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Regression Summary

Project Analysis for Today

First multiple regression
• Interpreting the location and wiring coefficient estimates
• Interpreting interaction terms
• Measuring significance

Second multiple regression
• Deciding how to extend a model
• Diagnostics (leverage plots, residual plots)

Review Questions: Categorical Variables

Where do those terms in a categorical regression come from?
• You cannot use a categorical term directly in regression (e.g. 2(“Yes”)=?).
• JMP converts each categorical variable into a collection of numerical

variables that represent the information in the categorical variable,
but are numerical and so can be used in regression.

• These special variables (a.k.a., dummy variables) use only the
numbers +1, 0, and –1.

• A categorical variable with k categories requires (k-1) of these special
numerical variables.  Thus, adding a categorical variable with, for
example, 5 categories adds 4 of these numerical variables to the model.

How do I use the various tests in regression?
What question are you trying to answer…
• Does this predictor add significantly to my model, improving the fit beyond 

that obtained with the other predictors? (t-ratio, CI, p-value)
• Does this collection of predictors add significantly to my model? Partial-F

(Note: the only time you need partial F is when working with
categorical variables that define 3 or more categories. In these
cases, JMP shows you the partial-F as an “Effect Test”.)

• Does my full model explain “more than random variation”?
Use the F-ratio from the Anova summary table.



Statistics 102 Regression Summary
Spring, 2000                                                                                                                                              -     2     -

How do I interpret JMP output with categorical variables?

• Brackets denote the JMP’s version of dummy variables.
• Letters within the brackets tell you which values are used.

Manager[a-c] Is 1 for manager a, –1 for c, 0 otherwise
Manager[b-c] Is 1 for manager b, –1 for c, 0 otherwise

Manager

A B C

Manager[a-c] 1 0 –1

Manager[b-c] 0 1 –1

• The fit for manager “a”, for example, uses the bracketed terms that 
include the letter “a”.  The rest of the bracketed terms are zero.
Fit for a is:  Time = 180 + 0.23 Size + 23 + 0.07 Size

= (180 + 23) + (0.23 + 0.07) Size
Fit for b is: Time = 180 + 0.23 Size + 7 – 0.10 Size

= (180 + 7) + (0.23 – 0.10) Size
• The fit for one category (the last, alphabetically) uses all of the

bracketed terms, with the signs reversed (since the numerical
variables that represent Manager in this example are all –1 for
Manager c):
   Fit for c is: Time = 180 + 0.23 Size – (23 + 7) – (0.07 –0.10)

 = (180 – 30) + (0.23 + 0.03) Size
• Note that these 3 fits are those (up to rounding) found by fitting a

simple regression to the data for each manager (page 191).

T e r m
Intercept
Run Size
Manager[a-c]
Manager[b-c]
Manager[a-c]*Run Size
Manager[b-c]*Run Size

Est imate
   179.59

     0.23
    22.94
     6.90
     0.07
    -0.10

Std Error
    5.62
    0.02
    7.76
    8.73
    0.04
    0.04

t Ratio
  32.0
   9.5
   3.0
   0.8
   2.1
  -2.6

Prob>|t |
  0.00
  0.00
  0.00
  0.43
  0.04
  0.01
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If the fits are the same, why bother with categorical variables?
• With the 3 fits together in one model, you can find differences among 

the slopes and intercepts without using heuristic methods.
• Tests based on the partial F test, as summarized in Effect Test

summary in the JMP output.

Source
Run Size
Manager
Manager*Run Size

Nparm
  1
  2
  2

DF
  1
  2
  2

Sum of Squares
   22070.6
    4832.3
    1778.7

F Ratio
    90.0
     9.9
     3.6

Prob>F
  <.0001
  0.0002
  0.0333

• In this example, the F-ratio for Manager (the categorical variable) implies
significant differences among intercepts (p=.0002).

• Interaction term implies significant differences among the slopes (p=.033)

Should I take out Manager[b-c] since its not significant?
• Did you add this particular term?  No.

You added Manager as a whole, and are wise to leave it that way.
• The partial F-test (effect test) is much like the F-test that we used in the

analysis of variance.  It indicates whether some difference exists, but
does not pinpoint its location.

What should I do about collinearity with interaction terms?
• Adding an interaction term often introduces collinearity, and collinearity

can make the categorical term appear insignificant.
T e r m
Intercept
Salary
Origin[Externa-Interna]
Origin[Externa-Interna]*Salary

Est imate
   -1.815
    0.107
   -0.122
   -0.002

Std Error
   0.724
   0.010
   0.724
   0.010

t Ratio
 -2.51
 10.99
 -0.17
 -0.19

Prob>|t |
0.0132
<.0001
0.8667
0.8499

• Unless the interaction term is significant (partial F in the Effect Test),
remove the interaction.

