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Statistics 102

Regression Modeling Review

1 Review of the Multiple Regression Model

Goals

Why build a regression model? The usual goals are usually either prediction or control. Regression
gives predictions of the chosen response variable (denoted \Y") by �lling in values for the the
predictors (the \X's") in an equation estimated from data. Regression also o�ers a measure of the
probable accuracy of its predictions. The use of regression for control implies that one hopes to
manipulate one or some of the predictors with the aim of changing the value of the response. Even
when control is not the objective, its useful to understand how changes in the predictors a�ect the
response.

The Idealized Model

The multiple regression model combines an equation relating a response variable Y (a.k.a the depen-
dent variable) to a set of predictors (a.k.a covariates, independent variables, factors, or exogenous
variables) X1;X2; : : : ;Xk with a collection of supporting assumptions. The equation of the model
describing n observations is

Y = �0 + �1X1 + � � �+ �kXk + � :

Each predictor Xj and the response Y could involve a transformation, such as X2 = log Price,
a cross-product X3 = X1 � X2, or Y = 1=MPG. Remember that the Greek letters represent
unobserved terms in the model (true coeÆcients and errors). You can also think of the model as a
statement about the average value of the response given values for this collection of predictors,

Ave(Y jX1; : : : ;Xk) = �0 + �1X1 + � � �+ �kXk :

The idealized multiple regression model describes a utopian data generating process that pro-
duces the observations. The more the actual data resemble observations from such an idealized
process, the more reliable the statistical results, such as con�dence or prediction intervals, become.
In addition to the truth of the assumed equation, the assumptions that complete this model describe
the error terms:

Independence (of the observations) In particular, the errors �i are independent of each other.

Constant variance The unobserved errors �i have mean 0 and constant variance �2.

Normality The errors �i are normally distributed, abbreviated �i � N(0; �2).

A fourth assumption, that the predictors X1; : : : ;Xk are independent of the error �, is important
in more sophisticated applications such as those covered in a traditional econometrics course.

Collinearity and nonlinearity are important aspects of this model, particularly when attempting
to interpret the coeÆcients. Neither is a violation of the idealized model. The idealized model
neither speci�es nor constrains the relationships among the predictors, and nonlinearity is embedded
into the assumed equation of the regression model via transformations and interactions.
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Comments on the Regression Equation and Assumptions

Linearity. A change of one unit in a predictor X1, say, has the same expected e�ect �1 on the
response Y regardless of the size of X1. CoeÆcients of nonlinear models have di�ering inter-
pretations. For example, a multiplicative model using logs of the predictors and response has
coeÆcients that are elasticities representing expected percentage changes in the response.

Additivity. A unit change in X1, for example, is expected to have the same e�ect upon Y re-
gardless of the levels of the other predictors. Cross-product terms, such as the interaction
between a categorical variable and another variable, allow one to model the interplay among
the predictors; that is, interaction terms represent how one predictor a�ects the slope of
another.

Slopes. The slopes �j are generally the most interesting features of the estimated model since
the slopes capture how changes in the predictors a�ect the response. The slopes measure
the average change in the response Y per unit change in each predictor, \holding the other
covariates �xed." Collinearity complicates this interpretation since it may not make sense
to think of one predictor varying while the others are held �xed. For example, consider a
regression with X and X2 as two predictors (a quadratic).

Intercept/Constant. The constant term �0 is an estimate or prediction of what happens when all
of the X's are zero. Often the constant is a long way from the observed data and represents a
distant extrapolation. It is generally a good idea to retain the constant even if theory suggests
it ought to be zero; use the �tted value of the constant as a diagnostic. If the true intercept
is zero, then the con�dence interval for the intercept should include zero.

Errors. The regression errors represent the collection of factors left out of this model | unex-
plained variation in the response. Ideally, these collectively are random noise without evident
structure. If they do contain structure, we should exploit it by adding predictors to the equa-
tion that explain this structure and yield a better model, one with more accurate predictions
and narrower con�dence intervals.

Residuals. The residuals estimate the errors in a regression and are calculated for the ith obser-
vation as

�̂i = Yi � Ŷi where the \�tted value" Ŷi = �̂0 + �̂1Xi1 + � � �+ �̂kXik

and where Xij denotes the value of the ith observation on the jth predictor. As estimates
of the errors, the residuals allow us to estimate the variance �2 of the errors. The estimated
error variance is usually labelled as the mean squared error or MSE. The square root of the
MSE is known as the root mean squared error or RMSE. The RMSE essentially estimates the
standard deviation of the errors (rather than the variance).

