B *® - avg( *®), b=1,... B.

The effect of sampling the z; is to keep the responsc y; of a given

observation paired with the regressors x; of that observation.”
Resampling with fixed regressors. When the regression model has

fixed regressors, the resampling should preserve the structure of the
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design matrix. For example, suppose X defines a balanced two-way
analysis of variance for an experiment or consists of polynomial time
trends. If random resampling is used, X* would not likely possess the
needed structure: The ANOVA design would be unbalanced and the
polynomial time trends would have gaps and clusters. In regression
models in which X is fixed, each utopian sample has the same design.
Bootstrap samples need this same characteristic. The algorithm that
produces this behavior is not as straightforward as that for the random
design and relies on regression residuals. It is, however, more com-
putationally efficient. The change in the preceding algorithm occurs in
the first step, which defines how the bootstrap samples are generated.
The second step reveals the computational advantage. The steps are:

(1f) Compute the bootstrap samples by adding resampled residuals onto the least
squares regression fit, holding the regression design fixed:

Y*0) = X B+ e*®
where the nx1 vector e*® = (e;*®), e;*®) . e,*®) and each ¢*® isa

random draw from the set of n regression residuals.
(2f) Obtain least squares estimates from the bootstrap sample:

Br®) = (x'X) X Y+(b)
=B+ (X'X) 1X'ex®)
Because (X'X)"! appears in every ﬁ*(b), only one matrix inverse is needed.
Also, the second line shows that one need never explicitly form Y*.
(3f) Repeat steps (1) and (2) forb = 1,. .., B, and proceed as in (3r).

In contrast to the random regressor model, this resampling approach generates
Y* by adding samples of the residuals to the fitted equation X § rather than
by resampling from the actual data.

The introduction of residuals raises important issues. Residuals are
the product of a model imposed upon the data; their values depend upon
the model that we choose. Ideally, one would like to be able to sample
from the true population of errors. Because this population is unknown,
the bootstrap resamples the residuals, even though lcast squares resid-
uals are rather different from the true errors. In particular, residuals are
neither independent nor identically distributed, even if the regression
model is correct. The covariance matrix of the residual vector e is

VAR(e) = VAR{(I-H)e} = o*(I-H)
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where the I is the nxn identity matrix and the projection or “hat” matrix
His
H = X(X'X)"'X' [5]

Typically, I-H has substantial off-diagonal elements and a non-
constant diagonal. Hence, in place of independent, constant variance
errors, the bootstrap samples correlated heteroscedastic residuals.® The
bootstrap succeeds in spite of these differences between residuals and
true errors. The bootstrap vector e* consists of independent errors with
constant variance, regardless of the properties of the residuals. Boot-
strap resampling from the residuals gives independent error terms with
variance (1-k/n) s2.° Inasmuch as the variance of the population defined
by the residuals is too small, one can “fatten” the residuals by dividing
each by a factor of (1-k/n)"2. Tukey (1987) heartily recommends such
“degree-of-freedom” corrections, and these modifications are useful in
contexts such as prediction intervals (Stine, 1985).

As in the case of the sample mean, we do not need simulation to find
the bootstrap variance of [5 in the fixed regressor model. The mathemat-
ical derivation of the bootstrap variance mimics the usual derivation of
VAR(B) For models with fixed regressors, the bootstrap variance is
(Efron, 1982: 36)

VAR*(B*) = (1-k/n) s2 (X'X)"!

differing only by a scale factor from var(ﬁ). In fact, for any linear
statistic, one can compute the bootstrap variance without computer
simulation.'?

EFFECTS OF OUTLIERS

So how do these resampling methods compare, how are they useful
in data analysis, and which is better to use? The choice of which to use
is easy to determine: Bootstrap resampling should always resemble the
original sampling procedure. Models having a fixed design lead natu-
rally to bootstrapping with fixed regressors; those with a random design
lead to random resampling. Although these two methods of resampling
differ, it has been proven that the resulting differences become small as
the sample size grows (Freedman, 1981). But with small samples,
important differences emerge that must be understood if one is to make
practical use of the bootstrap. In particular, because these methods
differ in how they bind y; to x;, they react differently to outliers.
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Figure 2 Abortion rates and poverty in the East, with the District of Columbia
being a large outlier.

Some ideas from regression diagnostics are needed for this discus-
sion. The leverage of an observation in a regression model is a measure
of how sensitive [5 is to changes in the response at that point. The
leverage values H;,i =1,. .. ,n are the diagonals of the projection matrix
H (5) and Osh;s1. A related ‘measure is the influence of an observation,
which mdlcates how much [3 changes when an observation is removed
from the data. Influence combines the leverage and residual for an
observation; the change in [3 when the ith observation is removed is
(X'X)! x;e; /(1-h)) (e.g., Fox, 1984).

An example illustrates the different effects of outliers. The scatter-
plot of Figure 2 shows the abortion rate per 1000 women aged 18-44
versus the proportion of the population below the poverty level in the
14 Eastern coastal states as well as the District of Columbia. (The data
are from Tables 104 and 712 of The Statistical Abstract of the U.S.,
1988.) The outlier is the District of Columbia, which had an abortion
rate of approximately 146 per 1000 women in 1985. This observation
is very influential in a simple regression of the abortion rate on the
poverty percentage because it combines a large residual with high
leverage. The high leverage is the result of D.C. having the largest
poverty percentage (18.6%). Least-squares and robust estimates for a
simple linear model appear in Table 2. The least-squares slope is
positive if the outlier is included, suggesting to the hasty data analyst
that higher poverty leads to higher abortion rates. Dropping D.C. sug-
gests the opposite conclusion, although not very strongly. The robust
fit resembles the least-squares fit that omits D.C.
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TABLE 2
Estimated least squares and robust estimates with t-values for
a linear regression model fit to the abortion rate data in Figure 2

Estimation Method Intercept Slope

Least squares, all data -21.4 (-0.7) +4.6 ( 1.8)
Least squares, excluding DC +41.8 ( 3.8) -1.1 (-1.3)
Biweight, all data +42.3 ( 4.5) -1.2 (-1.7)

The two regression resampling methods differ considerably when
applied to these data. Because the poverty percentage in these states is
random and not experimentally controlled, random resampling is the
correct method. When it is used, D.C. appears in about 64% of the
bootstrap samples.'! Because samples containing the District of Colum-
bia give a positive slope and those without this observation usually give
a negative slope, the estimates of the slope from bootstrap samples are
sometimes positive and sometimes negative. The histogram of the
bootstrap slopes based on B = 500 bootstrap samples in Figure 3 shows
the resulting bimodal shape, with most of the slopes being positive.'?
In contrast, the method of fixed regressors samples the residuals and
adds them to the least-squares regression fit. Thus, the large residual
for D.C. could appear at any (or even several) of the 15 obscrvations in
a bootstrap sample. By severing the tie between the large residual and
high leverage point, residual resampling produces slope estimates whose
histogram (also in Figure 3) is quite normal in appearance.

