
       
1

Stat 540, Matrix Factorizations

Matrix Factorizations

LU Factorization

Definition ...

Given a square k × k matrix S, the LU factorization (or decomposition) represents S

as the product of two triangular matrices,

S = L U ,

where L is lower triangular and U is upper triangular. To resolve identifiability prob-

lems, assume that the diagonal elements of L are `ii = 1.

Computations ...

It is easiest to see how the algorithm works by writing down what needs to happen in

the 3× 3 case: 
s11 s12 s13

s21 s22 s23

s31 s23 s33

 =


1 0 0

`21 1 0

`31 `23 1



u11 u12 u13

0 u22 u23

0 0 u33


If you write out the product, you will see that its possible to solve uniquely for the

resulting elements `ij and uij. The number of operations is on the order of that required

for the matrix product, k2 dot products each of length k, or O(k3).

The computations can be done simply via a Gaussian elimination. Think of each

step (i.e., the process of zeroing an element) of Gaussian elimination as a matrix

multiplication on the left of S. For example, if s11 6= 0, we can zero s12 and s31 using

the first row by forming the product of a lower triangular matrix and S:
1 0 0

−s21/s11 1 0

−s31/s11 0 1



s11 s12 s13

s21 s22 s23

s31 s23 s33

 =


s11 s12 s13

0 s∗22 s∗23

0 s∗23 s∗33


Assuming the needed divisors are not zero, we can accumulate a product like this as

L−1S = U . (Yes, the inverse of a lower triangular matrix is lower triangular.) If

the needed divisor is zero, however, one can pivot, swapping rows in order to move a

non-zero element into position.

The LispStat function lu-decomp does this chore, but its output is typically more

complex than you would expect (and may even be complex!), including pivots for

example. More often, you will use lu-decomp indirectly, as it is called by lu-solve,

determinant, and inverse.
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Applications of LU ...

Once you have an LU decomposition, it becomes simple to

• Find the determinant of S, |S| = |L| |U | = |U | = ∏
uii,

• Solve a system of equations Sx = b via solving first LUx = L(Ux) = b for Lc = b,

then solving Ux = c. Solving each of these takes O(k2) operations.

• Invert S (assuming it is non-singular), by solving equations of the form SIj =

LUIj = 1j, where Ik is a k × k identity matrix and 1j is the indicator vector

vector with elements δi−j (i.e., it has a one in location j and zeros elsewhere).

Cholesky Factorization

Definition ...

The Cholesky factorization applies to k× k, symmetric, positive semidefinite matrices

(i.e. covariance matrices). It can be thought of as a variation on an LU factorization,

but with the factors U ′ = L so that

S = LL′ .

In a sense, the Cholesky factor behaves like the square root of a matrix. For example,

if

X
iid∼ Nk(0, I) and C = LL′ ,

then

LX ∼ Nk(0, LL
′ = C) .

Indeed, this simple result provides one of the most common uses of the Cholesky factor-

ization in statistics: the generation of multivariate normals with arbitrary covariance

matrix.

Computations ...

To see how the Cholesky factorization works, again think about what it would take to

solve a simple 3× 3 example:
s11 s12 s13

s21 s22 s23

s31 s23 s33

 =


1 0 0

`21 1 0

`31 `23 1



`11 `21 `31

0 `22 `32

0 0 `33

 =


`2

11 `11`21 `11`31

... ... ...

... ... ...


Assuming s11 > 0 (as it must be if S is p.d.), it’s easy to solve for the first column of L.

Now think recursively. To find the rest of L, you once again need to solve a triangular

system, but with slightly modified elements. As with the LU method, the operation

count is O(k3).

The LispStat function chol-decomp performs the Cholesky factorization. The output

includes an indication of whether the input matrix S is positive definite.
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Applications of Cholesky ...

There is a very nice way to think about the Cholesky factorization of a covariance ma-

trix. Reversing the notion used in generating Gaussian r.v.’s, note that if C = LL′, then

L−1C(L′)−1 = I. That is, the Cholesky factors also provide a method for converting

correlated normals into uncorrelated normals. For example, if (X1, . . . , Xk) ∼ Nk(0, C),

then (with superscripts denoted elements from the inverse)

Cov(`11X1, `
21X1 + `22X2) = 0 .

By moving the constants around we get

Cov(X1,
`21

`22
X1 +X2) = 0

which looks awfully like a regression (the residuals of X2 regressed on X1 are uncorre-

lated with X1).

A very special case of the Cholesky factorization is important in time series analysis.

