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Statistics 540, Smoothing

Scatterplot Smoothing

Overview

Problem ...

The usual setting for scatterplot smoothing is the idealized regression model

yi = f(xi) + σεi, εi ∼ N(0, 1), i = 1, . . . , n,

where the observations (xi, yi) are independent. Independence is crucial, whereas the

assumption of normality is more of convenience than necessity as in least squares

regression. The goal is to estimate the underlying expectation function f from the n

observations (xi, yi). For the moment, we’ll assume that xi is a scalar.

Assumptions ...

We need to match the estimator f̂ to the properties that we assume hold for f . For

example, if we assume that f is periodic with period d, then we ought to have our

smoother f̂ share this property. A more reasonable assumption is that f is a continuous

or perhaps differentiable function.

From the data alone, we cannot determine an upper bound on the roughness of f (see

Donoho 1988), though we can obtain lower bounds. In the related context of density

estimation, for example, we can find a one-sided interval for the number of modes

(indicating that we need at least a certain number), but not a two-sided interval. How

could the data indicate that the true density was not multimodal, with a mode at each

observation?

Issues ...

One needs to keep a variety of issues in mind when smoothing, as trade-offs need to

be made. Key attributes of all smoothers are

1. Smoothness properties of estimator, supporting rationale.

2. Local sensitivity to data.

3. Bias/variance trade-off.

4. Estimators are blend linear and nonlinear functions.

A common criterion that makes some of these issues more concrete is to define the

estimator implicitly, as the solution of

f̂ = arg min
f

∑
i

(yi − f(xi))
2 + λ

∫ b

a
f ′′(t)2dt . (1)

Some further issues that are often forgotten until too late are
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1. Behaviour at endpoints.

2. Effect of missing data and the assumption of equal spacing.

3. Robustness to outlying values.

4. Computational speed versus generality.

Approaches ...

The most common estimation methods are

Sliding regressions link a series of linear/polynomial fits computed from overlapping

subsets of some width. The lowess smoother in LispStat is the best example of

this group.

Kernel methods weight the data by a moving smoothing kernel K of some width

(typical kernels resemble the Gaussian density). The estimator of f(x) has the

form of weighted average of the data,

f̂(xi) =

∑
i yiK(xi−x

w
)∑

iK(xi−x
w

)
(2)

The choice of kernel function K is much less important in applications than the

choice of the smoothing width w.

Smoothing splines join continuous low-order polynomials that satisfy some external

smoothness assumption. These are the main topic for today’s class.

Wavelets and thresholding which together comprise a localized orthogonal decom-

position of the data with selected coefficients shrunken toward zero. We will study

these separately later as time permits.

Each of these can be made more ‘robust’ (ie, tolerant of outliers) by adapting the

estimation method appropriately. For example, lowess uses a robust regression rather

than a least squares regression and one can replace the weighted average (2) of the

kernel smoother by a robust estimate of location.

Cubic Splines

Knots ...

Let the points a = x1 < · · · < xn = b define a partition of the interval [a, b], and

assume that we have observations (xi, yi), i = 1, . . . , n. The points xi are known as

the knots.

Splines ...

A spline is a piecewise polynomial function. The simplest spline is a piecewise constant

function,

s0(x) = yj , xj ≤ x < xj+1 .
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This spline has no continuity at the knot locations. The linear spline

s1(x) = yj + (yj+1 − yj)
x− xj

xj+1 − xj
, xj ≤ x < xj+1 .

is continuous, but its first derivative (a zero order spline) is a step function. Note that

we define s0 from one knot, s1 from two (an interval). The quadratic spline s2 requires

two intervals (3 knots) and the cubic spline s(x) = s3(x) requires three intervals (4

knots). Cubic splines occupy a special place in the theory of smoothers, and we’ll focus

on these.

Definition ...

The function s(x) is a cubic spline on [a, b] if it

1. Interpolates: s(xi) = yi, is

2. Smooth: s(x), s′(x), s′′(x) are continuous, and is a

3. Cubic polynomial on each interval [xi, xi+1].

Extremal property ...

