Statistics 540, EM Algorithm

The EM Algorithm

Goals ...

Provide an iterative scheme for obtaining maximum likelihood estimates, replacing a hard problem by a sequence of simpler problems.

Context ...

Though most apparent in the context of missing data, it is quite useful in other problems as well. The key is to recognize a situation where, if you had more data, the optimization would be simplified.

Approach ...

By *augmenting* the observed data with some additional random variables, one can often convert a difficult maximum likelihood problem into one which can be solved simply, though requiring iteration. Treat the observed data \mathbf{Y} as a function $\mathbf{Y} = \mathbf{Y}(\mathbf{X})$ of a larger set of unobserved *complete* data \mathbf{X} , in effect treating the density

$$g(y;\theta) = \int_{\mathcal{X}(y)} f(x;\theta) dx$$

The trick is to find the right f so that the resulting maximization is simple, since you will need to iterate the calculation.

Computational Procedure ...

The two steps of the calculation that give the algorithm its name are

- 1. Estimate the sufficient statistics of the complete data X given the observed data Y and current parameter values,
- 2. Maximize the X likelihood associated with these estimated statistics.

Genetics Example ...

Observe for some $0 \le \pi \le 1$ counts

$$\mathbf{y} = (y_1, y_2, y_3, y_4) = (125, 18, 20, 34) \sim \text{Mult}(1/2 + \pi/4, 1/4(1 - \pi), 1/4(1 - \pi), \pi/4)$$

Estimate π by ML is messy. Instead, think of \boldsymbol{y} as a collapsed version $(y_1 = x_0 + x_1)$ of

$$\boldsymbol{x} = (x_0, x_1, x_2, x_3, x_4) \sim \text{Mult}(1/2, \pi/4, 1/4(1-\pi), 1/4(1-\pi), \pi/4)$$

Steps:

- 1. Estimate x_0 and x_1 given $y_1 = 125$ and an estimate $\pi^{(i)}$ implies that $x_0^{(i)} = \frac{125(1/2)}{(1/2 + \pi^{(i)}/4)}$ and $x_1^{(i)} = \frac{125(\pi^{(i)}/4)}{(1/2 + \pi^{(i)}/4)}$.
- 2. Maximize the resulting binomial problem, obtaining $\pi^{(i+1)} = \frac{x_1^{(i)}+34}{x_1^{(i)}+34+18+20}$.

Mixture models ...

Suppose that the observed data Y is a mixture of samples from K populations, but that the mixture indicators Z are unknown. Think of $Z_i = (0, 0, ..., 1, ..., 0)$ as a K vector with one position one and the rest zero. The complete data is X = (Y, Z). The steps in this case are

- 1. Estimate the group membership probability for each Y_i given the current parameter estimates.
- 2. Maximize the resulting likelihood, finding in effect the weighted parameter estimates.

References ...

- Dempster, A. P., N. M. Laird, & D. B. Rubin (1977). Maximum likelihood from incomplete data via the EM algorithm. *JRSS-B*, **39**, 1-38.
- Little, R. J. A. and D. B. Rubin (1987). *Statistical Analysis with Missing Data*. Wiley, New York.
- Tanner, M. A. (1993). Tools for Statistical Inference. Springer, New York.

Success ?

Theory shows that the EM algorithm has some very appealing monotonicity properties, improving the likelihood at each iteration. Though often slow to converge, it does get there!