The covariance matrix of so-called stationary time series is Toeplitz, symmetric with

constants along each diagonal. For these matrices, the Cholesky factorization gives the

collection of autoregressive models of increasing order, AR(1), AR(2),... AR(k). The

special version of Cholesky that’s used there is known as Levinson’s recursion.

Levinson’s recursion ...

Details elaborating its role in sequence of projections...

Closest p.d. approximation ...

The Cholesky factorization breaks down if the matrix being factored is not p.s.d. As in

LispStat, one can then perturb the matrix being factor by adding dIk to the diagonal

with d > 0 a positive constant. The size of the perturbation is one measure of how

“far” the matrix is from being positive semidefinite. The SVD discussed later gives

another way.

Eigenvalue Decomposition

Definition ... ???

All k × k square matrices S possess a spectral representation

S =
k∑
j=1

λjeje
′
j (1)

(a sum of rank 1 matrices) where

Sej = λjej
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and e′jek = 0 if λj 6= λk. The eigenvalues λj and eigenvectors ej may be complex. If the

eigenvalues are distinct and nonzero, then the eigenvectors are orthogonal. For later

convenience, assume assume the eigenvalues are ordered by their distance from zero,

|λ1| ≥ |λ2| ≥ · · · ≥ |λk| ≥ 0 .

Computation ...

Eigenvalue-eigenvector decompositions are among the hardest to compute, and are in

general only obtained as the approximate result of an iterative algorithm. LispStat

offers the functions eigen, eigenvalues, and eigenvectors, albeit each is restricted

to symmetric matrices. Unfortunately, this means that you cannot use the eigen code

to find the zeros of arbitrary polynomials.

Covariances ...

Suppose that C is symmetric, as with a covariance matrix. Then all of the λj and ej
are real, and we can write

SE = EΛ, E ′E = I, Λ = diag(λ1, . . . , λk) ,

and E = (e1, . . . , ek) is the matrix of eigenvectors. The eigenvectors define orthogonal

linear combinations of the underlying r.v.’s which have variance λj.

Principal components ...

Eigenvalues/vectors give the solution of the classical extremal problem

max
x′x=1,x∈Rk

x′Cx .

That is, find the linear combination of variables having the largest variance, with the

restriction that the sum of squared weights is 1. Minimizing the usual Lagrangian

expression

x′Cx− λ(x′x− 1)

implies that Cx = λx. Thus, x is the eigenvector with largest eigenvalue. The problem

continues by finding that linear combination with largest variance which is uncorrelated

with the first. Surprise, it’s determined by the second eigenvector. Etc...

Functions of a matrix (square root) ...

Although the Cholesky decomposition gives one square root, the eigenvalue formula is

equally appealing, though not lower triangular. Namely, define

S1/2 =
∑
j

√
λjeje

′
j .

You can check that S = S1/2S1/2. In general, the spectral decomposition (1) gives a

nice way to extend any scalar function f to matrices,

f(S) =
∑
j

f(λj)eje
′
j .
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Generalized inverse ...

If the matrix S is nonsingular, the previous idea suggests that the the inverse of such

a matrix ought to be

S−1 =
∑
j

1

λj
eje
′
j

You can check that this intuition is indeed correct.

When the matrix S is singular, it has at least one zero eigenvalue so the previous

expression does not apply. In this case, we can define a generalized inverse (unlike

S−1, generalized inverses are defined in various ways and are not unique)

S− =
m∑
j=1

1

λj
eje
′
j , λj 6= 0 for j ≤ m ≤ k.

Using this formulation, we have

SS− = (
∑
j

λjeje
′
j)(

m∑
j=1

1

λj
eje
′
j) =

m∑
j=1

eje
′
j = Mm 6= Ik

When solving the normal equations for a regression with a singular cross-product ma-

trix (let S = X ′X), we obtain

(X ′X)β̂ = X ′Y ⇒ Mβ̂ = (X ′X)−X ′Y .

Thus β̂ is not unique since Mek = 0. We can add multiples of any eigenvector associ-

ated with zero eigenvalue to β̂ and still solve the normal equations.

Matrix norms and inner-products ...

The spectral representation gives nice forms for the two most popular norms for square

matrices:

Frobenius norm: ‖S‖2
F =

∑
i,j

s2
ij =

∑
j

λ2
j

and

Operator norm or L2 norm: ‖S‖ = sup
y 6=0

‖Sy‖
‖y‖ = |λ1| .

The Frobenius norm of a matrix comes with the associated inner-product

〈S, T 〉F = trace(ST ′) (2)

QR Decomposition

Definition ...

