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Plan for Talk

@ Ideas
@ Bootstrap view of sampling variation
@ Basic confidence intervals and tests
@ Applications
@ More ambitious estimators
@ Survey methods
@ Regression
@ Longitudinal data
@ Moving on

® Better confidence intervals



Truth in Advertising

@ Emphasis
@ Wide scope

@ Pique your interest

@ Background

@ Time series modeling

@ Developed bootstrap-based method to
assess the accuracy of predictions

@ I've become a data miner
@ Build predictive models from large databases

@ Objective is prediction, not explanation




Research Question

@ Osteoporosis in older women

@ Measure using X-ray of hip, converted to a
standardized score with ideal mean O, sd 1

@ Sample of 64 postmenopausal women

® What can we infer about other women?

Y-bar = -1.45
Si=il:3




Statistical Paradigm

How much do the
averages bounce
around from
sample to sample?




Sampling Distribution
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Notation

@ Data
@ Observe sample Y = Yj,...,Yn
@ Y iid sample from population Fe
@ O = population parameter
@ Statistic
@ T(Y) = statistic computed from data Y
@ Estimates O
@ Sampling distribution
@ Gg is sampling distribution of T(Y)



Using Sampling Distribution

@ Hypothesis test

@ Sampling distribution Gg implies a rejection
region under a null hypothesis

@ Under Ho: 0 = 0 then
Pr( Go%(0.025) < T(Y) < Go}(0.975) ) = 0.95
@ Reject Ho at the usual ®=0.05 level if
T(Y) < Go}(0.025) or T(Y) > Go(0.975)
@ Confidence interval

® Invert test: CI are those B¢ not rejected




What Sampling Distribution?

@ Classical theory

@ Based on idea that averaging produces
normal distribution, and most statistics are
averages of one sort or another

@ “Asymptotically normal”

@ Monte Carlo simulation

@ Pretend we know Fg, and simulate samples
from Fg under a given value for 6

@ Repeat over and over to construct sampling
distribution for estimator
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Limitations

@ Classical theory

@ Works very nicely for averages, buf...

@ Easy to find estimators for which it is quite
hard to find sampling properties

@ Example: trimmed mean

® Simulation

@ How will you know the shape of the
population when you dont even know certain
summary values like its mean?

@ What is the distribution for hip X-ray?




Bootstrap Approach

@ Let the observed data define the population

® Rather than think of Yi,...,Yn as n values, let
these define the population of possible values

@ Assume population is infinitely large, with equal
proportion of each Y,

@ Data define an empirical distribution function

@ Fn is the empirical distribution of Yj,...,Yn
Faly) = #1Yi < yi/n

@ If Y* is a random draw from F,, then
P(Y* =Y)) = 1/n




Bootstrap Sampling Distribution
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Comments

@ Bootstrap does not have to mean computing
@ All we've done is replace Fg by Fn

@ No more necessary to compute the sampling
distribution in the bootstrap domain than in
the usual situation

® But its a lot easier since F, observed!

@ Theres no hypothesis nor parametric
assumptions to constrain F, in what we have
at this point

® Not hard to add that feature as well




Bootstrap is Max Likelihood

@ Without assumptions on continuity or
parameftric families, the bootstrap
estimates the population using Fp

@ Empirical distribution function Fn is the

nonparametric MLE for the population CDF

@ Connection to MLE shows up in various
ways, such as in variances which have the
form

2xi¢/n
rather than

> (xi?)/(n-1)




Osteoporosis Example
@ Average hip score -1.45 with SD 1.3, n=64

@ Standard error of average = s/+/n = 0.16

@ Classical t-interval assuming normality
-1.45 + 0.32 = [-1.77, -1.13]

Bootstrap approach

@ Bootstrap standard error is “usual formula”
Var*(Y-bar*) = Var*(Y*; + ... + Y*,)/n?
= Var*(Y*l)/n
= n/(n-1) s2/n = 0.1622
® Confidence interval?

@ Shape of sampling distribution?




Bootstrap Sampling Distribution

@ Draw a sample Y*y, ..., Y*, from F,

@ Easiest way to sample from F, is fo sample
with replacement from the data

@ Bootstrap samples will have ties present, so
your estimator better not be sensitive fo
ties

@ Compute the statistic of interest for each

bootstrap sample, say T(Y*)

@ Repeat, accumulating the simulated
statistics in the bootstrap sampling
distribution.