The RMSE is particularly useful since the regression predictions are accurate to within about
�2 RMSE's within the range of observation. (Beyond that, the accuracy of the model falls
o� rapidly.) Since most of the assumptions of regression are assumptions about the nature
of the unobserved errors in the model, the residuals are important in checking whether these
assumptions are reasonable.

Independence. This assumption requires that the errors are not related across observations. The
assumption of independence is most often dubious in modeling time series. Since the errors
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�i can be thought of in many cases as the collective e�ect of terms omitted from the model,
they often \track" over time because some omitted factor itself tracks over time.

Constant variance. Often the variability about the �tted model increases with the size of the
predictions; larger values are often more variable than small ones. Since this problem often
accompanies a nonlinear relationship, �xing the nonlinearity via a transformation may also
happen to stabilize the variance. Violations of this assumption are most important in the
context of prediction. For example, it is often the case that the variance of the error terms
grows with the size of the predicted values. Unless the regression captures this feature of the
data, the prediction intervals of the model will be too long when the predictions are small,
and too short when the predictions are large.

Normality. The errors need not be exactly normal for this model to work. Experience shows,
though, that least squares regression is most reliable when they are. Deviations from nor-
mality indicate problems, such as outliers and the need for transformations. As with the
assumption of constant variance, the assumption of normality is most important in using
regression to build prediction intervals for new observations. The construction of 95% pre-
diction intervals as [(prediction) � 2 RMSE] is based on the empirical rule which comes from
normality.

2 Comments on the Model Building Process

Before the calculations begin. The hardest part of regression modeling is selecting the right
variables and �nding/gathering the associated data. Before doing any calculations, consider
the following questions:

� If all goes about as well as might be expected, will this model answer the question that
you need to address? The goal of the analysis is important.

Analyses that require separating the e�ects of di�erent factors will need to pay close at-
tention to the presence of collinearity. If the predictors are highly correlated, collinearity
will mix them and the regression will be unable to separate their e�ects. For example,
suppose we hope to separate the e�ect of spending on television ads from spending on
other types of ads, but we always change these two factors at the same time in the same
way. The resulting predictors are likely very correlated, and collinearity will make it
diÆcult to separate their e�ects.

Models designed for prediction must extrapolate in a sensible manner and make use of
available data. For example, the time series model Ŷt = �̂0 + �̂1Xt is not useful for
predicting Yn+1 unless the new value Xn+1 is also known.

� Does each predictor capture a new aspect of the problem, or does it measure the same
underlying feature of the observations, such as size, as other predictors? For example,
in our analysis of the fuel consumption of cars, the predictors Weight and Horsepower

both measure in a sense the size of the cars. Larger cars tend to weigh more and
have more powerful engines, and the two predictors are partially redundant. An auto
designer would have a hard time thinking of changing the weight without also changing
the horsepower without changing the performance of the vehicle.

� What does the slope for each predictor mean, and what do you anticipate for its value?
What algebraic signs do you anticipate the estimated coeÆcients to have? Its a good
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idea to anticipate the size and direction of the e�ects of the predictors before you �t
the model and look at the output. Along these lines, a signi�cant t statistic (i.e., one
bigger than 2 in absolute value) implies that you know the sign of the coeÆcient (or
the \direction" of the e�ect). The associated con�dence interval gives a range for the
expected change in the response when the predictor is changed by one unit.

This routine interpretation can be pretty silly, however. For example, suppose that the
predictor's units are very small, say always between 0.1 and 0.2. (Think back to our
example about the price of diamonds; all of the diamonds were small.) Based on such
data, it would not be sensible to talk about the e�ects of changing the predictor by one.
A better measure would be to o�er an interval for changing the predictor by, say, 0.01
instead (and adjusting the CI appropriately as well).

� Was this data collected over time, and if so, has the process remained stable over that
time period? That is, does the implicit assumption of stationarity (one model for all n
observations) seem appropriate?

� Are the observations clustered? In many cases, the data-gathering is easier when several
observations are obtained together. For example, in studying the cost of apartment
leases, it might be easier to get records for several leases from one realtor rather than
having to contact many realtors.