Neither bootstrap scheme “cures” the outlier problem, and they give
different impressions of the effect of an outlier. Residual resampling
spreads the effect of the outlier about the design, whereas random
resampling keeps it localized as in the observed sample. Because the
regressor in this problem is random, random resampling is appropriate.
So then how are we to react to the bimodal shape of the histogram for
the slope? It draws our attention to a problem in thAe regression model,
and reveals how outliers affect the distribution of B.'3

BOOTSTRAPPING WITH HETEROSCEDASTICITY

Because an outlier can be viewed as an observation with large
variance, the preceding example suggests that the two resampling
methods react differently in the presence of heteroscedasticity. If the
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Figure 3: Bootstrap distributions of the least squares slope via fixed and
random resampling.

errors are heteroscedastic and fixed resampling is used, random resam-
pling of the residuals leads to bootstrap samples that are homoscedastic.
Taking random draws from the residuals scatters the residuals around
the design, giving bootstrap data sets that show no sign of heteroscedas-
ticity. Random resampling of the observations preserves the hetero-
scedasticity. If VAR(e) = 6°D, where D is an nxn diagonal matrix with
varying entries that reflect the presence of heteroscedasticity, then
residual resampling leads to the variance estimate

VAR*,a( B) = vX(X'X)!

where nv? = E(e’e) = o2 trace (I-H)D. Random resampling preserves
the heteroscedasticity, and its bootstrap variance is approximately the
correct answer

VAR*, gom( B) ~0%(X’ X)/(X'DX) (X'X)"!

An extensive discussion of the effects of uncorrected heteroscedas-
ticity on the bootstrap appears in Wu (1986, especially the discussion).
Now suppose that we have recognized the presence of heterosce-
dastic errors and want to do something about it. The broad validity of
random resampling makes it preferable to the usual approach of esti-



260  SOCIOLOGICAL METHODS & RESEARCH

mating the variance of weighted least squares (WLS) estimators, assum-
ing that the regressors of the bootstrap sample possess the sampling
characteristics of those in the original data. If we continue with the
assumption VAR(e) = o?D, then the optimal WLS estimator and its
variance are (e.g., Fox 1984)

Bw = (X'D'X)"1X'D-'Y [6]
VAR (By) = 0%(X'D!X) -!
In practice, however, onc often uses estimators such as
by =X Dx)-1 XDy
for which the obvious variance estimator corresponding to (6) is
var (by) = s? (X'Dr'x)-! [7]

where D is estimated from the data. Thus ﬁw is the WLS estimator that
requires that we know the variance structure in the matrix D; by, is a
practical approximation to ﬁw based on an estimate of D. Unfortunately,
theAcommon variance estimator (7) is more an estimator of the variance
of By than of VAR(BW) b,e\:cause it does not incorporate the estimation
of D, which is needed in by,.

Bootstrap methods capture more of the uncertainty induced by the
estimation of error variance structure. As an example, supposc that our
data have several observations at cach value of the regressor, and the
variance increases with the regressor. The book-price data (from Table 369
of the Statistical Abstract of the U.S., 1988) in Figure 4 have this form.
The average and variance of price increase over time. One model for
these data is to assume that D = diag (d,, d;, d;, d;, d;, d;, dy, dy, . . ., dy).
Because the error variances depend in some unknown fashion upon
year, an iterative estimation strategy is needed:

(1) Use OLS to obtain residual estimates, e =Y - Xf&
(2) Estimate the variance of the residuals at each value of the regressor, and
estimate D with

) —
d,= z (eij -€)/5
j=1
where e;; is the jth residual at the ith design point and ¢; is the average of the

six residuals in that group. .
(3) Form the estimator bw = (X'D™'X)™! X'D'Y.
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Figure 4: Bootstrap distributions of the least squares slope via fixed and
random resampling.

(4) If the difference of Sw from the previous estimate of § is small, terminate the
calculations. Otherwise, continue with step 5.

) Cq\mpule the residuals associated with the most recent estimate of f,e =Y -
Xbw, and return to step 2.

Each iteration attempts to obtain more accurate error estimates and
use these to get a better idea of the error covariances. Applying this
procedure to the book-price data gives the slope estimate 1.62. The
nominal WLS variance estimator s2(X'D"'X)"! on the first line of Table 3
ignores the estimation of D, and one suspects that this estimate is too
small. By comparison, the bootstrap variance on line two of the table is
23% larger. Because the bootstrap estimate of variance incorporates the
estimation of D, it seems to be a better estimate of variation than that
from the traditional procedure. This bootstrap variance is obtained by
repeating the preceding algorithm on 20 bootstrap samples using the
following variant of random resampling. Inasmuch as errors in different
years have different variances, we resample within ecach group. Each
bootstrap sample thus has six observations at each of four years, pre-
serving this structural feature of the original data.

It remains to be determined whether either of these variance esti-
mates is accurate, and the bootstrap is one of three approaches to
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TABLE 3
Standard Error estimates for the slope of the regression line fit to the
heteroscedastic book-price data of figure 4.

Method of Estimation Standard Error
(1) WLS estimate s2 (X'B-1x)-1 0.39
(2) Bootstrap, B=20 0.48
(3) Iterated WLS 0.36
(4) Iterated bootstrap 0.47

answering this question. Mathematical expressions would be best, but
the iterative nature of by, suggests that this approach is unlikely to yield
easily interpreted results without a host of assumptions. Alternatively,
we could perform a simulation in which we estimate the variation of
b across simulated samples, and compare this variation to the average
of the nominal variance estimates (7). However, we have to decide what
distribution to sample. But the bootstrap is a procedure for evaluating
statistics, and the bootstrap variance estimate is a statistic. So why not
bootstrap the bootstrap? The amount of calculation becomes intimidat-
ing, but the strategy of using the bootstrap to evaluate itself is appealing
and avoids the troublesome choice of what distribution to sample. Keep
in mind that the bootstrap estimate of the variance of SW is a statistic
like any other, although it takes a bit more calculation to obtain. The
nested computations proceed as follows:

(1) Draw B bootstrap samples (Y*, X*)0), j =1,..., By, from the original data.
For each sample, estimate the variance of bw using the WLS expression (7).
Denote these estimates varw|s(j), j=1,...,B1.

(2) For each of the By initial bootstrap samples:

(2a) Draw By bootstrap samples from (Y*, X*)U and label these (Y**,
X**) W, b=1,...,By

(2b) Estimate by, **U) from each of the By samples (Y**, X**)0b),

Compute the variance of the collection Bw**ﬁb) as in (4), and denote this

variance estimate vargy*0),

(3) Compare the average WLS estimate to the average bootstrap estimate:

average nominal WLS std. error: {Z vary /B }172,

average bootstrap std. error: {Z vargy*0/B}172,
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Because we are sampling the population defined by the observed
sample, the correct answer is the original bootstrap estimate given on
line 2 of Table 3; that is, 0.48 is the standard error of the slope estimate
when sampling from the population defined by the original data. The
results of step 3 are on lines 3 and 4 of Table 3 with B, = 100 and B, = 20.
The average 0.36 of the WLS cstimates is too small; the estimation of
D adds a substantial amount to the variance of the slope estimator. On
the other hand, the average of the bootstrap samples 0.47 is quite close
to the target value, 0.48.'4

APPLICATIONS IN ROBUST REGRESSION

The notion of u§\ing the bootstrap to estimate variances of iterative
estimators such as by, suggests applications in robust regression. Boot-
strap methods share the intent of robust statistics, albeit with a different
slant. Robust statistical methods provide nearly optimal parameter
estimates under a variety of broad conditions. Bootstrap methods re-
duce the need for tenuous. assumptions, but concentrate on cvaluating
an estimator rather than defining it. Bootstrapping does not produce
robust estimators, but it can suggest how robust an estimator is. For a well-
motivated introduction and overview of robust methods, see Hampel
et al. (1986).

In robust regression, outlying observations are downweighted so that
the regression captures the pattern in the majority of data rather than
tracks outliers. The downweighting is accomplished by using an itera-
tive reweighting scheme not too different from that used to obtain BW.
The weights are chosen by a variety of schemes, such as the biweight
used here. Asymptotic methods exist for estimating the variances of
robust regression coefficients, and one must take care to allow for the
variability in the weighting process (Street et al., 1988). The bootstrap
is also a valid procedure for estimating the variance of common robust
estimators (Shorack, 1982).