Unlike the previous decompositions, the QR decomposition does not require the matrix

in question to be square. For the n× k matrix X with n ≥ k, the QR decomposition

is

X = Qn×k Rk×k , Q′Q = I, R upper triangular.
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Computation ...

The QR decomposition is the result of applying the Gram-Schmidt orthogonalization

to the columns of X. In effect, the values in R are regression coefficients.

Here’s how the calculations proceed. First, define the first column of Q as the normal-

ized first column of X,

Q1 = X1/‖X1‖ ,
where ‖x‖2 =

∑
i x

2
i . Now regress Q1 out of the rest of the columns of X and store the

resulting coefficients as the first row of R,

X∗j = Xj − (X ′jQ1)Q1 ,

implying that X ′1X
∗
j = 0, j = 2, . . . , k. Now continue recursively, determining the

rest of Q and the remaining rows of R from the matrix (X∗2 , . . . , X
∗
k). This row-

based method of computing the QR decomposition, also called the modified Gram-

Schmidt algorithm, is known to be more stable numerically than the column-based

alternative. The calculation scheme requires order O(nk2) operations, coming from

k + (k − 1) + · · ·+ 1 dot products of n elements.

Relationship to Cholesky ...

Given that X = QR, note that

X ′X = (QR)′QR = R′(Q′Q)R = R′R

which is a lower triangular (let L = R′) factorization of the cross-product matrix.

The elements of R have a simple interpretation from the initial description, namely as

regression coefficients.

Applications ...

The QR decomposition has some simple uses, such as determining the rank (count the

number of non-zero diagonal values of R) of a matrix or creating an orthogonal set of

regressors.

In this latter context, the QR decomposition is quite useful. For example, if X = QR,

then the usual linear model

Y = Xβ + ε, ε
iid∼ Eεi = 0, Var(εi) = σ2 ,

becomes

Y = (QR)β + ε = Qc+ ε, c = Rβ .

The least squares estimator for c is trivially

ĉ = (Q′Q)−1Q′Y = Q′Y

and

Var(ĉ) = σ2(Q′Q) = σ2Ik ,
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so that the elements of ĉ are uncorrelated (independent under normality). Of course, if

you want to work with β instead, you need to solve (this is an order O(k2) calculation...

inversion is order k3)

Rβ̂ = ĉ

for which

Var(β̂) = σ2R−1(R−1)′ = σ2(R′R)−1 = σ2(X ′X)−1 .

A particular benefit of doing regression this way is that it avoids the direct calculation

of X ′X which squares the condition number of the problem, making numerical errors

more insidious.

Augmented matrix for regression ...

Typically, when the QR is used in regression, the initial algorithm is applied to the

augmented matrix (X|Y ). This leaves the coefficients ĉ in positions 1, 2, . . . , k of the

last column of the augmented R. The last column of the augmented Q are the residuals,

and the square of the last diagonal element of R is the residual sum of squares. Also,

it is advisable in this context to place a column of one’s as the first column of X so

that the first step of the algorithm centers the remaining vectors, reducing the size of

subsequent inner products (and increasing the numerical precision).

Singular Value Decomposition SVD

Definition ...

The SVD generalizes the eigenvalue or spectral decomposition of a square matrix to

n× k matrices, with n ≥ k. Given any n× k real-valued matrix X, the decomposes or

“factors” X as a product of two orthogonal matrices and a diagonal matrix:

Xn×k = Un×kDk×kV
′
k×k ,

where the columns of U and V are orthogonal and D is diagonal,

D = diag(σ1 ≥ σ2 ≥ · · · ≥ σk ≥ 0) .

The diagonal values are known as the singular values. Corresponding to the rank-one

decomposition (1) offered by the spectral decomposition, we have

X =
k∑
j=1

σjujv
′
j . (3)

Matrix norms ...

The SVD gives expressions for the matrix norms defined previously for square matrices.

You can check that

‖X‖2
F =

∑
j

σ2
j , ‖X‖ = σ1
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Interpretations ...

By substituting and noting the orthogonality,

X ′X = V D2 V ′ ,

implying that σ2
j are the eigenvalues of the cross-product matrix X ′X and that the

columns of V are the eigenvectors. Similarly, if we consider the outer product,

XX ′ = U D2 U ′ .

To get a better feel for the columns of U , consider the projection matrix (or “hat”

matrix) of regression. In a regression model

Y = Xβ + ε ,

the fitted values can be written as

Ŷ = Xβ̂ = X(X ′X)−1X ′Y = H Y

where

H = X(X ′X)−1X ′ = (UDV ′)(V D2V ′)−1(UDV ′)′ = UU ′ .