Bootstrap Sampling Distribution
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Computing

@ Generally not too hard to do it yourself as
long as the software allows you to

@ Draw random samples
@ Extract results, such as regression slopes
@ Iterative calculation

® Accumulate the results

@ Specialized packages




Sample Code in R

® Load data

osteo <- read.table("osteo.txt", header=T)
attach(osteo)

@ Bootstrap loop to accumulate results
avg.bs <- c()
for(b in 1:1000) ¢
yStar <- sample(hip, 64, replace=T)
avg.bs <- c(avg.bs, mean(yStar)) }

® Compute summary statistics, generate plots
sd(avg.bs) gives simulated SE = 0.159
hist(avg.bs) draws histogram on prior page




What about a CI?

@ Hope for normality, with BS filling in SE
-1.45 + 2-0.159 = [-1.77, -1.13] = t-interval

@ Invert hypothesis tests... humm.

@ Build bootstrap version of t-distribution...

@ Use the sampling distribution directly

Histogram of avg.bs




Bootstrap Percentile Intervals

@ Computed directly from the bootstrap
sampling distribution of the statistic

® Order the bootstrap replications
Ta(Y*) < Te(Y*) < ==+ < Te(Y™)

@ To find the 95% confidence interval, say,
use the lower 2.5% point and the upper
97.5% point.

@ Need "a lot of replications” to get a

reliable interval because youre reaching
out into the fails of the distribution




How many replications?

@ Enough!

@ Dont want the bootstrap results to be
sensitive to simulation variation

B=100
SE

B=2000
SE

B=100
CI

B=2000
CI

Trial 1

0.176

0.160

-1.79,-1.08

-1.76,-1.12

Trial 2

0.145

0.164

-1.71, -1.17

-1.76,-1.12

Trial 3

0.169

0.162

-1.74,-1.10

-1.78,-1.14

23




Testing Hypotheses

@ Key notion
Need to be able to do the resampling in a
way that makes the null hypothesis of
inferest true in the sampled distribution

@ Example

@ Do women who have taken estrogen have
higher bone mass than those who have not?

@ Standard approach would set
Ho: M1 = M2
and use a two-sample t-test




Two-sample t-test

@ Two-sample test does not reject Ho

@ Difference in means is only about 1 SE away
from zero

@ p-value (two-sided) is about 0.3

no-yes

Assuming unequal variances

Difference -0.352 tRatio -1.049
Std Err Dif 0.335 DF 49.732
Upper CL Dif 0.322 Prob > |t| 0.299
Lower CL Dif -1.026 Prob >t 0.85
Confidence 0.95 Prob <t 0.15

Estrogen?




Bootstrap Comparison

@ Need to do the resampling in such a way
that the null is frue

@ Mix the two samples, assuming that the
variances are comparable

@ Force the two populations to have a common
mean value (eg, grand mean)

@ Draw bootstrap sample from each group

@ Compute difference in means

@ Repeat




Distribution of Differences

@ Bootstrap probability of mean difference
larger than the observed difference

Py (1%, - 7,

- 0.35) — 0.28

Yyes

Histogram of diffs
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Caution

@ Hypothesis testing requires that you
impose the null prior to doing the
resampling

@ Not always easy to do

@ Example: How would you impose the null of
no effect in a multiple regression with
collinear predictors?

® Confidence intervals are direct and do not
require “enforcing” a hypothesis




Big Picture
@ Bootstrap resampling is a methodology for
finding a sampling distribution

@ Sampling distribution derived by using F* to
estimate the distribution of population

@ Treat sample as best estimate of population

@ Computing is attractive

@ Draw samples with replacement from data and
accumulate statistic of infterest

@ SD of simulated copies estimates SE

@ Histogram estimates the sampling distribution,
providing percentile infervals




Does this really work?

® Yes!

@ Key to success is fo make sure that the
bootstrap resampling correctly mimics the
original sampling

@ Bootstrap analogy

O(F):0(F.) :: O(F.):6(F*)

@ Key assumption is independence




Variations on a Theme

@ I emphasize the "nonparametric” type of
bootstrap which resamples from the data,
mimicking the original sampling process

@ Alternatives include

@ Parametric bootstrap, which mixes
resampling ideas with Monte Carlo simulation

@ Computational tricks to get more efficient
calculations (balanced resampling)

@ Subsampling, varying the size of the sample
drawn from the data




Some Origins

@ Several early key papers are worth a look
back at to see how the ideas began

@ Efron (1979), "Computers and the theory of
statistics: thinking the unthinkable”, Siam
Review

@ Efron (1979), "Bootstrap methods: another
look at the jackknife”, Annals of Statistics

@ Diaconis & Efron (1983), "Computer intensive
methods in statistics”, Scientific American




Bootstrap Always Works?

