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Plan for Talk
Ideas

Bootstrap view of sampling variation

Basic confidence intervals and tests

Applications
More ambitious estimators

Survey methods

Regression

Longitudinal data

Moving on
Better confidence intervals
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Truth in Advertising
Emphasis

Wide scope

Pique your interest

Background
Time series modeling

Developed bootstrap-based method to 
assess the accuracy of predictions

I’ve become a data miner
Build predictive models from large databases

Objective is prediction, not explanation
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Research Question
Osteoporosis in older women

Measure using X-ray of hip, converted to a 
standardized score with ideal mean 0, sd 1

Sample of 64 postmenopausal women

What can we infer about other women?
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Statistical Paradigm
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Sampling Distribution
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Notation
Data

Observe sample Y = Y1,...,Yn

Yi iid sample from population Fθ
θ = population parameter

Statistic
T(Y) = statistic computed from data Y

Estimates θ
Sampling distribution 

Gθ is sampling distribution of T(Y)
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Using Sampling Distribution
Hypothesis test

Sampling distribution Gθ implies a rejection 
region under a null hypothesis

Under H0: θ = 0 then
� Pr( G0-1(0.025) ≤ T(Y) ≤ G0-1(0.975) ) = 0.95

Reject H0 at the usual α=0.05 level if
� T(Y) < G0-1(0.025)  or  T(Y) > G0-1(0.975)

Confidence interval
Invert test: CI are those θ0 not rejected
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What Sampling Distribution?
Classical theory

Based on idea that averaging produces 
normal distribution, and most statistics are 
averages of one sort or another

“Asymptotically normal”

Monte Carlo simulation
Pretend we know Fθ, and simulate samples 
from Fθ under a given value for θ
Repeat over and over to construct sampling 
distribution for estimator
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Simulation
Chosen 
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Limitations
Classical theory

Works very nicely for averages, but...

Easy to find estimators for which it is quite 
hard to find sampling properties

Example: trimmed mean

Simulation
How will you know the shape of the 
population when you don’t even know certain 
summary values like its mean?

What is the distribution for hip X-ray?
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Bootstrap Approach
Let the observed data define the population

Rather than think of Y1,...,Yn as n values, let 
these define the population of possible values

Assume population is infinitely large, with equal 
proportion of each Yi

Data define an empirical distribution function
Fn is the empirical distribution of Y1,...,Yn

� � � � � Fn(y) = #{Yi ≤ y}/n

If Y* is a random draw from Fn, then
� � � � �   P(Y* = Yi) = 1/n
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Bootstrap 
population Fn
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Comments
Bootstrap does not have to mean computing

All we’ve done is replace Fθ by Fn

No more necessary to compute the sampling 
distribution in the bootstrap domain than in 
the usual situation

But its a lot easier since Fn observed!

There’s no hypothesis nor parametric 
assumptions to constrain Fn in what we have 
at this point

Not hard to add that feature as well
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Bootstrap is Max Likelihood
Without assumptions on continuity or 
parametric families, the bootstrap 
estimates the population using Fn

Empirical distribution function Fn is the 
nonparametric MLE for the population CDF

Connection to MLE shows up in various 
ways, such as in variances which have the 
form
� � � � � �  � � Σxi2/n
rather than 
� � � � � � � Σ(xi2)/(n-1)
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Osteoporosis Example
Average hip score -1.45 with SD 1.3, n=64

Standard error of average = s/√n = 0.16

Classical t-interval assuming normality
� � � � -1.45 ± 0.32 = [-1.77, -1.13]

 Bootstrap approach
Bootstrap standard error is “usual formula”
� Var*(Y-bar*) = Var*(Y*1 + ... + Y*n)/n2 
� � � � � � � = Var*(Y*1)/n
� � � � � � � = n/(n-1) s2/n = 0.1622

Confidence interval? 