Cubic splines have an important extremal property. Among all interpolating, differ-

entiable functions, the so-called natural cubic splines minimize the squared integrated

second derivative:∫ b

a
s′′(t)2dt ≤

∫ b

a
g′′(t)2dt, with s′′(a) = s′′(b) = 0, (3)

Proof Begin by expanding the square, with the terms rearranged in a useful manner:

0 ≤
∫ b

a
(s′′(x)− g′′(x))2dx =

∫ b

a
g′′(x)2 − s′′(x)2 − 2s′′(x)(g′′(x)− s′′(x))dx

We are done if we can show that the last term is zero. Start by formulating it as an

integration by parts, then use the fact that s′′′(x) is piecewise constant on the partition:∫ b

a
s′′(x)(g′′(x)− s′′(x))dx =

∫ b

a
s′′(x)d(g′(x)− s′(x))

= s′′(x)(g′(x)− s′(x))|ba −
∫ b

a
s′′′(x)(g′(x)− s′(x))dx

= s′′(b)(g′(b)− s′(b))− s′′(a)(g′(a)− s′(a))
∑
i

∫ xi+1

xi
s′′′(x)(g′(x)− s′(x)

= s′′(b)(g′(b)− s′(b))− s′′(a)(g′(a)− s′(a))
∑
i

ki(g(x)− s(x))|xi+1
xi

= 0

if we also assume the standard condition that s′′(a) = s′′(b) = 0. With these additional

boundary conditions (that produce a linear extrapolation), s(x) is known as a natural

cubic spline.
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Unique calculation solution ...

Given n pairs (xi, yi) with distinct x’s, there is but one cubic interpolating spline. The

associated n − 1 cubic polynomials have 4(n − 1) coefficients that we must be able

to determine uniquely. The interpolation condition implies 2(n− 1) linear constraints

on the coefficients. The smoothness of each derivative implies a further n − 2 con-

straints (one for each interior knot. Combining all of these leads to a ‘huge’ linear

system of equations with the 4(n − 1) unknown coefficients and 4(n − 1) − 2 linear

equations. Adding the two additional ‘natural’ boundary conditions gives a complete

system (which is nearly diagonal).

Regression splines ...

So far, nothing has been said about smoothing with splines. As defined, splines simply

smoothly interpolate data with smoothly joined piecewise polynomials. Splines were

designed as low-order interpolating polynomials, not as smoothers. They were needed

to avoid the end-value problems that one runs into with high-order interpolating poly-

nomials. There are two broad ways that one can smooth with piecewise polynomials.

The first, loosely called regression splines, is quite simple and underlies Friedman’s

MARS method and the Turbo-Smoother of Friedman and Silverman.

Given observations (x1, y1), . . . , (xn, yn), use only a few observations as knots and com-

pute a polynomial on each interval by least squares. Suppose n = 100 and we use

x50 = 0 as the single knot. Fit a cubic on each interval. The initial polynomial is, say,

s(x) = A(x) = a0 + a1x+ a2x
2 + a3x

3 for x ≤ 0.

Let B(x) =
∑3
j=0 bjx

j denote the polynomial for positive x.

When fitting from data, one does not simply fit two separate cubics via least squares

— these two would not satisfy the smoothness conditions. In fact, adding the second

polynomial adds one degree of freedom to the fit. Fix aj and see what you can tell

about B(x). The interpolating condition A(0) = B(0) implies b0 = a0. Continuity

of s′(x) and s′′(x) at zero implies that b1 = a1 and b2 = a2. All that’s left is to find

the new cubic term b3. Non-zero knots make the algebra more complex, but each new

cubic adds but one degree of freedom (a new coefficient) to the fit (four coefficients

minus 3 linear constraints equals one new coefficient).

Smoothing splines ...

Smoothing splines traditionally mean something different. Here’s the idea. Pick any

smoother that you like, and let ŷi denote its fitted values at the given xi. No matter

what smoother has been used to determine the ŷi, the extremal property (3) implies

you can do better in terms of the criterion (1) by interpolating these ŷi with a cubic

spline. The trick to calculations, however, is to fit the minimizer of (1) rather than

‘improving’ another estimator.
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Computing Smoothing Splines

Methods of calculation ...

You have several ways to approach the computation of smoothing splines. We’ll con-

sider two. The first is to return to the regression splines, and think of fitting these

with a knot at every point. The second is more direct and relies upon a set of basis

functions known as B-splines for the space of functions spanned by the cubic splines.

Via regression splines ...

To find a cubic interpolating spline via regression, consider the representation

s(x) = β0 + β1x+ β2x
2 + β3x

3 +
n−1∑
j=2

θj(x− xj)3
+ (4)

where x+ is the positive part of x. Superficially, this expression has n+2 unknowns, but

the boundary conditions add two more constraints that nail things down. You can check

that the resulting function satisfies our conditions for a cubic spline. (Numerically, one

avoids this representation since it introduces very large values (the cubics) and leads

to near singular design matrices even with fewer than n− 1 intervals. It does help one

see what is happening, however.)