@ No

@ It just works much more often than any of
the common alternatives

® Cases when it fails

@ Resampling done incorrectly, failing to

preserve the original sampling structure

@ Data are dependent, but resampling done as
though they were independent

@ Some really weird statistics, like the
maximum, that depend on very small
features of the data




Reasons to Bootstrap

@ Using non-standard estimator

@ Diagnostic check on traditional standard
error

® Compute SE, CI by traditional approach
@ Compute by bootstrap resampling

@ Compare

@ Provides way to justify new computer on
research grant




Bigger Picture

@ Once youTe willing to "let go” of
traditional need for formulas, you can
exploit more interesting estimators

® Example... tfrimmed mean

@ Robust estimator
@ Trim off the lowest 10% and largest 10%
@ Take the average of the rest
@ Median trims 50% from each tail
@ Standard error?

® Formula exists, but its a real mess




Same Paradigm
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Results for Trimmed Mean
@ Bootstrap B=2000 replications

Histogram of trim.bs
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@ Results similar fo using an average
@ Bootstrap SE = 0.16

@ Percentile interval = -1.79 to -1.17




But what about an outlier?

@ Add one point thats a large outlier far
from the rest of the data.

Histogram of contaminated.hip

o Let's see how several estimates of location
compare in this situation




Bootstrap Comparison

@ Bootstrap 3 estimators, 2000 samples
@& Mean, trimmed mean, median

@ Compute all three for each bootstrap sample

® Trimmed mean has
the smallest SE

® SE*(Mean) = 0.21
® SE*(Trim) = 0.16
& SE*(Median) = 0.18

@ Percentile interval for trimmed mean
almost same as before, -1.76 to -1.15
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Interesting Looks at Stats

@ Bootstrap resampling makes it simple to
explore the relationships among various
statistics as well
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Managing Expectations

@ Bootstrapping provides a reliable SE and
confidence interval for an estimator

@ Explore properties of estimators

@ Focus on problem, not formulas

@ Bootstrapping does not routinely

@ By itself produce a better estimator
@ Generate more information about population
@ Cure problems in sampling design

@ Convert inaccurate data into good data




Questions?




Applications in Surveys

® Ratio estimator

@ Estimator is a ratio of averages obtained
from two different surveys

@ Sampling design

@ Adjust for the effects of sample weights on
statistical summaries

@ Clustered sampling

® Rao and Wu (1988, JASA) summarize the
more technical details and results




Ratio Estimation

@ Common to take ratio of summary
statistics from different samples

@ Example
@ Ratio of incomes in two regions of US

@ Weekly income reported in US Current
Population Survey, April 2005

® Homogeneity reduces sample size
® NE/Midwest = 721.4/673.5 = 1.071
® Weekly earnings in NE 7% larger
Level Number Mean Std Dev Std Err Mean

Midwest 164 673.5 490 38.3
NE 167 721.4 539 41.7




Classical Approach

@ Some type of series approximation

@ For ratio of averages of two independent
samples, leads to the normal approximation

? (72 0'2 x
ﬁ(—l—ﬂ> ~N<O, g 251>

72 L2 o 122

Details for the curious

g(Y1,Y2) = g(pr, pe) + Vg(p) - (Y1 —p1, Y2 — po)
a

g(aab) TRy




Classical Results

@ Unbiased
Estimate the ratio Yne/HPmw by ratio of
averages, 1.071

@ Standard error
Estimate SE of ratio of averages by

plugging in sample values (eg s® for 0%)
to obtain SE = 0.083

@ Confidence interval
Confidence interval requires that we really
believe the normal approximation




Bootstrap Approach

@ Two independent samples

® Resample each separately

@ Compute ratio of means

@ Repeat

(T p (Y p
Earnings Earnings

~In NE in MW

& J \_

\ /

J

BS Sample BS Sample
- from NE from MW




Bootstrap Results

@ Repeat with 2000 ratios, with numerator
from NE and denominator from MW

@ Bias?
Evidently not much, as the average
bootstrap ratio is 1.076

@ SE
Similar to delta method, SE*(ratio) = 0.089

@ Percentile inferval is slightly skew

0.91 to 1.27 = [1.07-0.16, 1.07+0.20]