Our example of bootstrapping a robust regression utilizes a quadratic
model for the growth of the U.S. population, which appears in Figure 5.
Despite a high R?, the last few observations do not fit this model well
and have relatively large, highly leveraged residuals. (This deviation
from the model suggests the presence of specification error: A variable
that is not included in this simple model assumes an important role in
the later data.) These later points lead to the difference shown in Table 4
between the coefficients of the OLS fit and a robust fit. In both quadratic
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Figure 5: US Population shows quadratic growth.

models, the regressor (time) is centered and rescaled to run from -1 to
1. The slope estimates are similar, but the differences are large relative
to the estimated standard errors. The difference between the coeffi-
cients of the linear term in the model is 1.8, which is more than four
standard errors of the robust estimator. Also, the robust estimator claims
a standard error that is less than half that of the least-squares estimator.

The bootstrap gives a different sense of how these estimators behave.
We must use fixed resampling in this model because the regressors are
time and time squared. Random resampling would yield bootstrap data
sets with several observations at one year, and none at others. Fixed
resampling preserves the rigid time progression of the original data and
is the appropriate method. The average and standard error of the boot-
strap results with B = 500 are in Table 5. The bootstrap results suggest
that both coefficient estimators are unbiased for their expectations
because the averages of the bootstrap coefficients approximate the
original estimates. The bootstrap estimates of standard error are about
the same as the usual OLS estimates. In fixed resampling, the bootstrap
estimates of standard error of the coefficient estimators approach the
usual least-squares values as B grows large. The bootstrap estimates of
standard error in Table 5, however, are much larger than asymptotic
standard error estimates for the robust coefficients in Table 4; the
sample size is perhaps too small for the asymptotics to be accurate. In
both cases, however, the robust estimator has smaller variance than the
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TABLE 4
Coefficients of quadratic models for the U.S. population growth
shown in Figure 5, estimated by least squares and robust methods.

Coefficient
Estimator Constant Linear uadrati
OLS 50.7 (0.96) 97.1 (1.05) 51.4 (1.93)
Robust 51.1 (0.37) 98.9 (0.40) 52.8 (0.74)

OLS estimator.'> The bootstrap distributions of the OLS and robust
linear coefficients in Figure 6 confirm these impressions: The distribu-
tion of the robust estimator is much more tightly concentrated than that
of the OLS estimator.

A closer look at the bootstrap distribution of the robust estimator also
suggests why its bootstrap standard error is so much larger than the
asymptotic estimate. The bootstrap distribution of the robust estimator
in Figure 6 is very peaked, but this figure conceals the tails of the
distribution. The Gaussian quantile comparison plot in Figure 7 reveals
that the tails of this distribution are much heavier than those of the
Gaussian distribution. The asymptotic standard error is based on a
Gaussian approximation to a sampling distribution. Because the robust
estimator has a long-tailed distribution, this approximation is not very
accurate. It is ironic that one typically sees such Gaussian properties as
standard error applied to estimators like the biweight that do not show
Gaussian behavior in small samples, an observation I owe to John Fox.
A better comparison of these estimators would be in terms of a more
robust estimator of variation, such as the hinge-spread. On the other
hand, once standard errors are surrendered, it becomes quite hard to
draw comparisons to traditional results.

STRUCTURAL EQUATION MODELS AND THE BOOTSTRAP

Some of the more interesting features of path models are indirect
effects. These measure the effect that one variable has upon another
through other factors in the modecl. Because estimates of indirect effects
are products of several regression coefficients, one cannot apply the
usual least-squares formulas. Some applications of indirect effects
appear in Fox (1984).
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TABLE S
Average and standard error of bootstrap replicates of the
least squares and robust coefficients in models for
U.S. population growth (B=5000).

Coefficient
Estimator Constant Linear Quadratic
OLS 50.7 (0.90) 97.0 (0.97) 51.4 (1.79)
Robust 51.1 (0.58) 98.9 (0.73) 52.6 (1.33)

One approach to estimating the distribution of an estimated indirect
effects is to combine the delta method with a normal approximation.
The delta method (Bishop et al., 1975) is based on the observation that
it is easy to compute the variance of linear functions of statistics, such
as a+bb. The idea behind the delta method is to find a linear approxi-
mation to a StatlStIC and use this approximation to estimate the vari-
ance. Suppose g(B) is a nonlinear function of the statlsnc 8, for example,
g(e) = log(()) To approximate the variance of g(B), we estimate the
variance of the linear approxnmatlon based on the derivative of g at 6.
This approxnmatlon to g(B) is g(0) plus a slight change to reﬂect replacing
0 by 6. The change in g as the parameter changes from 6 to Bis estlmated
by the derivative of g at 0, g'(0). The resulting approximation to g((-)) is
then

g(B)~g(6) + g'(0)(B-9) (8]

For g(é) log(é) this approximation is log(é)aslog(e) + (6-6)/0

because g'(8 = 1/6. In as much as g(0) and g'(B) are constants, the
variance of g(e) is approximately

VAR {g(8)}~g'(8)* VAR(B) 9]

In practice, (9) is not useful because it requnres evaluating the
derivative at the true parameter and finding VAR(B), both of which are
usually unknown. Substituting 6 for 6 and var((—)) for VAR(O) in (9), one
is led to the delta method variance approximation

var{g(®)} ~ g'(8)? var(d) [10]

The accuracy of var{g(e)} depends on three factors: the distance of
6 from 0, the smoothness of the derivative that permits the switch from
g'®)tog (9), and the accuracy of the initial approximation (8). In the
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Figure 6: Bootstrap distributions of estimated linear coefficients in OLS and
robust regression fits.

simulations of Efron (1982: Table 5.2), standard errors from the delta
method are too small, particularly for statistics such as the correlation.

Applying the delta method to indirec’\t effects is not as easy as in the
scalar case described above because 8 now consists of a vector of
regression coefficients. As a result, the linear appr\oximations (8), (9),
and (10) require vector calculus. For example,/\if 0 denotes the vector
of coeffi,f:ie{\\t eftimates from our model, then g(8) is typically a product
such as 8,, 8,, 05, and the scalar derivative becomes a vector of partial
derivatives; details appear in Sobel (1982).

The bootstrap can also be applied to indirect effects. One simply
forms the coefficient estimates from the various equations of the model
and computes the indirect effect. Each equation in the model is boot-
strapped B times using the same B bootstrap samples for all of the
equations. In the simple case of a recursive model (i.e., one with no
feedback), the collection of bootstrap indirect effects are just the prod-
ucts of the bootstrapped regression coefficients from the several equa-
tions. Because the bootstrap regression estimates are based on the same
B bootstrap samples, the coefficient estimates are correlated across the
equations, as they should be.

In general, the delta method and bootstrap give similar results for
indirect effects. Bootstrap standard errors are generally larger than
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Figure 7: Quantile comparison plot of the bootstrap replications of the
robust slope estimator reveals heavy tails.

those from the delta method, with the size of the difference depending
on the sample size. More importantly, however, the bootstrap can reveal
skewness in the distribution of an estimated indirect effect. Because the
delta method is teamed with a Gaussian distribution, it does not reveal
asymmetries. The distributions in Figure 8 are the smoothed bootstrap
and delta-method approximations to the distribution of an indirect
effect in a small, recursive path model estimated from a sample of 50
observations (Bollen and Stine, 1988). The two distributions are sim-
ilar, but the bootstrap suggests asymmetry that the normal approxima-
tion associated with the delta method cannot capture. In the same model
with a larger sample size (n=172), the differences are quite small.