� Is a linear model really appropriate, or might a multiplicative/nonlinear model be more
appropriate? In some problems, particularly those that resemble a production function,
the presence of zero for one predictor would imply that the response should be zero,
regardless of the values of the other predictors. (You can't make the output without
at least some labor and some capital.) Such phenomenon are often best captured using
multiplicative models that are formed by taking the logs of all of the variables in the
equation (they better be positive!).

� Do the predictors act separately from each other, or might there be some interaction
present? That is, does the e�ect of one predictor on the response depend on the values
of the other predictors? To use the car example again, does it seem reasonable that the
e�ect on fuel consumption of adding 10 horsepower is the same when the car weighs
2000 pounds as when it weighs 3000 pounds? If not, then there may be an interaction
between these two.

� Do all of the variables measure a quantitative change, or do some really measure group
membership (and thus need to be represented as categorical variables)?

Checking assumptions. Now comes the more entertaining part of the process | using the avail-
able data to build a regression model. Given your preliminary model, here are a few questions
that need to be considered, with some suggestions as to how to investigate them.

� Is autocorrelation a problem? First of all, do you have time series data. If not, you can
usually ignore this problem unless your data have some sequential feature (such as the
order in which the data was collected). To check for this problem, look at the Durbin-
Watson statistic and time series plots of the residuals. Make sure that the sequence of the
observations makes sense; if the data are not a time series, what does the Durbin-Watson
or autocorrelation mean?

� Does the model explain enough of the variance in the response Y to be useful or might
predictions be so inaccurate as to be uninformative? (R2, F-test, RMSE = �̂)
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� Are the estimated coeÆcients accurately determined? (t statistics, con�dence intervals)

� Do variables need to be transformed? Plot residuals on predictors Xj . Smoothing these
residual plots often con�rms nonlinear patterns. Variables with skewed marginal distri-
butions often lead to nonlinearities.

� Do outliers or highly leveraged observations dominate the analysis? Consider various
residual plots, particularly the leverage plots. Skim the model diagnostics for leveraged
and inuential observations.

� Do the residuals appear to have constant variance? Look at plots of the residuals on
�tted values of the model as well as the leverage plots for each predictor.

� Is the distribution of the residuals close to normality? See that the normal quantile plot
of the residuals lies close to the diagonal line. Check this plot once you have a reasonable
model. If you start checking the residuals too early in the model building process, they
will appear to lack normality simply because you have not captured all of the important
predictive factors.

Revising the model. Given the information in these plots and diagnostics, revise the model
appropriately. Particularly useful tools at this point include:

� Time series: Lagged variables capture delayed e�ects. Di�erencing can diminish both
collinearity and autocorrelation, but often \over-corrects" the autocorrelation. Use of
lagged residuals can model the historical autocorrelation, but ideally one seeks to �nd
the omitted predictor that is responsible for the tracking in the model errors.

� Logs: Log transformations of the response and predictors lead to multiplicative models
with decreasing/increasing returns to scale and yield coeÆcients interpreted as estimates
of elasticity.

� Re-expression: Combining variables, as by converting direct measures to rates, often
yields a model with easier interpretation and better �t.

3 Speci�c Regression Problems

This section briey summarizes the following issues for several of the traditional problems encoun-
tered in a regression model:

� De�nition of the problem | what are the relevant issues?

� E�ects of the problem | are the consequences harmful?

� Recognizing the problem | which diagnostics indicate its presence?

� Removing the problem | what remedies are available?

3.1 Collinearity

De�nition

Collinearity means that high correlation exists among the predictors. That is, the regression of one
predictor on the other predictors (e:g:, X1 regressed on X2; : : : ;Xk) would produce a large R2.
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E�ects

Collinearity makes it diÆcult to separate the e�ects of the correlated predictors. Regression coeÆ-
cients attempt to quantify the impact of each predictor acting separately. When the predictors are
highly correlated, however, the data provide little supporting information. Little variation remains
to be used to explain variation in the response. As a result, the standard errors of slope estimates
are large (wide con�dence intervals) and t-statistics are small. Since the t-statistic measure the
incremental contribution of each predictor to a model using the other predictors, high correlation
among the predictors reduces the t-statistics. Strictly speaking, collinearity is not a violation of
the idealized model | it complicates the interpretation of the model's coeÆcients.