The hard part of this representation is to decern how to incorporate the penalty term∫
f ′′(x)2dx into the estimation of the coefficients of the regression spline (4). If we

substitute s(x) from (4) into this integral for f , we obtain for the ith interval the sum∫ xi+1

xi
s′′(x)2dx =

∫ xi+1

xi
(2β2 + 6β3x+ 6

∑
j≤i

θj(x− xj))2dx

The accumulating nature of the basis functions (they span all intervals to the right)

make this expression pretty unwieldy. The remedy is to use a different, equivalent set

of regressors.

B-splines ...

An alternative to the truncated power basis used implicitly in (4) is to use polynomials

which are zero outside of a small range known as B-splines. For example, in the linear

case, the regression spline formulation is (new θ’s)

s1(x) = β0 + β1x+
n−1∑
j=2

θj(x− xj)+ .

The associated regression design matrix has a triangular shape. Alternatively, we can

parameterize s1 using triangular functions that span just two intervals,

Bj,2(x) =


x−xj

xj+1−xj , xj ≤ x < xj+1

1− x−xj+1

xj+2−xj+1
, xj+1 ≤ x < xj+1
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Then write the linear spline as

s1(x) =
∑
j

γjBj,2(x) ,

so that the regressors are more nearly orthogonal. Consequently, the calculations

are more stable, and since B-splines are nearly orthogonal making “X ′X” is almost

diagonal, the calculations are also quite fast. Cubic B-splines behave similarly and are

computed in essence by integrating up from the linear B-splines. It is important to

note that the B-splines are polynomials defined by the grid of xi’s and do not depend

on the yi.

B-splines are in general defined by the recurrence expression

Bj,k(x) =
x− xj

xj+k−1 − xj
Bj,k−1(x) +

xj+k − x
xj+k − xj

Bj+1,k−1(x) ,

and one gets considerable simplifications when the grid of x’s is equally spaced. The

recursion is started with the indicator functions

Bj,1 = 1 for xj ≤ x < xj+1

and zero elsewhere (see deBoor 1978, eqns 4,5 of Chapter 10).

Smoothing, at last ...

Write the cubic spline in vector form as a linear combination of cubic B-splines,

s(x) =
∑
j

γjBj(x) ⇒ (f(x1), . . . , f(xn))′ = Bγ

where B is the matrix with element Bij = Bj(xi). Then substitute this expression into

the smoothing expression (1) to obtain

(Y − Bγ)′(Y − Bγ) + λγ′Mγ (5)

where the matrix M has elements

Mij =
∫ b

a
B′′i (x)B′′j (x)dx .

The expression (6) is now in the form more suited to be recognized as a penalized least

squares estimator, with solution

(B′B + λM)γ̂ = B′Y . (6)

This type of estimator has a long history, including Marquart’s method for nonlinear

optimization (keeping the Hessian positive definite) and ridge regression (Hoerl and

Kennard, where it provides a biased estimator to overcome collinearity).
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Bayesian interpretation ...

There is also a Bayesian argument that leads to a penalized least squares solution.

Assume that the data are conditionally normal following the usual regression model,

Y = Xβ + ε, ε ∼ N(0, σ2In).

However, add a prior distribution on the slopes, making them normal as well and

centered on zero with variance v2,

β ∼ N(0, v2Ik) .

Thus, Y |β ∼ N(Xβ, σ2In) and Cov(Y, β) = X Var(β) = v2X, and the joint distribu-

tion of Y and β is (
Y

β

)
= N

(
0,

(
v2XX ′ + σ2In v2X

v2X ′ v2Ik

))

The posterior mean for β is then (using the usual regression expressions and letting

r = σ2/v2)

E β|Y = v2X ′(v2XX ′ + σ2In)−1Y

= (1/r)(Ik −X ′X(X ′X + rIk)
−1)X ′Y

= (X ′X + rIk)
−1X ′Y .

The first step comes as a special case of the formula for the inverse of a partitioned

matrix. In particular, for a square matrix partitioned as Mij (i, j = 1, 2), we have

(M11 −M12M
−1
22 M21)−1 = M−1

11 +M−1
11 M12(M22 −M21M

−1
11 M12)−1M21M

−1
11 . (7)

You can derive this expression by diagonalizing the matrix M in blocks using the re-

gression expressions. You can reproduce the last step by rearranging the corresponding

scalar expression as

1− x2

x2 + r
=

r

x2 + r
= (x2/r + 1)−1 .