Bootstrap Sampling Dist

Histogram of ratio
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Bootstrap in Regression

@ Familiar linear model with q predictors
Yi = Bo + B1 Xit + - + Piq + €
In vector form
Y=XP+E€

@ The OLS estimator is linear in Y, given X,

b = (X'X)}(X"Y)
= weighted sum of Y;

@ Residuals are
e=Y - Xb
with estimated variance s® = 2(e;i®)/(n-g-1)




Bootstrap Linear Estimator

@ Bootstrap standard error can be gotten
for any linear estimator without computing

@ Assuming the model as specified,
Y =XP + €
generate a bootstrap sample given X by

resampling residuals
Y*=Xb +e*

@ Conditional on design of the model
b* = (X'X)IX'Y* = b+(X'X)X'e*
so that SE*(b*) = (X'X)! Zei¢/n




BS in Regression

@ Notice that this approach
(1) Assumes the model is correctly specified,
with the usual assumptions on the errors
holding
(2) Fixes the X design (conditional on X)

(3) Produces a slightly biased SE, shrunken
toward O

@ The first requirement is particularly
bothersome

@ Believe have the right predictors?

® Believe homoscedastic?




Wrong Model?

@ Suppose that the Then the resulting
data have this bootstrap sample will

form: look like this




Wrong Error Structure?

@ Suppose that the Then the resulting
dafa do not have bootstrap sample will
equal variance: look like this




Model-Free Resampling

@ Rather than resample residuals, resample
observations

@ Resample from the n tuples (yi,xi)

@ Resulting data have different structure, one
that keeps yi bound to x;

@ Random design

® Procedure now gets the right structure in
the two previous illustrations

@ Model is not linear

@ Errors lack equal variance




Outlier Havoc

@ Florida 2000 US presidential county-level
vote totals for Buchanan vs number
registered in Buchanans Reform Party.

Palm Beach

200
Reg.Reform
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Comparison

@ Two results “should” be close, but can be
rather different in cases of outliers

@ Resampling residuals

@ Fixes the design, as might be needed for
certain problems (experimental design)

@ Closely mimics classical OLS results

@ But, requires model to hold

@ Resampling cases (aka, correlation model)

@ Allows predictors to vary over samples

@ Robust to model specification




Longitudinal Data

® Repeated measurements

@ Growth curves
@ Panel survey
@ Multiple time series
@ Data shape
@ n items (people, districts, ...)
@ T observations per item
@ More general error structure

@ Items are independent, but anticipate
dependence within an item




Longitudinal Modeling

o "Fixed effects” models

® Econometrics
Outputit = &+ B1 Trend + B2 Macro + ... + €it

® "Random effects” models

® Growth curves
Weightit = ai + Bi1 Age + Bz Food + ... + €Eit

@ Hierarchical Bayesian models

@ Functional data analysis

@ Honest degree of freedom approach

@ Reduce to single value for each case




Bootstrap for Longitudinal

@ Extend bootstrap to other types of error
models

@ Key element for successful resampling is
independence

@ Conditional on data, resampled values are
independent, so

@ Betfter make sure that the original sampling
produced independent values

@ Longitudinal models usually assume
Independent subjects




Longitudinal Example

@ Stylized example tracking economic growth
@ 25 locations
@ Two years (8 quarters)

@ Simple model for retail spending

@ Spendingit = & + B: Unit + B2 Ydit + E€it

@ Simple model is probably misspecified

@ Suggests error terms may be highly
correlated within a district




OLS Estimates

@ Fit the usual OLS regression, with separate
intfercept within each district

@ Find significant effects for employment and
disposable income

- Factor Coef

Avg Effect 43
Unemp -97.7
Disp Inc 0.29




Residuals

Residual Issues

@ Standard residual plots look fine,
@ But “longitudinal” residual correlation is

large at 0.5

Residuals vs Fitted

Fitted values
Im(formula = datal, "sales"datacti{@atal, "i'"l) + data[, "un"] +

Cook's distance

Cook's distance plot

123
72
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Obs. number
Im(formula = data[, "sales"datacti{@atal, "i"]) + data[, "un"] +




Resampling Plan

@ Exploit assumed independence between districts

® Resample districts, recovering a “block” of data
for each case

@ Assemble data matrix by glueing blocks ftogether

@ Bootstrap gives much larger SE for Disp Inc

Factor Coef | SE SE* 4%

Avg Effect| 43 11 24 1.8
Unemp -91.7 3.7
Disp Inc [#0:29 2.0




What happened?