Detection

Substantive. Substantively, collinearity occurs when several predictors measure the same thing,
such as size.

Graphical. Looking at a scatterplot/correlation matrix identi�es pairwise relationships, but is not
always enough. Compression along the x-axis of the leverage plots of the �tted model o�er a
more reliable plot.

Tests. In testing the �tted model, one might �nd a large overall R2 and signi�cant F statistic,
but very few signi�cant t-statistics. With collinear predictors, coeÆcients change as other
variables are added/removed from the �t, even changing sign.

Index. A summary measure of the impact of collinearity on the standard errors of the slopes is
known as a variance ination factor, or V IF . One can show that, approximately
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where R2
j is the R-squared statistic obtained when regressing Xj on the other predictors. This

expression implies that the standard error of an estimated coeÆcient in multiple regression
is inated by a factor of

p
V IF =
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1
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j

due to correlation among the predictors. If, for example, R2
j = 0:96, then the standard error

of the slope estimator �̂j is 5 times larger than it would be if the X's were not correlated.

Remedy

Re-express. Given suÆcient knowledge of the problem, one may be able to re-express the vari-
ables in a manner that removes the collinearity. For example, one might use Weight and
HP=Weight rather than Weight and HP directly. As a simple �x, replacing a correlated
pair X1 and X2 by the di�erence X1 � X2 and average (X1 + X2)=2 often helps. A better
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scheme might be to combine the related factors into an index, such as in the consumer price
index.

Omit a predictor. When the predictors are essentially redundant (as with the SP500 and V W
indices), this might be the best choice. One needs to be very careful, however, about how to
interpret the �tted coeÆcients in the presence of omitted, correlated factors.

Live with it. Doing nothing makes sense so long as we do not seek to interpret individual coef-
�cients, and only intend to use the model to predict new observations similar to those used
in estimation. Prediction intervals are valid in the presence of collinearity, and R2 is still an
accurate measure of the proportion of variation in the data \explained" by the model. Often,
as in the case of a production function, we may need to keep all of the coeÆcients in the
model for the purposes of interpretation.

Gather more data. Getting more data can reduce the collinearity if we are able to identify new
observations that weaken the correlation among the predictors. With many studies, this path
is not practical since we cannot control the values of the predictors or lack the resources for
such data collection.

3.2 Nonlinearity

De�nition

Nonlinearity implies that the e�ect of a change in some predictor upon the response depends upon
the size of the predictor. For example, the gain in sales produced by adding more display space
decreases as the amount of space in use increases (decreasing returns to scale).

E�ects

Nonlinearity has several e�ects. First, the use of a linear model leads to an incorrect interpretation
of the e�ect of the nonlinear predictor variable | one misses the presence of, for example, decreasing
returns to scale. Using a linear model in the presence of nonlinearity can also lead to poorly �tting
models that generate nonsensical predictions.

Detection

In the initial analysis, note that variables possessing skewed distributions often appear in nonlinear
relationships (not always | but often). Curvature in the initial scatterplot matrix (enhanced by
smoothing) suggests a nonlinear relationship. In regression, plots of the residuals on each predictor
Xj o�er yet another opportunity to observe nonlinearity.

Remedy

Transformation of the data o�ers the most direct cure for nonlinearity.
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3.3 Autocorrelation

De�nition

Autocorrelation in a regression model is correlation among the error terms when viewed sequentially.
The typical context of autocorrelation occurs with data series measured over time | time series.
The value of this autocorrelation is traditionally denoted by � = corr(�t; �t�1). Whereas collinearity
refers to correlation among predictors (columns in the data spreadsheet), autocorrelation refers to
correlation among observations (rows).

E�ects

Autocorrelation e�ectively reduces the sample size. Rather than representing independent pieces
of information, correlated observations are redundant. Consequently, positive autocorrelation pro-
duces inated test statistics and improperly narrow con�dence intervals. For example, the variance
of the mean computed from a sample of n independent observations is Var �X = �2

n
. In the presence

of a common form of autocorrelation, this formula becomes Var �X = �2

n
1+�
1��

. If the autocorrelation

� = 0:9, then our usual formula for the variance of the average is too small by a factor of 1+0:9
1�0:9

= 19.
One seldom observes negative autocorrelation in economic time series.