Thus, the fitted values are a linear combination of the columns of U ,

Ŷ = U(U ′Y ) ,

and the residuals live in the orthogonal complement of U .

Approximation theorem ...

Some interesting statistical applications of the SVD arise from its use to approximate

a matrix by one of lower rank. The Eckart-Young-Mirsky theorm shows that the best

L2 approximation to an indicated matrix is found from the SVD:

min
rank(Y )=m

‖X − Y ‖2
2 = ‖X −Xm‖2

2 = σ2
m+1

and

min
rank(Y )=m

‖X − Y ‖2
F = ‖X −Xm‖2

F =
k∑

m+1

σ2
j

where for m ≤ k

Xm =
m∑
j=1

σjujv
′
j .

In effect, to form Xm one zeros the singular values σm+1, . . . , σk.

Proof: The proof of this result is quite simple, once you use the right geometric ar-

gument. Using the inner-product (2), you can define a basis for the space of n × k
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matrices. The dimension of the space is nk. The usual coordinate system with basis

vectors ci ∈ Rn and rj ∈ Rk (zeros everywhere but in the indexed location) gives

X =
∑
i,j

xi,jcir
′
j ⇒ 〈X, c`r′m〉 = x`,m

The SVD gives the coordinates of X using a different set of basis vectors, namely

uiv
′
j, (i = 1, . . . , n; j = 1, . . . , k). To get the closest approximation to X in this coor-

dinate system is thus a simple projection which does not include the last components

of the sum (3).

Total least squares TLS ...

Statistics, with its focus on prediction, often leads one to ignore the common problem

in regression: The predictors often have just as much error as the response. One way

to deal with this is rather than think of how to approximate the response Y as a linear

combination of the predictors, instead try to

min ‖[X|Y ]− [X̃|Ỹ ]‖

over all n× (k + 1) matrices [X̃|Ỹ ] subject to the condition Ỹ lies in the column span

of X̃. Any set of coefficients β̃ that describe

Ỹ = X̃β̃ or [X̃|Ỹ ](β̃′,−1)′ = 0

are the chosen “regression coefficients”. It can be shown that this TLS estimator β̃ is

consistent for β when the X’s are contaminated by error (ordinary least squares is not

consistent in this context).

SVD and total least squares ...

If the rank of [X|Y ] is k or smaller, the system is degenerate and an exact solution

may be found. Assuming on the other hand that σk+1 > 0, the Eckart-Young-Mirsky

theorem cited above shows that the SVD provides the answer,

[X|Y ]− [X̃|Ỹ ] = σk+1uk+1v
′
k+1 ,

which is a rank one adjustment to the augmented matrix [X|Y ]. Since the approxi-

mating matrix is

[X̃|Ỹ ] =
k∑
j=1

σjujv
′
j

the needed coefficient vector is just a multiple of vk+1 which has a -1 in the last position

and “regression coefficients” are the first k elements

β̃j =
−1

vk+1,k+1

vk+1,j .

Note that vk+1,k+1 6= 0 since we have assumed σk+1 > 0.
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Closed form of TLS solution ...

Surprisingly, there is a simple expression for the TLS solution β̃ which closely resembles

the OLS solution:

β̃ = (X ′X − σk+1Ik)
−1X ′Y . (4)

(Proof:. vk+1 is an eigenvector of [X|Y ]′[X|Y ] with eigenvalue σ2
k+1. Pulling off the

“top row” of this expression leads to (4).)

Comments on TLS ...

Thinking about the source of bias in the OLS solution suggests that this is a useful

approach. Assume the vectors y, x ∈ Rn have mean zero and we want to estimate the

regression coefficient β of y on x in the familiar model

y = xβ + ε

However, assume as well that x has been contaminated by some independent measure-

ment error u ∈ Rn, Var(ui) = σ2
u, so that we do not see x, but rather xu = x + u. If

we now do the usual OLS regression, with xu in place of x, we find that the estimator

is biased and inconsistent,

β̂ =
x′uy

x′ux
′
u

P→ Cov(x, y)

Var(x) + σ2
u

The singular value σk+1 gives an estimate of the level of measurement error.

One gets a bit queasy, though, since this estimator moves in the opposite direction of

common statistical estimators which shrink toward zero. You can read more about this

method in van Huffel and Vandewalle (1991), The Total Least Squares Problem, SIAM,

Philadelphia. Other solutions of this so-called “errors in variables” model include the

use of instrumental variables in econometrics.