@ Bootstrap gives a version of the
"sandwich” estimator for the SE of the
OLS coefficients

® Sandwich estimator
Var(b) = (X'X)! X’(diag eiei’) X (X'X)

@ Note that both bootstrap and sandwich
estimators presume districts are
independent.




Comments

@ Why the effect on the SE for the
estimate of Disp Income but not for the
slope of unemployment?

@ Answer requires more information about
the nature of these series

@ Within each district, unemployment rates
vary little, with no trend

@ Within each district, disposable income
trends during these two years

@ Trend gets confounded with positive
dependence in the errors




Getting Greedy

® Generalized least squares

@ With the dependence that we have,
suggests that one ought to use a
generalized LS estimator

@ Estimator requires covariance matrix for
the model errors
bgis = (X' QX)X Q1Y)
Var(e) = Q

@ But never see errors, and only get
residuals after fit the slope...




Practical Approach

@ Two-stage approach
@ Fit the OLS estimator (which is consistent)
@ Calculate the residuals

@ Estimate error variance from residuals, using
whatever assumptions you can rationalize

@ Estimate with V in place of Q
bgisz = (X'VIX)(X'V-LY)

@ But what is the SE for this thing?
@ Var(bgs) = (X'Q1X)!
@ Var(bgsz) =?= (X'V-1X)!




Bootstrap for GLS

® Freedman and Peters (1982, JASA)

@ Show that the plug-in GLS SE
underestimates the sampling variation of
the approximate GLS estimator

@ Bootstrap fixes some of the problems, but

not enough
@ Bootstrap the bootstrap

@ Use a "double bootstrap” procedure to check
the accuracy of the bootstrap itself

@ Find that SE* is not large enough




Dilemma

® OLS estimator

@ “"Not efficient” but we can get a reliable SE
by several methods

@ Bootstrap

® Sandwich formula

® GLS estimator

o "Efficient” but lack simple means to get a
reliable SE for this estimator




Double Bootstrap Methods

@ Return to the simple problem of
confidence intervals

® Numerous methods use the bootstrap to
get a confidence interval

@ Percentile interval

® BS-1 interval

@ Bias-corrected BS interval

@ Accelerated, bias-corrected BS interval
d ..

@ Use the idea of Freedman and Peters to
improve the percentile interval




CI for a Variance

@ Consider a problem with a known answer
@Yy ..., Yoo iid N(|J,0'2)
® Get a 90% confidence interval for o®°

® The standard interval uses percentiles
from the chi-square distribution

2 s 2
X0.95 X0.05

@ The standard bootstrap percentile interval
has much less coverage (Schenker, 1985)

P<("_1)82 <o?< (”_1)52> — 0.90

@ Nominal 90% percentile interval covered
o2 only 78% of the time




Simulation Experiment

 Normal Pop




Double Bootstrap

Replace the
normal population
by the observed

sample

Check the
coverage




Double Bootstrap Method

@ Start with data, having variance s°

@ Draw a bootstrap sample
@ Find the percentile interval for this sample
@ This is the second level of the resampling

@ Repeat
® Results for variance

@ Of 500 percentile intervals, only 81% cover
bootstrap population value (which is s¢)

@ Need to calibrate the interval




Calibrated Percentile Interval

@ If use the 0.05 and 0.95 percentiles of the
values of s2*, only covers 81% of the time

® So, adjust interval by using more extreme
percentiles so that coverage is better

| Lower Upper C_Qﬁ)eragg
0.05 0.95 0.81
0.04 0.96 0.83
0.02 0.98 0.88

0.01 0.99 0.895




Bootstrap Calibration

@ Bootstrap is self-diagnosing

@ Use the bootstrap to check itself, verifying
that the procedure is performing as
advertised

@ Now Yyou really can justify that faster
computer in the budget




Where to go from here?

@ Bootstrap resampling has become a standard
method within the Statistics community

@ Focus on research problems, choosing the
appropriate method to obtain a good SE and
perform inference

@ Books
Efron & Tibshirani (1993) Intro to Bootstrap
Davison & Hinkley (1997) Bootstrap Methods

@ Software
R has "boot” package




Questions?




