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Statistics 540, Robust Estimation

Robust Estimation
Problem ...

The usual introductory setting for robust estimation is the idealized location problem

yi = µ+ εi, εi
iid∼ F, i = 1, . . . , n,

where F denotes a distribution of errors which is typically assumed to be symmetric

about zero (P (X ≤ x) = P (X > −x), or F (x) = 1 − F (−x)). This symmetry forces

various estimators like the mean and median to have a common target. Both the mean

E yi (assuming it exists) and median are equal to µ. Let σ2 = Var(yi) = Var(εi)

denote the common variance which may be infinite. The goal is to estimate µ from the

n observations yi, with an emphasis on non-gaussian errors.

Problems with the sample average ...

Although the sample average Y =
∑
Yi/n has a variety of optimality properties, it fares

poorly (in the sense of high sampling variance) when the data are prone to outliers.

For example, suppose that F is the Cauchy distribution with density

f(x) =
1

π(1− x2)
,

which is also Student’s t with one degree of freedom. The expectation E Y does not

exist for the Cauchy, but one can still compute Y from data. It has infinite variance.

In contrast, the population median F−1(1/2) is well-defined, and the sample median

Ymed has asymptotic variance (let n be even)

Var(Ymed) = Var(F̂−1(
1

2
))

= Var(F−1(U(n/2))) 0 < U(1) ≤ · · · ≤ U(n) < 1

→ 1

f 2(µ)

1

4n
(1)

Contaminated distributions ...

OK, so the Cauchy is a bit extreme. A more reasonable model, perhaps, for outliers

in data is the contamination model in which one observes

Yi ∼ (1− p)N(µ, σ2) + pN(µ, cσ2), 0 ≤ p ≤ 1,

and the contamination constants p and c are on the order of p = 0.05 and c = 10 (i.e.,

5% contamination with 10 times larger variance). In this case, its easy to see that

Var(Y ) = σ2 (1− p) + p c

n
.

The expression (1) for the variance of the median still holds, but with f(µ) determined

from the mixture of normals. As c → ∞ for some p > 0, Var(Y ) → ∞ whereas

Var(Ymed) remains finite.
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Task ...

Construct a plot showing the values of p and c where Var(Y ) = Var(Ymed).

Trade-offs and the trimmed mean ...

So why not use the median all of the time. Simple: From (1), the sample median

pretty inefficient compared to the sample average when the data are Gaussian (100

2/π ≈ 64% efficient). Robust statistic seek a balance which behaves like Y for ‘good’

data, but downweights outliers. For example, a trimmed mean is the average of an

inner fraction of the observed data,

Y α =
n−k+1∑
i=k

Y(i)/(n− 2k)

where k = α n (rounded to an integer). That is, Y α is the average after ‘trimming’

100α% from each tail of the data. The trimmed mean is like a mean in the center of

the data, but like a median at the extremes (the extremes are only used to determine

which observations are at the center of the data).

Influence functions ...

A nice way to think about an estimate of location µ̂ is as the solution of a scoring

equation (estimating equation) ∑
ψ(Yi − µ̂) = 0 , (2)

where ψ denotes a scoring function known as the influence function. If indeed ρ =

∂ log f/∂µ is the score function, we obtain the usual MLE. To obtain Y , we have

ρ(x) = x; to get Ymed, use ρ(x) = signum(x). The influence function of the trimmed

mean Y α is a combination of these two.

Having seen these influence functions, one immediate thinks of making them “smoother”.

Tukey went even further, and introduced a class of so-called redescending ψ functions

that don’t even count outliers at all, but rather eliminate them entirely from consid-

eration. The most famous of these is known as the biweight influence function

ψb =

{
(1− (x

s
)2)2, |x| < s,

0 otherwise .

The scaling term is quite important. As a practical matter, in applications, s =

7× (medianabsolutedeviation) gives an estimator which is 95% efficient when the data

is normal.

Computing the robust estimator ...

When you’ve got a closed form expression, there’s no problem. The biweight, however,

is defined implicitly from (2). This leads to an application of Newton’s method. But

beware, since ψb is redescending, the biweight estimator is not uniquely defined.
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Alternatively, and very cleverly, you can make this problem a lot easier with a simple

insight. Namely, write ψ(x) = xW (x) so that (2) becomes∑
ψ(Yi − µ̂) =

∑
(Yi − µ̂)W (Yi − µ̂) =

∑
wi(Yi − µ̂) . (3)

Given the weights wi, this expression defines µ̂ as simply a weighted average of the

responses. However, we need µ̂ to obtain the weights. What do we do? Iterate. Use

some initial estimator µ̂0 to obtain weights w0
i and compute the weighted mean µ̂1.

Start over, and continue the iterations. This popular algorithm is known as iteratively

reweighted least squares (IRLS).

Variance estimates ...

What should be used for estimating Var(µ̂)? It is a weighted mean, and we have

expressions for the variance of these, but are they appropriate here?

References ...

Tierney offers some additional description of a robust regression in Section §5.6.2 (page

173). A nice overview of the area motivated with some examples is Hoaglin, Mosteller,

and Tukey (Understanding Robust and Exploratory Data Analysis, 1983, Wiley) and a

more technical treatment (with a great introduction) is Hampel, Ronchetti, Rousseeuw,

and Stahel (Robust Statistics, 1986, Wiley).