BOOTSTRAP CONFIDENCE INTERVALS

A substantial body of recent research in statistics concerns bootstrap
confidence intervals. Rather than bury the reader in the details of the
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indirect effect in a small path model.

most recent advances, this section displays the key ideas that underlie
this research. This section begins with a quick overview of bootstrap
t-intervals, which are a variation of intervals based on the classic
t-statistic. Treatment of percentile intervals follows. Percentile inter-
vals are closely related to the smoothed histograms of the bootstrap
replications shown in the regression examples.

BOOTSTRAP t-INTERVALS

Bootstrap t-intervals share the form of the classic t-interval, but do
not require the Gaussian populations or the use of a t-table for critical
values. Essentially, a new table constructed using bootstrap replications
replaces the familiar t-table in each application. The case of a confi-
dence interval for the mean of a Gaussian population illustrates the
ideas.

The usual 90% confidence interval for the mean w of a normal
population based on a sample of size n is [Xt(.05, n-1) s/Vn], where
t(a,df) is the o percentile of Student’s t-distribution with df degrees of
freedom and s is the sample standard deviation. The validity of this
interval (i.e., the reason that it really is a 90% confidence interval for
w) relies upon the fact that
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Pr {Vn (X-p)/sst(a,df)} = o, O<a<l [11]

The usual interpretation of the probability in (11) implies that the
ratio V'n (X-p)/s is less than the critical value t(c,df) in 1000% of the
utopian collection of samples from the Gaussian population. The boot-
strap t-interval is based in the same logic, and seeks an analogous value
t*(a; n) such that'®

Pr*{vn (X*-X)/sdg*(X*)s t*(o;n)} = a, O<a<l [12]

In (12) probabilities associated with bootstrap sampling from the
data replace probabilities associated with sampling from the true pop-
ulation. This change replaces “Pr” in (11) with “Pr*,” which denotes
the probability induced by bootstrap resampling from the empirical
distribution F. Also, sdg*(X*) is the bootstrap estimate of the standard
deviation of the sample mean based on B replications x*(, ..., x*®),
Rather than find a percentile from the t-table, the bootstrap approach is
to find it directly from the distribution of the ratio (X*-X)/sdg*(x*). For

example, the 90% bootstrap t-interval for p is
[X+t*(.05; n)xsdg*(X*), X+t*(.95; n)xsdg*(x™)]

Finding t*(a;n) requires simulation, as the mathematics quickly
become intractable. Hall (1986a) gives an example of the mathematics
involved.

To find t*(o;n) requires a nested bootstrap simulation. Each iteration
of the outer loop of the simulation generates a bootstrap replication of
the pivot R* = (X*-X)/sdg*(x*). The required value of t*(a;n) is the a
percentile of the simulated collection of pivots. The inner loop is needed
to find the bootstrap standard error estimate. The algorithm is:

(1) Draw Bj bootstrap samples from the original observations and denote these
by X*D = (x*0), ..., xp*@),j=1,..., By,

(2) For each of these B bootstrap samples, estimate the standard deviation of the
mean by bootstrapping:
(2a) Draw B bootstrap samples from X*() and label these

X*0) = (x*G0), L x, ¥, b=1,...,B;
where xi*(jb‘) is sampled with replacement from the observations in the
sample X*(), _ .
(2b) Estimate the mean X*0®) of each of the B, bootstrap samples X*(b)
(2c) Compute sdg2*0) from the collection of bootstrap means
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B,
sdpz*0(xe) = [y, (x+0%) - 5+G))2 (B, - 1)]
b=1

where X*0-) is the average of the B, bootstrap means.
(3) Form the bootstrap pivot R*0) = (x*U)-x) / sdpy*@ (x*) for each of the By
initial bootstrap samples.
(4) Use the collection of bootstrap pivots to obtain the desired percentiles

t*(a;n) = o quantile of the R*@

At the cost of much more calculation, one gains the freedom of not
having to know the distribution of Vn (X-u)/s.!”

Fortunately, only a relatively small simulation is needed to obtain
the optimal level of accuracy. If the number of bootstrap samples B, in
the outer loop of this nested simulation is roughly equal to the sample
size, then the difference in coverage from performing an infinite amount
of resampling is very slight. Such accuracy requires careful choice of
the level a. Because B, replications of the ratio R* divide the line into
B,+1 segments, o and B, should be chosen so that a = k/(B,+1)
for some positive integer k. For example, to get a 90% interval, the
smallest satisfactory number of replications B, is 19 because these
divide the line into 20 segments, each holding 5% of the probability.
If Ryy* s Ryy* s ... R(jy)" are the ordered R*0)s, then the lower
endpoint of the bootstrap interval is X + R(;,*sdg*(X™) and the upper is
X + Ryyg)"sdg*(X*). The cost of doing so little resampling lies in the
length of the interval. Although the coverage accuracy of the interval
is hardly affected by B,, the length of the interval is. Doing too little
resampling generally leads to intervals that are unnecessarily long
(Hall, 1986b).

CONFIDENCE INTERVALS FOR THE CORRELATION

Building a confidence interval for the correlation of two random
variables is neither so simple nor obvious as doing so for the mean.
Many of the problems are suggested by the bootstrap distribution of the
correlation of the law school data shown in Figure 9. These data appear
in many of the Efron references (e.g., Efron, 1982) and are grade-point
averages (GPA) and law school aptitude test (LSAT) scores from 15
U.S. law schools. The sample correlation is rather large, r = 0.776. The
bootstrap distribution of the correlation (B=1000) shown in Figure 10
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Figure 9: Efron’s law school data.

is skewed. Consequently, symmetric t-intervals are inaccurate. For exam-
ple, an approximation to the standard error of r is SE(r) ~ (1-r?)/(n-2)'/2,
so that an approximate 90% interval for the population correlation p is

[0.776 + 1.645 x 0.115] = [0.776 + 0.189] = [0.587, 0.965].

The interval gives no indication of the skewness revealed in the
bootstrap distribution and relies upon an unrealistic Gaussian approxi-
mation. In fact, the upper endpoint of the 95% interval (replace 1.645
with 1.96) is greater than 1. The approximation to SE(r) also reveals a
further complication: The variability of r depends on the value of p. The
larger p becomes, the less variable r is. Getting a better interval de-
pends, in part, on how well one can transform the correlation into a
statistic that has a normal distribution whose variance does not depend
on the underlying parameter.

The required transformation in this case is Fisher’s z-transformation,
o(r) = (1/2) In{(1+r)/(1-r)}. This transformation maps the range of the
correlation [-1, +1] onto the whole line, — < ¢(r) < +%. In so doing,
it removes much of the asymmetry seen in Figure 10. Also, the variance
of ¢(r) is approximately 1/(n-3), which does not depend upon p.
Because the distribution of ¢(r) is more nearly a Gaussian distribution,
we can construct a t-interval for ¢(p). We can then use this interval to
get one for p. The idea, then, is to form an interval on a transformed
scale where the usual strategy of [estimatextxstd. err.] is roughly correct.
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Figure 10: Bootstrap distribution of the correlation of LSAT and GPA.

Then we reverse, or invert, the transformation to get back to the original
scale and finish with an asymmetric interval.

An example using the law school data illustrates these ideas. Using
Fisher’s transformation gives ¢(0.776) = (1/2)In(1.776/0.224) = 1.035,
and an approximate 90% confidence interval for ¢(p) is

[1.035+£1.645x0.289] = [0.560, 1.510]

To get an interval for p, note that if ¢(r) = z, then solving for r in terms
of z gives r = (e*-e7?)/(e* + e7?) = tanh(z), a function found on some
hand calculators. Applying this transformation to the endpoints of the
interval for ¢(p) yields the desired interval for p

[0.508, 0.907] = [0.776-0.268, 0.776+0.131].