• If both the interaction and categorical term are insignificant, remove the 
interaction rather than the underlying categorical term. (page 173)

Why are the fitted lines parallel when I add a categorical term?
• With only one slope allowed for the continuous predictor, the regression

model is forced to use the same slope for all categories.
• To allow different slopes, you must add an interaction term that combines 

the categorical variable with the continuous predictor.

I have several predictors. Do I need to use all of the interactions?
• Ideally, you ought to consider all of them.
• In practice, you ought to consider the ones that are most interesting

from a substantive point of view.
• e.g., If you want to know whether advertisting impacts sales differently

in different regions, you need an interaction of advertising with region.
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Building a Regression Model

1. Before you gather and look at the data...
• Identify the question of interest, the goals of the analysis.

Prediction In/out of sample?
Allowable margin for error?

Interpreting slopes Expect collinearity?  How much?
Need marginal or partial slope?

• Anticipate important features of the model.
Which variables do you expect to find important?
Do you anticipate nonlinear patterns or interactions?
What do you expect the coefficients to be?  e.g., positive or negative?

• Evaluate the data.
Is there enough? (role of preliminary or “pilot” study)
Is it representative? (sampling biases, measurement error)
Is there a hidden “clumping” factor? (dependence)

2. Assess the univariate and marginal relationships…
• Identify scales, ranges, distributions of the key factors.

Are data normal or skewed?  Outliers present?
Distribution of Y command.

• Look at bivariate scatterplots of factors, time series plots (if appropriate).
Nonlinear (curvature)?  Outliers, leverage points?
Marginal associations with response?
Correlation among predictors? (suggests collinearity)
Correlation of Y’s command, scatterplot matrix option.

• Check for special features in the data.
Discrete data, “hidden” categories?
Color code data for special categorical factors.
Use Color by Col command from Rows menu.

3. Fit an initial model…
• Fit the model suggested by your understanding of the problem.

Start with a regression that makes the most sense given your
understanding of the context and data.

• Assess the coefficients of fitted model, using both substance and statistics.
Does your model explain much variation in the data?  (F, RMSE, R2)
Are the slopes significant?  What is the size of confidence interval/SE’s?
Can you interpret the slopes, using appropriate units?
How do the partial slopes differ from the marginal slopes?
What is the impact of collinearity?  Do you care, or should you ignore?
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3. Fit initial model, continued.
• Evaluate model graphically.

Do leverage plots look suitable for simple regression fits?
How do leverage points or outliers affect the fit?
Are residuals reasonable (i.e., constant variance, normal)?
   Do this initial check from the plot of residuals on the fitted values.

4. Revise the fitted model.
• Remove factors that are not needed.

Are some predictors redundant? (VIFs, collapsing leverage plots)
Small |t-ratio| < 2 (wide confidence interval, large p-value)

• Determine whether other, previously excluded factors are needed.
Are variables appropriately transformed?
What factors might explain the unexplained residual variation?
Is an interaction called for?

• Use a cautious, one-at-a-time strategy.
Removing several is dangerous with collinearity present.
Check for missed nonlinearity.

5. Go back to step 2 until satisfied.
• Make sure that you can interpret the end result.
• Make sure that you can or cannot answer the question of interest.
• Run a careful check of residuals

Does anything in the analysis suggest dependence?
Do different groups have comparable variance?
Do larger values on some scale have growing variance?
Are the data normal (quantile plot from saved residuals)?

• Review regression handout from web page.

6. Plan next steps.
• Determine how to communicate results to others.  Know your audience.

Do they know statistics?
Do they appreciate subtleties of analysis, such as plots?
What common beliefs does your analysis support?  Contradict?

• Focus on things that would make analysis simpler, better.
What data are missing?  (i.e., which predictors or groups are not known?)
Are data really representative of new situations?
Would more data help?  Remember, more data without a better model

does not improve in-sample prediction accuracy very much.
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 Concepts and Terminology

Stepwise regression
• Example of an automated method for finding a regression model.
• Other data mining methods include “neural networks”.
• Most useful when you know little about the problem, searching.
• Often combined with “response surface” option in JMP.
• Picks the predictors using a “greedy” incremental approach.

Overfitting
• Definition: Using more predictors in a regression than you should.

That is, true slope is zero, but by chance your estimate differs from zero.
As a result, the regression is more complex than it should be.

• Model claims high accuracy (low RMSE, high R2), but in fact predicts poorly.
• Frequently occurs when automated method is asked to choose from too many.
• See casebook example (page 220) that illustrates how automated methods

lead to a model for predicting stock returns that looks fine when fit to
historical data (R2 > 75%) but predicts poorly.

Cross-validation
• Common sense idea for checking properties of regression model.
• Reserve some fraction of your data for testing the fit of the model.
• Try to predict this “hold back” sample using model fit to rest.
• Compare RMSE of model to SD of prediction errors.