Shape of sampling distribution?
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Bootstrap Sampling Distribution
Draw a sample Y*1, ..., Y*n from Fn

Easiest way to sample from Fn is to sample 
with replacement from the data

Bootstrap samples will have ties present, so 
your estimator better not be sensitive to 
ties

Compute the statistic of interest for each
bootstrap sample, say T(Y*) 

Repeat, accumulating the simulated 
statistics in the bootstrap sampling 
distribution.
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Osteoporosis 
sample Fn

Sample
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Histogram of Avg(Y*) 
estimates sampling 

distribution

Bootstrap Sampling Distribution

Histogram of avg.bs

avg.bs

F
re
q
u
e
n
c
y

-1.8 -1.6 -1.4 -1.2 -1.0

0
2
0

6
0

1
0
0

...



Computing
Generally not too hard to do it yourself as 
long as the software allows you to

Draw random samples

Extract results, such as regression slopes

Iterative calculation

Accumulate the results

Specialized packages
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Sample Code in R
Load data
osteo <- read.table("osteo.txt", header=T)
attach(osteo)

Bootstrap loop to accumulate results
avg.bs <- c()
for(b in 1:1000) {
� yStar <- sample(hip, 64, replace=T)
� avg.bs <- c(avg.bs, mean(yStar)) }

Compute summary statistics, generate plots
sd(avg.bs)          gives simulated SE = 0.159
hist(avg.bs)        draws histogram on prior page
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What about a CI?
Hope for normality, with BS filling in SE
� � -1.45 ± 2·0.159 = [-1.77, -1.13] = t-interval

Invert hypothesis tests... humm.

Build bootstrap version of t-distribution...

Use the sampling distribution directly  
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Bootstrap Percentile Intervals
Computed directly from the bootstrap 
sampling distribution of the statistic

Order the bootstrap replications
� � T(1)(Y*) < T(2)(Y*) < ··· < T(B)(Y*)

To find the 95% confidence interval, say, 
use the lower 2.5% point and the upper 
97.5% point.

Need “a lot of replications” to get a 
reliable interval because you’re reaching 
out into the tails of the distribution
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How many replications?
Enough!

Don’t want the bootstrap results to be 
sensitive to simulation variation
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B=100 
SE

B=2000
SE

B=100 
CI

B=2000 
CI

Trial 1 0.176 0.160 -1.79,-1.08 -1.76,-1.12

Trial 2 0.145 0.164 -1.71, -1.17 -1.76,-1.12

Trial 3 0.169 0.162 -1.74,-1.10 -1.78,-1.14



Testing Hypotheses
Key notion
Need to be able to do the resampling in a 
way that makes the null hypothesis of 
interest true in the sampled distribution

Example
Do women who have taken estrogen have 
higher bone mass than those who have not?

Standard approach would set
� � � � � H0: μ1 = μ2

and use a two-sample t-test
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Two-sample t-test
Two-sample test does not reject H0

Difference in means is only about 1 SE away 
from zero

p-value (two-sided) is about 0.3
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Bootstrap Comparison
Need to do the resampling in such a way 
that the null is true

Mix the two samples, assuming that the 
variances are comparable

Force the two populations to have a common 
mean value (eg, grand mean)

Draw bootstrap sample from each group 

Compute difference in means

Repeat
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Distribution of Differences
Bootstrap probability of mean difference 
larger than the observed difference
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Caution
Hypothesis testing requires that you 
impose the null prior to doing the 
resampling

Not always easy to do

Example: How would you impose the null of 
no effect in a multiple regression with 
collinear predictors?

Confidence intervals are direct and do not 
require “enforcing” a hypothesis
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Big Picture
Bootstrap resampling is a methodology for 
finding a sampling distribution

Sampling distribution derived by using F* to 
estimate the distribution of population

Treat sample as best estimate of population

Computing is attractive
Draw samples with replacement from data and 
accumulate statistic of interest

SD of simulated copies estimates SE

Histogram estimates the sampling distribution, 
providing percentile intervals
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Does this really work?
Yes!