This interval is asymmetric and cannot include values outside the range
-1to +1.

Bootstrap percentile intervals automatically accomplish much of
what Fisher’s z-transformation does. Intervals for the correlation based
on Fisher’s z transformation work rather well even for fairly large
values of p, but their use requires that we know about this transforma-
tion. Generally, it is rather hard to find a transformation for an arbitrary
statistic that works as well as ¢ works for the sample correlation,
although some recent work seeking to automate this search shows
promise (Tibshirani, 1988). Bootstrap percentile intervals are more



274  SOCIOLOGICAL METHODS & RESEARCH

direct. Suppose that we computed B bootstrap replications of the sample
correlation r*(M_ *@) _ r*(®) [n this case, B will need to be rather
large —on the order of 1000. As with random resampling in regression,
we resample from the pairs (LSAT,;, GPA)) so as to preserve the rela-
tionship between the two variables. The 90% bootstrap percentile inter-
val is then [r*(0.05), r*(0.95)], where r*(p) (0<p<1) is the 100pth
percentile of the bootstrap distribution of the correlation. That is, we
merely sort the bootstrap replicates, find the one greater than 5% of the
r*’s, and use it for the lower endpoint. Similarly, the replicate that is
greater than 95% of the r*’s becomes the upper endpoint.

The key property of percentile intervals is that, in a sense, they
automatically make use of Fisher’s transformation. Suppose that we
knew of the skewness in the distribution of the sample correlation and
used Fisher’s z-transformation with the bootstrap. Instead of looking at
1000 replications of r, we instead would compute 1000 replications of
¢(r). The resulting bootstrap percentile interval for ¢(p) would then be
formed from the 5th and 95th percentiles of the collection of ¢(r*)’s.
When this interval is inverted to give an interval for p, however, we get
the same interval that we would have gotten without the transformation.
This invariance occurs because ¢ is a monotone function (it steadily
increases). Thus, it preserves the order of the bootstrap replications. The
5th percentile of the transformed values ¢(r*) is simply ¢ applied to the
5th percentile of the r*’s. When the percentile interval [¢{r*(0.05)},
${r*(0.95)}] is inverted back to the original scale, we obtain the same
interval as before, [r*(0.05), r*(0.95)]. How well this automatic trans-
formation performs depends on some key assumptions laid out in the
next section.

PERCENTILE AND BIAS CORRECTED PERCENTILE INTERVALS

The validity of the percentile interval stems from the existence of a
normalizing transformation. Suppose that we want a confidence inter-
val for some population parameter 0 that has been estimated by the
statistic 8. The simplest, but most restrictive assumption that guarantees
that percentile intervals give the correct coverage is to assume

A A
(6*-6)

R ~ N(0, 0?) [A1]
(6-6)
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That is, the bootstrap analogy holds and both deviations from “true”
values have a normal distribution with mean 0. Of course, the bootstrap
distribution of 8* is discrete and cannot be normal, so we interpret (A1)
to mean that the bootstrap distribution becomes very close to normal as
the sample size increases.

To see why (A1) implies that percentile intervals give the correct
coverage, we have to compare the usual Gaussian interval for 6 with
the bootstrap percentile interval and show that they are the same. Begin
by noting that if o is known, then a 1-2a confidence interval for 8 is
[8+2z(a)o, 6+z(1 a)o]. Again, z(a) is the a percentile of the Gaussian
distribution; for example, z(.05) = -1.645 and z(.95) = 1.645. Under
bootstrap resampling, the probability of a bootstrap replicate 6* being
less than the lower endpoint of this interval is

G*{é—z(a)o} =Pr*[’é*sé—z(a)o}
= Pr*{(é*—a)/osz((x)}
=a

because (A1) implies that (é*-ﬁ)/o has a standard normal distribution.
Thus, the value that cuts off the lower 100a% of the bootstrap distribu-
tion of 8%, the lower endpoint of the bootstrap interval, is also the lower
endpoint of the standard interval. As a result, the bootstrap interval
[G*~(a), G*-'(1-a)] has the correct coverage.'

Assumption (A1) is rather restrictive, and the first generahzanon
allows for a transformation to normality. The statistic 8 is allowed to
have a non-Gaussian distribution, and it is assumed that an invertible
transformation to normality exists, like Fisher’s transformation of the
correlation. If this normalizing transformation is labelled “h,” then the
generalization of (A1) is to assume

(h(8%)~h(8))
~N(0, 0% [A2]
(h(B)~h(8))
Under (A2), the usual 1-2a interval for h(8) is
[h(B)+z(a)o, h(B)+z(1-)o].

Using the existence of the inverse transformation h~'(tanh in the case
of Fisher’s z-transformation), the interval for 0 is [h~ ‘{h(9)+z(cx)o},
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h“{h(§)+z(1-a)0}]. To arrive at this interval requires knowing h, h™!,
and o. Again, the percentile interval arrives at the same endpoints
without requmng so much a priori information. Arguing as before, the
probability of 6* being less than the lower endpoint of the desired
interval is

Pr#{B*<h!(h(8)+2(c)0)} =Pr#|(h(B*)-h(B))/o,=z(c0)]
=Q

and the percentile interval gets the correct coverage without having to
be told the normalizing transformation.

As broad as assumption (A2) first appears, it does not obtain in some
common situations, particularly in the presence of bias. To get a sense
for why the percentile interval fails, consider what happens if it is used
with a biased estimator. Suppose that the estlmator 6 is biased for the
true parameter 0 and tends to be too small —say 6 is on average 2 less
than 6, E(O-O) = -2. If the bootstrap analogy holds, then the bootstrap
replicates 6* are also biased for the true parameter of the bootstrap
population, 6. Thus, the bootstrap replicates used to form the endpoints
of the percentile interval are shifted to the left of 6, when in fact they
should be shifted to the right toward 6.

Fortunately, a diagnostic method exists that measures discrepancies
from assumption (A2) and provides the means to correct the problem
This diagnostic is to check that the probablhty of B being less than ]
is 1/2; that is, half of the bootstrap values 6* should be less than the
observed statxstlc B, a condition known as median unbiased. Under
(A2) half of the 6*’s should be less than 6 because it is assumed that
h(B ) is normally distributed about h(e) Usmg the notatlon of bootstrap
distributions, we need to check that G* (9) = Pr (9*59) 0.5. For the
law school data, only 446 of the 1000 bootstrap replications of the
correlation are less than the observed correlation, G,gg,*(r) = 0.446.
Because G ggo* is an estimate of G*, we need to decide whether the
observed deviation from 0.5 is indicative of a problem or merely the
result of sampling fluctuations. In other words, we need to test the null
hypothesis Hy: G*(r) = 0.5. Under H,,, the number of the 1000 bootstrap
replicates r* that are less than r has a binomial distribution with mean
500 and standard deviation 0.5x1000"2 = 15.8. Because the observed
count is well over 3 standard deviations from 500, assumption (A2) does
not hold.

Bias-corrected percentile intervals allow for the presence of bias and
consequently lead to a more general bootstrap confidence interval.