RMSE – estimates SD of errors from data used in modeling
SD of prediction errors – should estimate same quantity

Bonferroni rule
• Simple method for validating regression models, avoid overfitting.
• Avoids need for a validation sample.
• Compare t-ratio to threshold which is larger than just 2 to make it harder

for predictors to enter your model.
• Easily done by comparing p-values to 0.05/(# considered) rather than 0.05.

e.g. If you have considered 20 predictors, then compare each t-ratio to
0.05/20 = 0.0025

rather than 0.05 to decide which predictors to keep.
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Sample Project Analysis

Initial analysis
Not a whole lot of variation explained (R2 = 12%), with fixed costs of about
$3100 and variable costs of $19.30/SqFt.
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Parameter Estimates
T e r m
Intercept
1 / S q f t

Est imate
    19.30

  3072.29

Std Error
    0.14

  569.78

t Ratio
136.06

  5.39

Prob>|t |
<.0001
<.0001

Summary of Fit
RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)
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  19.788
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First multiple regression analysis
After skimming over data using scatterplot matrix, fit the indicated multiple
regression as directed in project instructions.  The goodness-of-fit improves
considerably.  (R2 is higher, RMSE lower)

p

Summary of Fit
RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

   0.601
   0.583
   1.122

  19.788
 223.000

Effect Test
Source
1 / S q f t
Location
Location*1/Sqft
Parking/Sqft
Location*Parking/Sqft
Renovation
Wiring

Nparm
  1
  2
  2
  1
  2
  1
  1

DF
  1
  2
  2
  1
  2
  1
  1

Sum of Squares
      4.88

     66.08
      0.03

     31.50
      6.55
      1.20
      2.33

F Ratio
    3.87

   26.23
    0.01

   25.01
    2.60
    0.95
    1.85

Prob>F
  0.0504
  <.0001
  0.9900
  <.0001
  0.0766
  0.3296
  0.1752

Parameter Estimates
T e r m
Intercept
1 / S q f t
Location[CITY-SUBOLD]
Location[SUBNEW-SUBOLD]
Location[CITY-SUBOLD]*1/Sqft
Location[SUBNEW-SUBOLD]*1/Sqft
Parking/Sqft
Location[CITY-SUBOLD]*Parking/
Location[SUBNEW-SUBOLD]*Parking/
Renovation
Wiring[NO-YES]

Est imate
   19.144

 1036.670
    1.124
   -0.147
   -7.222
   89.588

 1216.024
  624.250
 -109.429

   -0.005
   -0.143

Std Error
   0.158

 526.863
   0.155
   0.149

 730.178
 642.324
 243.169
 286.150
 291.808

   0.005
   0.105

t Ratio
121.54

  1.97
  7.24
 -0.99
 -0.01
  0.14
  5.00
  2.18
 -0.38
 -0.98
 -1.36

Prob>|t |
<.0001
0.0504
<.0001
0.3252
0.9921
0.8892
<.0001
0.0302
0.7080
0.3296
0.1752

How do average lease costs depend upon location?
Significant variation in average variable costs (p-value < .0001). City costs
about $20.30/Sqft(19.14+1.12), old suburbs about $18.17 (19.14–1.12+0.15),
and new suburbs about $18.99 (19.14–0.15).

How much does parking cost in the city for one spot?
In the city, parking costs on average $1216+624=$1840 per spot.

How much does wiring add to costs cost, on average?
A bit less than $0.30, with ranging over the interval 2 [14.3±2(.105)]. Note that
the interval includes zero.
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Do fixed costs vary by location?
No, not significantly: interaction Location*(1/Sqft) is not significant.  Any
differences evidently already taken into account by handling of parking costs.

How much would 50,000 square feet of space with 20 executive
parking spots, new wiring, and one year since renovation be
expected to cost, in total?
Using a dummy observation with these factors (you might choose to remove
some the insignificant interactions), JMP computes the predicted cost per square
foot (for a city location – others will differ) as

$21.162/SqFt    times 50,000  $1.06 million
JMP will also do prediction intervals for you as well, which should roughly
correspond to 50,000 [ $21.162/SqFt ± 2 RMSE ] or here about

50,000[18.893, 23.431] ≈ [$945,000   ,    $1,170,000]

Assumptions?

Leverage plots
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What other factors might improve the fit of this model?
One way is to look for factors related to the unexplained variation, namely the
residuals…

Corre lat ions

Var iab le
Residual AveCost
Leaselength
D i s t a i r p o r t
D r i v e
Occupancy

Residual AveCost
   1.000
  -0.411
   0.086
   0.080
  -0.023

Leaselength
  -0.411
   1.000
   0.003
  -0.011
   0.055

D i s t a i r p o r t
   0.086
   0.003
   1.000
   0.953
  -0.112

D r i v e
   0.080
  -0.011
   0.953
   1.000
  -0.144

Occupancy
  -0.023
   0.055
  -0.112
  -0.144
   1.000
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Another approach is to fit a really, really big regression (the “kitchen sink”
approach) and try to sort out what you find, or you can let JMP’s stepwise
regression tool sort through some of the factors for you.  That can be a bit risky,
though, and hard to interpret (see casebook for examples).