Key to success is to make sure that the 
bootstrap resampling correctly mimics the 
original sampling

Bootstrap analogy

� � � � θ(F):θ(Fn)  ::  θ(Fn):θ(F*)

Key assumption is independence
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Variations on a Theme
I emphasize the “nonparametric” type of 
bootstrap which resamples from the data, 
mimicking the original sampling process

Alternatives include
Parametric bootstrap, which mixes 
resampling ideas with Monte Carlo simulation

Computational tricks to get more efficient 
calculations (balanced resampling)

Subsampling, varying the size of the sample 
drawn from the data
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Some Origins
Several early key papers are worth a look 
back at to see how the ideas began

Efron (1979), “Computers and the theory of 
statistics: thinking the unthinkable”, Siam 
Review

Efron (1979), “Bootstrap methods: another 
look at the jackknife”, Annals of Statistics

Diaconis & Efron (1983), “Computer intensive 
methods in statistics”, Scientific American
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Bootstrap Always Works?
No

It just works much more often than any of 
the common alternatives

Cases when it fails
Resampling done incorrectly, failing to 
preserve the original sampling structure

Data are dependent, but resampling done as 
though they were independent

Some really weird statistics, like the 
maximum, that depend on very small 
features of the data
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Reasons to Bootstrap
Using non-standard estimator

Diagnostic check on traditional standard 
error

Compute SE, CI by traditional approach

Compute by bootstrap resampling

Compare

Provides way to justify new computer on 
research grant
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Bigger Picture
Once you’re willing to “let go” of 
traditional need for formulas, you can 
exploit more interesting estimators

Example... trimmed mean
Robust estimator

Trim off the lowest 10% and largest 10%

Take the average of the rest

Median trims 50% from each tail

Standard error?
Formula exists, but its a real mess
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Osteoporosis 
sample Fn

Sample

Trim(Y*(1))
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...

Trim(Y*(B))

Histogram of Trim(Y*) 
estimates sampling 
distribution, SE

Same Paradigm
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Results for Trimmed Mean
Bootstrap B=2000 replications

Results similar to using an average
Bootstrap SE = 0.16  

Percentile interval = -1.79 to -1.17
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Add one point that’s a large outlier far 
from the rest of the data.

Let’s see how several estimates of location 
compare in this situation

Histogram of contaminated.hip
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Bootstrap Comparison
Bootstrap 3 estimators, 2000 samples

Mean, trimmed mean, median

Compute all three for each bootstrap sample

Trimmed mean has
the smallest SE

SE*(Mean) = 0.21

SE*(Trim) = 0.16

SE*(Median) = 0.18

Percentile interval for trimmed mean 
almost same as before, -1.76 to -1.15
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Interesting Looks at Stats
Bootstrap resampling makes it simple to 
explore the relationships among various 
statistics as well
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Managing Expectations
Bootstrapping provides a reliable SE and 
confidence interval for an estimator

Explore properties of estimators

Focus on problem, not formulas

Bootstrapping does not routinely
By itself produce a better estimator

Generate more information about population

Cure problems in sampling design

Convert inaccurate data into good data
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Questions?



Applications in Surveys
Ratio estimator 

Estimator is a ratio of averages obtained 
from two different surveys

Sampling design
Adjust for the effects of sample weights on 
statistical summaries

Clustered sampling

Rao and Wu (1988, JASA) summarize the 
more technical details and results
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Common to take ratio of summary 
statistics from different samples

Example
Ratio of incomes in two regions of US

Weekly income reported in US Current 
Population Survey, April 2005

Homogeneity reduces sample size

NE/Midwest = 721.4/673.5 = 1.071   

Weekly earnings in NE 7% larger

Ratio Estimation

44

Level Number Mean Std Dev Std Err Mean 
Midwest 164 673.5 490 38.3 
NE 167 721.4 539 41.7 
 



Some type of series approximation

For ratio of averages of two independent 
samples, leads to the normal approximation

Classical Approach
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Classical Results
Unbiased
Estimate the ratio μne/μmw by ratio of 
averages, 1.071

Standard error
Estimate SE of ratio of averages by 
plugging in sample values (eg s2 for σ2)
to obtain SE ≈ 0.083

Confidence interval
Confidence interval requires that we really 
believe the normal approximation
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Bootstrap Approach
Two independent samples

Resample each separately

Compute ratio of means

Repeat
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Bootstrap Results
Repeat with 2000 ratios, with numerator 
from NE and denominator from MW