Stine / BOOTSTRAP METHODS 277

Rather than require that h(é*) - h(@)) and h(é) - h(0) both be centered
on 0, these intervals allow for some bias. The assumed behavior is

(h(B*)-h(B))
~ N(~Zyo, 0?) [A3]
(h(B)-h(8))

where the bias is expressed as a constant, —~Z,, number of multiples of
the standard deviation o. Because (A3) implies that the mean of
h(b) is h(8) - Z,0, it follows that

{h(B)-h(B) +Z,0}/0 ~ N(0,1)
and the standard (1-2a) interval for 0 is
[h-'{h(B)+Zyo+z(a)o}, h~' {h(B)+Zo+z(1-a)0}]

This interval requires that we know the transformation h, its inverse h™',
and both Z and o. But again, if we consider the probability of 6 bemg
less than the lower endpoint of the desired interval, we find that the
lower endpoint of the normal-theory interval is related to a percentile
of the bootstrap distribution

G*[h!(h(8)+Zy0+2(t)0)| = Pr{h(8*)sh(8)+Zyo+2(cx)o)
= Pr#{(h(8)*-h(B)+Z 0)/0s2Z 4 2(c1)
= ®(2Z;+z(a))

where ®(x) is the cumulative normal distribution, ®(x) = Pr{N(0,1)sx}.
The presence of the bias implies that the percentile interval constructed
using the a and 1-a percentiles is no longer correct. Instead the lower
endpoint of the bias-corrected bootstrap interval needs to be the
®(2Z,+z(a)) percentile, which suggests that we still need to know the
bias factor Z,. However, the same diagnostic that suggests the need for
a bias adjustment gives an estlmate of Z,. The proportion of bootstrap
replicates 6* that are less than 8 is the proportion of the normal
distribution less than Z,

G*(8) = Pr* {(h()-h(8)+Zo0)/0sZy} = D(Z,)

Thus, Zy = ®~1{G*(6)}, the z value corresponding to Pr*{8*<0}. Notice
that the bias corrected interval reduces to the usual percentile interval
if §*<0 in half of the samples. In this case, Z, = 0 because ®(0.5) = 0.
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Bias correction makes a slight difference in the interval for the
correlation. The effect of bias correction in this example is subtle
because

Z, = &' (proportion of BS correlations less than r)
= ®-1(0.446) = -0.13

For the lower endpoint, ®{2Z;+z(0.05)} = ®{2(-0.13)-1.65} = 0.028.
Thus, the value cutting off the lower 2.8% of the bootstrap distribution
of r* becomes the lower endpoint of the 90% interval, rather than the
5% point. For the upper endpoint, the 91.8% point of G* is used.
Although the interval endpoints appear to imply that the coverage is no
longer 0.9 (because 0.918-0.028=0.89), the interval is nonetheless an
estimated 90% confidence interval. Table 6 summarizes the several
types of intervals. Fisher’s transformation produces an asymmetric
interval; the direct normal approximation does not. The bootstrap inter-
vals become progressively more skewed as one moves down the table.

ACCELERATED BOOTSTRAP INTERVALS

Efron (1987) proposes accelerated percentile intervals as further
enhancement of percentile intervals. As illustrated in Table 6, acceler-
ated intervals can be much more asymmetric than the bias-corrected
interval. For some familiar statistics, including the sample variance s,
the transformation needed for the bias-corrected interval does not exist
because the variance of the normal approximation depends on the value
of 0 (Schenker, 1985; Efron, 1987). Simulations of an interval for the
variance o based on samples of 35 Gaussian observations (Schenker,
1985) revealed that the coverage of the 90% percentile interval was
much too small, only 82%, and the coverage of the bias-corrected
percentile interval was not much better — only 85%.

Like the bias-corrected interval, accelerated bootstrap intervals alter
the percentiles of the bootstrap distribution that are used for the end-
points of the bootstrap interval. For the correlation in the law school
data, the bias-corrected percentile interval is too far to the right. Accel-
erated intervals remedy much of this problem by using as endpoints the
1st and 89th percentiles of the bootstrap distribution of the correlation,
as compared to the 3rd, and 92nd used in the bias-corrected interval.
The accelerated interval thus reaches farther into the tail of the distri-
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TABLE 6
Several 90% bootstrap confidence intervals for the correlation of the
law school data of 15 observations with sample correlation 0.776.

Method Interval

Classical

Without Fisher's z [0.56, 0.99]

With Fisher's z [0.49, 0.90]
Bootstrap (B=1000)

Percentile [0.55, 0.94]

BC percentile [0.52, 0.93]

Accelerated percentile [0.43, 0.92]

bution. Unfortunately, the computation of the accelerated intervals is
more involved than that of the percentile intervals and will not be
covered further here. Details of the calculations appear in Efron (1987)
and DiCicco and Tibshirani (1987).

BOOTSTRAP PREDICTION INTERVALS

A variation on utopian sampling suggests how to use the bootstrap to
find confidence intervals for predictions. Having estimated the regres-
sion model (1), we frequently fg\recast the values of new observations
y¢ = X¢ P + €, with the predictor x;'f3. To construct an interval that measures
the uncertainty of this forecast, the standard approach is to assume that
the errors in the regression model possess a Gaussian distribution. If k
regressors are used in the model, then a prediction interval with cover-
age 1-2a for y;is I5(f) = [xf'ﬁ+t(a; n-k)s;, xf’ﬁ+t(l—a; n-k)s;] where
s¢ is the standard error of the forecast, s = s? (1+x, (X'X)'x,)."?

The idea behind bootstrap prediction intervals is to replicate the entire
sampling process and directly observe the prediction error. This proce-
dure consists of generating bootstrap replicates of the observations Y*
and X*, using the fitted model to obtain a future value y;* = xi"ﬁ +e,
and measuring the observable prediction error PE;* = y*~x;B*. Here,
e;* is a random draw from the empirical distribution of the residuals,
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TABLE 7
Coverage of bootstrap and normal theory prediction intervals for re-
gression models with errors from several distributions.

Error Distribution Bootstrap Normal Theory
Gaussian 0.78 0.80
Logistic 0.79 0.81
Student's t (4 df) 0.78 0.83

which is independent of the resampling used to generate Y* and X*.
The resulting interval resembles a percentile interval; the percentiles of
the bootstrap prediction errors are added to the original prediction
rather than a parameter estimate. If we let H*~'(at) denote the 100a
percentile of PE;*M, . . ., PE*®), then a 1-2a coverage bootstrap
prediction error for y; is Iyg(f) = {x{/B + H* (), x/p + H*"'(1-a)].

Table 7 contrasts the coverage probabilities of the bootstrap predic-
tion intervals with the usual normal theory intervals. Although the
coverage of Igg is slightly less than 0.9, the coverage is consistent for
all three distributions. One can prove in special cases that the distribu-
tion of the coverage of lgzg is asymptotically distribution-free: The
coverage of the bootstrap intervals does not depend on the shape of the
underlying population. In contrast, the coverage of the normal theory
interval deviates further from the nominal amount as the distribution
becomes more long-tailed. Further details and a computational en-
hancement appear in Stine (1985); similar methods for time-series
models appear in Stine (1987).

COMPUTING BOOTSTRAP ESTIMATES

It would be convenient at this point to be able to direct the reader to
a wcll-developed commercial software package that included bootstrap
procedures. But because such a package does not exist, it is useful to
remember some computational issues that arise in resampling. The
bootstrap calculations that appear in this article were prepared using a
collection of APL programs written by the author. It is also possible to
use the SAS macrolanguage to write special routines to do bootstrap
calculations. One can write such a bootstrapping macro in any statistical
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package that permits the user to make function calls to statistical
routines and supports random number gencration.

SOME GENERAL POINTS TO REMEMBER

Most interesting applications of the bootstrap, such as confidence
intervals, require simulation. Although no rules exist to always give the
best computing strategy, a few general points deserve emphasis. Some
have already been mentioned, but are repeated here.

(1) Simulation is not always necessary. The bootstrap is not a collection of
simulation algorithms. Rather, the bootstrap is a methodology based on
substituting the sample for the unknown population. Often, simple mathemat-
ics can replace simulation, as in the example of computing the variance of the
sample average.