Detection

Autocorrelation occurs among the unobserved errors of the regression model. The residuals estimate
these errors and can be used to indicate the presence of autocorrelation. Autocorrelation typically
appears as a \tracking" pattern in a plot of the residuals versus time (a time series plot of the
residuals). A very useful supplemental plot shows the residuals et plotted on their lags (et on et�1).
Autocorrelation shows up like the usual correlation in this plot.

The standard summary measure for autocorrelation is the Durbin-Watson statistic DW �
2(1 � �̂) where �̂ is an estimate of the autocorrelation based on the residuals. Hence a quick
estimate of the autocorrelation from the DW stat is �̂ � 1

2
(2�DW ). Values of DW � 2 are ideal

since then �̂ � 0. A Durbin-Watson below 1.5 or larger than 2.5 indicates a problem. Certainly a
value smaller than 1.0 or larger than 3.0 must be handled.

Since autocorrelation is just a correlation, it too is sensitive to outliers and only measures
linear dependence. Also note that we have focussed on correlation between adjacent observations.
Autocorrelation could occur at other lags, such as at a four-period lag in quarterly data (seasonal
autocorrelation). The DW would not detect this type of dependence.

Remedy

Finding autocorrelation means that the residuals have further structure that can be exploited
to build a better model. Most of the time, autocorrelation appears in the model because of an
omitted factor that is itself correlated over time. Finding this omitted factor not only removes the
autocorrelation, but also leads to a better model with more accurate predictions.

Without this added factor, lagged residuals can get a better �t and capture the residual pattern
without o�ering much in the way of explanation. Di�erencing (i.e., working with changes rather
than levels) performs well if DW is much less than one. If 1 < DW < 1:5, di�erencing can
over-compensate for the autocorrelation.



Statistics 102 9

3.4 Lack of Constant Variance

De�nition

As with autocorrelation, heteroscedasticity (i:e:, the lack of constant variance) refers to a problem
in the unobserved errors. Rather than having �xed variance �2, the variance of the errors depends
on other factors.

E�ects

Heteroscedasticity can be shown in special cases to have e�ects like those associated with auto-
correlation, such as inated t-statistics. Such e�ects are, however, typically much smaller than
those associated with autocorrelation. The more important e�ect comes at the time of prediction.
Prediction intervals from a model that pretends that the errors have constant variance will be too
wide in places where the errors have small variance, and too narrow where the errors have large
variance.

Detection

Models that have observations based on units of varying size often reveal a lack of constant variance:
often the larger something becomes, the more variable it can be. Again, residual plots come to
the rescue | \the plot thickens". Useful plots show residuals (particularly, studentized residuals)
plotted on the �tted values of the model and on the various predictor variables. Look for a pattern
of increased variation as the �tted values get larger (usually). Plots of the absolute values of the
residuals often make the pattern more easy to discern.

Remedy

When possible, the best solution is to transform the model. If the relationship is linear, though, this
adjustment will disrupt the linearity. When dealing with data that pertain to objects of di�erent
sizes, such as variables measuring the attributes of companies, it is often better to express the data
on some normalized scale, as in the ratio of sales to assets.

3.5 Outliers

De�nition

Outliers are observations that are unusual, either in the sense of having distinct values of the
response or of the predictors.

E�ects

Outliers can dominate a regression analysis so that the �tted model reects the pattern in a small
subset of the data. Least squares regression cannot tolerate large deviations from the �tted model
and will work very hard to �t outlying values, even at the expense of missing the structure in most
of the data.
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Detection

Plots are most useful, particularly plots of the residuals on the �tted values or predictors and the
leverage plots. Leverage measures the size of outliers among the set of predictors in the model. For
an outlier to be inuential, it must combine larger than typical leverage with a moderate to large
studentized residual. Even with these \leave-one-out" summary values, plots remain useful since
outliers that bunch in pairs or triples can mask each others' presence.

Remedy

Try to understand what makes the outlier unusual: What distinguishes this observation from the
rest? Learning the reason often leads to a better model since it may suggest factors that have been
omitted from the model (recall the suburban shopping mall example with the omitted factor for
level of commercial activity). If it cannot be explained and is inuential, you may need to set this
observation aside so that it does not distort the �t to most of the data.