Bias?
Evidently not much, as the average 
bootstrap ratio is 1.076

SE
Similar to delta method, SE*(ratio) = 0.089

Percentile interval is slightly skew
�
� 0.91 to 1.27 = [1.07-0.16, 1.07+0.20]
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Bootstrap Sampling Dist
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Bootstrap in Regression
Familiar linear model with q predictors
� � Yi = β0 + β1 Xi1 + ··· + βiq + εi
In vector form
� � � � � Y = X β + ε
The OLS estimator is linear in Y, given X,
� � � � � b = (X’X)-1(X’Y)
� � � � � � = weighted sum of Yi

Residuals are
� � � � � e = Y - Xb
with estimated variance s2 = Σ(ei2)/(n-q-1)
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Bootstrap Linear Estimator
Bootstrap standard error can be gotten 
for any linear estimator without computing

Assuming the model as specified,
� � � � � � � Y = X β + ε,
generate a bootstrap sample given X by 
resampling residuals
� � � � � � � Y* = X b + e*

Conditional on design of the model
� � � � b* = (X’X)-1X’Y* = b+(X’X)-1X’e*
so that SE*(b*) = (X’X)-1 Σei2/n
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BS in Regression
Notice that this approach
(1) Assumes the model is correctly specified,
� � with the usual assumptions on the errors 
� � holding
(2) Fixes the X design (conditional on X)
(3) Produces a slightly biased SE, shrunken 
� � toward 0 

The first requirement is particularly 
bothersome

Believe have the right predictors?

Believe homoscedastic?
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Wrong Model?
Suppose that the 
data have this 
form:
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Then the resulting 
bootstrap sample will 
look like this



Wrong Error Structure?
Suppose that the 
data do not have 
equal variance:
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Then the resulting 
bootstrap sample will 
look like this



Model-Free Resampling
Rather than resample residuals, resample 
observations

Resample from the n tuples (yi,xi)

Resulting data have different structure, one 
that keeps yi bound to xi

Random design

Procedure now gets the right structure in 
the two previous illustrations

Model is not linear

Errors lack equal variance
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Outlier Havoc
Florida 2000 US presidential county-level 
vote totals for Buchanan vs number 
registered in Buchanan’s Reform Party.
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Which is which?
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Comparison
Two results “should” be close, but can be 
rather different in cases of outliers

Resampling residuals
Fixes the design, as might be needed for 
certain problems (experimental design)

Closely mimics classical OLS results

But, requires model to hold

Resampling cases (aka, correlation model)
Allows predictors to vary over samples

Robust to model specification
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Longitudinal Data
Repeated measurements

Growth curves

Panel survey

Multiple time series

Data shape
n items (people, districts, ...)

T observations per item

More general error structure
Items are independent, but anticipate 
dependence within an item
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Longitudinal Modeling
“Fixed effects” models

Econometrics
Outputit = αi+ β1 Trend + β2 Macro + ... + εit 

“Random effects” models
Growth curves
Weightit = ai + β1 Age + β2 Food + ... + εit

Hierarchical Bayesian models

Functional data analysis

Honest degree of freedom approach

Reduce to single value for each case
60



Bootstrap for Longitudinal
Extend bootstrap to other types of error 
models

Key element for successful resampling is 
� � � � � � � independence

Conditional on data, resampled values are 
independent, so

Better make sure that the original sampling 
produced independent values

Longitudinal models usually assume 
independent subjects
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Longitudinal Example
Stylized example tracking economic growth

25 locations

Two years (8 quarters)

Simple model for retail spending

Spendingit = αi + β1 Unit + β2 Ydit + εit 
Simple model is probably misspecified

Suggests error terms may be highly 
correlated within a district
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OLS Estimates
Fit the usual OLS regression, with separate 
intercept within each district

Find significant effects for employment and 
disposable income
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Factor Coef SE t
Avg Effect 43 11 4.0

Unemp -97.7 29.1 -3.4
Disp Inc 0.29 0.087 3.3



Residual Issues
Standard residual plots look fine, 

But “longitudinal” residual correlation is 
large at 0.5
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Resampling Plan
Exploit assumed independence between districts