(2) Improve naive bootstrap methods with substantive knowledge. The naive
bootstrap prediction intervals of the earlier section are intuitive, but the
resulting computational strategy is not computationally efficient. A basic
understanding of the structure of predictions leads to an algorithm that
produces more accurate intervals with less resampling (Stine, 1985).

(3) Avoid iterating nonlinear statistics. Many nonlinear estimators, including
robust regression, begin at some starting point and sequentially improve the
solution. Although these are often iterated “until convergence,” one step of
such a method is generally sufficient because one step from a consistent initial
estimate is asymptotically efficient (Zacks, 1971, sec. 5.5). Related ideas
appear in Jorgensen (1987).

(4) Use the same bootstrap samples when comparing estimators. To make the
most of bootstrap comparisons, use the same bootstrap samples for both
estimators. If different bootstrap samples are used for comparing two estima-
tors, some of the differences between the estimators will be due to differences
in the bootstrap samples. Using the same samples induces correlation, which
helps comparisons.

HOW MANY BOOTSTRAP SAMPLES ARE NECESSARY

One of the most common questions about using the bootstrap is, How
many bootstrap samples are needed? The answer depends upon the
problem, but B on the order of 100 is typically needed for standard error
estimates, whereas B = 1000 or larger is typically necessary for estimat-
ing a percentile of a distribution. Even with an infinite number of
bootstrap replications, the bootstrap standard error is still a random
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variable. If B is chosen by these rough guidelines, sample-to-sample
variation in the bootstrap standard error is typically much larger than
the variation induced by limiting the size of the simulation. Tibshirani
(1985) gives a precise description of how to determine B when estimat-
ing standard errors and percentiles, and further ideas appear in Efron
(1987, sec. 9).

FUTURE DIRECTIONS

Several recent applications of bootstrap methods reach beyond straight-
forward applications in variance estimation and confidence intervals.
One can expect to see further extensions along these lines. Finally, a
closing warning shows that the bootstrap need not give the correct
answer, especially when the model imposed on the data is incorrect.

NONPARAMETRIC REGRESSION METHODS

Inexpensive computing resources have renewed interest in nonpara-
metric regression. In nonparametric regression, the conditional expec-
tation of the response Y is not restricted to the linear form of model (1),
but is instead permitted to be an arbitrary function of X. Several
methods exist for fitting such functions, and one is based on smoothing
splines. The usual spline function is a smooth curve that interpolates
the data; a smoothing spline is a related function, but it does not pass
through every observation. As an example, Figure 11 shows a smooth-
ing spline fit to the age and skeletal age of 100 black male adolescents
in a study of hypertension in blacks (Katz et al., 1980). Skelctal age is
a measure of maturation based on interpreting x-rays of the hand and
wrist. What is interesting in the figure is the location of the bend in the
curve between 13 and 14 years of age. Does the location of the kink
really fall in this interval or are we being misled by sampling variation?

The bootstrap offers one approach to answering this question. Sim-
ply generate bootstrap samples from the 100 observations, fit smooth-
ing splines to each, and see how the location of the kink varies. Figure
12 shows smoothing splines fit to five bootstrap samples. Although
considerable variation exists in the fitted splines before age 14, the
curves come together at about age 14 and all flatten out. Maturation, as
measured by skeletal age, appears to stop in this sample after age 14.
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Figure 11: Smoothing spline fit to skeletal age growth data.

Further details on smoothing splines appear in Silverman (1985), and
other examples of nonparametric regression appear in Gasser et al.
(1984).

MODEL ASSESSMENT AND ERROR RATES

The bootstrap is a useful tool for evaluating overall model fit. Sum-
maries such as s? and R? use deviations of the data from the fitted model
to measure the success of the model. Such criteria are often “optimistic”
because the same data that generated the model are used to assess the
model. Models based on one sample often fit new data poorly. Adjust-
ments for degrees of freedom offer some improvement, but the boot-
strap suggests how to go further. Efron (1983) uses the bootstrap to
estimate how optimistic the standard estimates of goodness-of-fit are.

The basic idea is simple: Evaluate models constructed from bootstrap
samples based on how well they fit the bootstrap population, the
original sample. One begins by constructing a predictive model from a
bootstrap sample. The model could be logistic regression, discriminant
analysis, or even linear regression. These models provide an estimate
of how well they can predict future observations from the same popu-
lation, such as the classification error rate in discriminant analysis.
Because the bootstrap population is known, we can see how well the
estimated model predicts the population. By comparing the actual
accuracy to the model’s claimed accuracy, we get an idea of how well
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Figure 12: Replications of the smoothing spline from five bootstrap samples
of the growth data

the goodness-of-fit measure performs. Once it is known that the model
is never so accurate as it claims to be, we can inflate the size of the
expected error by an amount suggested by the bootstrap.

CONFIDENCE INTERVALS

Confidence intervals in very small samples remain a problem. When
the data supply little information, the data analyst has to impose some
form of external structure. Rather than appeal to the existential trans-
formation of bootstrap percentile intervals, handle skewness by finding
a normalizing (or at least symmetrizing) transformation. The bootstrap
can help in this search: Use the bootstrap distribution of the statistic to
judge the effectiveness of a given transformation. The methods of
exploratory data analysis are also useful in this search, noting that now
one is seeking to symmetrize the distribution of a statistic rather than
the distribution of the sample.

The confidence intervals described in the section on bootstrap con-
fidence intervals apply to scalar-valued statistics. What if we want to
form a simultancous confidence region? For example, it is common in
regression to form a confidence region for several of the slope param-
eters simultaneously. Bootstrap intervals are not so well established in
this area. Once we look simultaneously at several parameters, it be-
comes hard to generate enough bootstrap replications to get reasonable
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percentile intervals, a problem that is similar to density estimation over
the plane (Silverman, 1986). Also, it is not clear just how we should
define a bootstrap confidence region. Some recent work on this problem
appears in Hall (1987).

HYBRID ESTIMATORS

The bootstrap comparison of the robust and least-squares estimators
suggests constructing a new hybrid estimator. A hybrid estimator is a
mixture of several estimators, such as least-squares and robust estima-
tors. When the bootstrap standard errors reveal that the OLS estimator
is more stable, then the hybrid is the least-squares estimator. If the
robust estimator seems more stable, then it is to be the value of the
hybrid. An early example of this idea is Switzer’s adaptive trimmed
mean. This estimate of location selects the amount of trimming by mini-
mizing the jackknife estimate of variance. (See Efron (1982: 28) for
further discussion of this estimator and comparisons to other techniques.)

OTHER TOPICS

The bootstrap has found applications in virtually every area of
statistics. For example, censored data occur when we do not observe
the actual value of some variable, but only know that it exceeds some
known cutoff. Such data problems appear in event-history analysis.
Efron (1981) showed how to use the bootstrap to estimate sampling
properties of the Kaplan-Meier estimator, which appears in the analysis
of censored data, and further applications appear in Akritas (1986).
Applications in time-series analysis are less common, primarily be-
cause serial correlation requires assumptions about the structure of the
data. Freedman (1984) describes bootstrapping in very complex econo-
metric models and includes proofs of the large sample validity of the
bootstrap in this setting. Examples of bootstrapping with time-series
models appear in Efron and Tibshirani (1986), Swanepoel and Van
Wyck (1985), and Stine (1987). The bootstrap is also useful in multi-
variate analysis, with applications ranging from the variation of princi-
pal component weights (Diaconis and Efron, 1983) to error rates in
discriminant analysis (Efron, 1983).

All of our applications have treated the data as if they are a simple
random sample. Real data are seldom so simple, and are often gathered
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through complex sampling designs. In these cases, naive bootstrap
methods do not replicate the actual sampling structure of the data, and
they give incorrect results. Rao and Wu (1988) address these issues for
a variety of sampling designs, including stratified cluster sampling and
two-stage cluster sampling.

PROBLEMS IN PARADISE:
A SITUATION IN WHICH THE BOOTSTRAP FAILS

The bootstrap does not always yield the correct standard error estima-
tor, particularly if the resampling scheme does not parallel the structure
of the actual sampling mechanism. The presence of correlated observa-
tions presents a case in which it is easy to misuse the bootstrap and obtain
misleading results. Once the assumption of independence is dropped, the
bootstrap requires that the dependence be properly modelled.

Recall our original problem of estimating the variance of a sample
mean. Only now, suppose that, unknown to the data analyst, the obser-
vations (X, . . . , X,) are correlated. For example, assume that all of the
observations have equal correlation p with one another

=0’ (i)
Cov(x;, x;)

=po’ (i)
If the correlation is ignored, the introduction shows that the bootstrap
estimate of the variance of X is Z(x;~X)?/n. However, the actual variance
of X is rather different: VAR (X) = o?{1+p(n-1)}/n~=pc®. A careless
application of the bootstrap based on the wrong sampling procedure
provides incorrect results. A multivariate example in which the obvious
bootstrap approach fails appears in Beran and Srivastava (1985).

The bootstrap also gives misleading results for certain types of
statistics. In general, such failures occur when the statistic of interest
depends on a narrow feature of the original sampling process that
bootstrap sampling cannot reproduce. For example, the bootstrap over-
comes the well-publicized failure of the jackknife estimate of the
standard error of the median, but fails for the maximum. Tukey (1987)
gives a detailed heuristic argument, and a technical discussion appears
in Bickel and Freedman (1981). Statistics such as the maximum that
lack a normal sampling distribution require more caution than the usual
weighed-average estimators so common in practice. Babu (1984) gives
results for bootstrapping statistics that are asymptotically x2.
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NOTES

1. The estimator var(x) can fail for a variety of reasons. Mosteller and Tukey (1977,
chap. 7) point out the existence of other sources of variation, and the robustness literature
(e.g., Hampel et al., 1986) contains many alternative estimators that perform better than
s? if the population that has been sampled is not normal.

2. A finite total of n" possible bootstrap samples exist, because any one of the n
observations could be drawn first, any of the n could be second, and so forth. Not all of
these samples give a distinct value for X* because the mean ignores the ordering of the
data. If we computed X* for each of these n" samples, we would obtain the true bootstrap
variance of the sample mean, but such extreme computation is wasteful and unnecessary
in this case.

3. The maximum likelihood estimator of o® under a Gaussian population is s,%.
Maximum likelihood estimators frequently are biased and lack corrections for degrees of
freedom. Like maximum likelihood, the bootstrap typically leads to divisors of n rather
than n-1. In a sense, the bootstrap is maximum likelihood, but with respect to the
empirical distribution function.

4. The population defined by F, is infinite in size, but only the observed set of values
(x1,...,Xp) are possible. Sampling with replacement from the observed data is equivalent
to sampling from this infinite population.

5. With additional assumptions, one can obtain better estimates of the population
distribution. For example, the parametric bootstrap uses an estimate of F that is a member
of a particular parametric family, such as the Gaussian (Efron, 1982). The parametric
bootstrap requires the rather strong assumption that we know the shape of the distribution
of the population, and so we have chosen to stay with the basic scheme using Fy. The
parametric approach does allow more detailed mathematical analysis of the technique.

6. The use of G*~' to denote a quantile is standard in the statistics literature. This
notation comes from recognizing that a quantile is really just a value of the inverse of a
distribution function. Whereas a distribution function takes any value as an argument and
returns a probability, the inverse of a distribution takes a probability and returns the
associated quantile.

7. If the pairing given by sampling the z; is removed, Y* and X* will be independent
in the bootstrap simulation and B* will be distributed about 0, with the exception of the
constant. Nonparametric tests use this very idea. In these tests, all possible pairings (or a
large sampling of pairings) of the regressors with the response are considered and the size
of the observed effect is judged relative to this collection (see Lehmann and D’Abrera,
1975).

8. The residuals that are resampled must have an average of zero. If the residuals do
not, as can occur when the regression model lacks a constant term, the bootstrap fails to
give consistent variance estimates (Freedman, 1981).

9. Independence in the context of bootstrap resampling is always to be interpreted
as conditional independence given the values of the observed data. This independence is
a consequence of sampling with replacement from the original observations. The variance
of the bootstrap population defined by the residuals is

n
VAR(ei*) = z eil/n = n—;Ksz

iwl



288  SOCIOLOGICAL METHODS & RESEARCH

10. A linear statistic is a nonrandom linear combination of random variables. Thus,
B is a linear statistic when the design is fixed. When the design is random, B is no longer
linear because the weights of the linear combination vary with X.

11. The probability of not getting a particular observation in a bootstrap sample is the
probability of choosing all n bootstrap observations from the remaining n-1 points, an
event with probability (1-1/n)"~=0.36.

12. The histograms of the bootstrap estimates have been smoothed using a kernel
density estimator. The kernel density estimator smooths the random irregularities of the
familiar histogram, removes some of the subjective choice of bin location and width, and
gives a better visual impression of the shape of the distribution. Silverman (1986) gives
an excellent overview of this technique. Further ideas on using kernel smoothing to
improve bootstrap estimates appear in Silverman and Young (1987).

13. This naive illustrative model also suffers from specification error. The District of
Columbia combines a high poverty percentage with a high average income, so that the
poverty percentage may not be a good indicator of economic well-being.

14. An extensive discussion of problems caused by heteroscedasticity in regression
appears in Carroll and Ruppert (1988). A more complex application of these ideas appears
in Freedman and Peters (1982), who used the bootstrap to examine an econometric model
that includes lagged endogenous variables. They found that the usual standard error was
about one third of the true standard error. The bootstrap standard error was also too small,
but much better than the usual WLS estimator (about 80% of the correct value).

15. That the robust estimator has smaller variation than the least-squares estimator
does not contradict the Gauss-Markov theorem. This theorem only applies to linear
statistics, and the robust estimator is not linear because its weights are determined
iteratively from the data.

16. The notation for t*(a;n) differs from the usual t-interval because the bootstrap is
not making use of the notion of degrees of freedom, and only requires the sample size n.

17. As shown in the introduction, it is known that VAR*X = (n-1)s%/n?. Thus, we
could improve the bootstrap interval and reduce the calculations by making use of this
fact and replace the bootstrap estimate sdg* by the true value, (n-1)"2s/n. In general,
however, VAR* is seldom known and must be estimated by simulation. If one performs
the simulations using vn (x*-X)/s, lacking s* in the denominator, then the bootstrap
interval does not give the desired coverage.

18. One can replace the normal distribution in assumption (A1) and those that follow
by some other distribution (and z(a) by the correct percentile), but the large sample
distribution of most statistics is Gaussian, and this choice is thus most broad. Also, these
calculations are in terms of the true bootstrap distribution, not the simulated estimate of
Gg* from B replications. Generally, B=1000 is necessary to get a good estimate of G*.

19. The coverage of a prediction interval is the expected probability that the interval
captures the future observation. Because the value being predicted is random, the situation
differs from that with the usual confidence interval. A confidence interval either does or
does not contain the sought parameter. A prediction interval, however, captures a fraction
of the distribution of the predicted value. The average of this fraction over many samples
is the coverage of the interval.
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