Resample districts, recovering a “block” of data 
for each case

Assemble data matrix by glueing blocks together

Bootstrap gives much larger SE for Disp Inc

65

Factor Coef SE SE* t*
Avg Effect 43 11 24 1.8

Unemp -97.7 29.1 26.5 3.7
Disp Inc 0.29 0.087 0.144 2.0



What happened?
Bootstrap gives a version of the 
“sandwich” estimator for the SE of the 
OLS coefficients

Sandwich estimator
� � Var(b) = (X’X)-1 X’(diag eiei’) X (X’X)-1 

Note that both bootstrap and sandwich 
estimators presume districts are 
independent.
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Comments
Why the effect on the SE for the 
estimate of Disp Income but not for the 
slope of unemployment?

Answer requires more information about 
the nature of these series

Within each district, unemployment rates 
vary little, with no trend

Within each district, disposable income 
trends during these two years

Trend gets confounded with positive 
dependence in the errors
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Getting Greedy
Generalized least squares

With the dependence that we have, 
suggests that one ought to use a 
generalized LS estimator

Estimator requires covariance matrix for 
the model errors
� � � � bgls = (X’Ω-1X)-1(X’Ω-1Y)
� � � � � � Var(ε) = Ω
But never see errors, and only get 
residuals after fit the slope...
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Practical Approach
Two-stage approach

Fit the OLS estimator (which is consistent)

Calculate the residuals

Estimate error variance from residuals, using 
whatever assumptions you can rationalize

Estimate with V in place of Ω
� � � bgls2 = (X’V-1X)-1(X’V-1Y)

But what is the SE for this thing?

Var(bgls) = (X’Ω-1X)-1

Var(bgls2) =?= (X’V-1X)-1
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Bootstrap for GLS
Freedman and Peters (1982, JASA)

Show that the plug-in GLS SE 
underestimates the sampling variation of 
the approximate GLS estimator

Bootstrap fixes some of the problems, but 
not enough

Bootstrap the bootstrap
Use a “double bootstrap” procedure to check 
the accuracy of the bootstrap itself

Find that SE* is not large enough
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Dilemma
OLS estimator

“Not efficient” but we can get a reliable SE 
by several methods

Bootstrap

Sandwich formula

GLS estimator
“Efficient” but lack simple means to get a 
reliable SE for this estimator
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Double Bootstrap Methods
Return to the simple problem of 
confidence intervals 

Numerous methods use the bootstrap to 
get a confidence interval

Percentile interval
BS-t interval
Bias-corrected BS interval
Accelerated, bias-corrected BS interval
...

Use the idea of Freedman and Peters to 
improve the percentile interval
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CI for a Variance
Consider a problem with a known answer

Y1, ..., Y20 iid N(μ,σ2)

Get a 90% confidence interval for σ2

The standard interval uses percentiles 
from the chi-square distribution

The standard bootstrap percentile interval 
has much less coverage (Schenker, 1985)

Nominal 90% percentile interval covered 
σ2 only 78% of the time� �
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Simulation Experiment
Normal Pop
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Double Bootstrap
Normal Pop
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Double Bootstrap Method
Start with data, having variance s2

Draw a bootstrap sample

Find the percentile interval for this sample

This is the second level of the resampling

Repeat

Results for variance
Of 500 percentile intervals, only 81% cover 
bootstrap population value (which is s2)

Need to calibrate the interval
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Calibrated Percentile Interval
If use the 0.05 and 0.95 percentiles of the 
values of s2*, only covers 81% of the time

So, adjust interval by using more extreme 
percentiles so that coverage is better
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Lower Upper Coverage

0.05 0.95 0.81

0.04 0.96 0.83

0.02 0.98 0.88

0.01 0.99 0.895



Bootstrap Calibration
Bootstrap is self-diagnosing

Use the bootstrap to check itself, verifying 
that the procedure is performing as 
advertised

Now you really can justify that faster 
computer in the budget
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Where to go from here?
Bootstrap resampling has become a standard 
method within the Statistics community

Focus on research problems, choosing the 
appropriate method to obtain a good SE and 
perform inference

Books
Efron & Tibshirani (1993) Intro to Bootstrap
Davison & Hinkley (1997) Bootstrap Methods

Software
R has “boot” package
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Questions?