Choosing the Smoothing Parameter

Picking λ ...

So how does one choose λ in the criterion (1)? A popular choice is based on cross-

validation, a mechanism for assessing the out-of-sample performance of a statistical

estimator.

Judging a regression model ...

So how ought one pick the variables in a regression model? One approach is to try to
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pick the model that you believe will predict best when applied to a new set of data

(from the same population as the one used to construct the model). Suppose that we

observe n observations whose mean is some vector η which is unknown to us, though

fixed:

Y = η + σε, ε ∼ N(0, In),

For model building, assume that we are going to approximate η by projecting it into a

subspace associated with a collection of k predictors, collected into the n × k matrix

X. Let η̂ = Xβ̂ be the least squares estimate of η based on this projection of η into

the span of X, Xβ = Hη for H = X(X ′X)−1X ′. For convenience of notation, let

‖y‖2 = E y′y.

The expected prediction error sum of squares for predicting an independent vector

Y ∗ = η + σε∗ with the same mean η using the fit to the original n observations is

‖Y ∗ − η̂‖2 = ‖η −Hη‖2 + ‖σε∗ +Hη − η̂‖2

= ‖η −Hη‖2 + ‖σε∗‖2 + ‖Hη −HY ‖2

= ‖η −Hη‖2 + nσ2 + ‖Hε‖2

= ‖η −Hη‖2︸ ︷︷ ︸
bias2

+ (n+ k)σ2︸ ︷︷ ︸
variance

. (8)

The bias shrinks as we increase the size of the subspace for projection (ie, add more

variables to the model, increasing k), whereas the variance term gets larger as the

number of predictors k increases. We see the classic trade-off of bias versus variance.

Notice that if you consider the MSE of η̂, you will find

MSE(η̂) = ‖η − η̂‖2 = ‖η −Hη‖2 + kσ2 ,

dropping the term nσ2 which does not depend on the fitted model and thus does not

affect which model we would choose. That is, the model that minimizes ‖Y ∗ − η̂‖2

also minimizes the MSE.

Now, if we hope to find the model that minimizes this sort of out-of-sample prediction

error, we need some way of computing (8) from the available data. For example, the

expected residual sum of squares (expected in-sample prediction error) is

‖Y − η̂‖2 = ‖η −Hη‖2 + ‖σε+Hη − η̂‖2

= ‖η −Hη‖2 + ‖σε+Hη −HY ‖2

= ‖η −Hη‖2 + σ2‖ε−Hε‖2

= ‖η −Hη‖2 + (n− k)σ2 . (9)

That is, the residual sum of squares is the sum of bias plus another term which now

also shrinks as k increases. This is not the needed behaviour and leads to the problem

of overfitting (using too many predictors). Among the patches for this problem are

Mallow’s (1973) Cp statistic as well as ...
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Cross-validation ...

In the spirit of out-of-sample prediction, cross-validation seeks the regression model

(really, the set of predictors that make up X) which minimizes∑
i

(yi − x′iβ̂(−i))
2 (10)

where β̂(−i) denotes the slope estimates based on all of the data except for the ith

observation. Rather than setting apart some fraction of the data for validation, each

observation is left out, in this case one at a time (better alternatives leave out 2 or

more), and predicted from a model fit to the rest of the data. For smoothing, the

corresponding expression is ∑
i

(yi − f̂(−i))
2 , (11)

with f̂(−i) denoting the smooth fit without (xi, yi).

Expressions for regression calculations ...

For regression, there is a very useful special case of the partitioned inverse expression

(7):

(M − ab′)−1 = M−1 +
M−1ab′M−1

1 + a′M−1b
(12)

where M is a square matrix and a and b are conformable vectors. (Proof idea: Look

at the geometric expansion 1/(1−x) = 1 +x+x2 + · · ·. Write (M − ab)−1 = M−1(I −
ab′M−1)−1 and try to expand similarly.) In regression, the value of (12) is to notice

that

(X ′(−i)X(−i))
−1 = (X ′X − xix′i)−1 = (X ′X)−1 +

(X ′X)−1xix
′
i(X

′X)−1

1− hi
,

where hi = x′i(X
′X)−1xi is the so-called leverage for the ith observation (the diagonal

of the projection matrix H = X(X ′X)−1X ′). This expression then gives

β̂(−i) = (X ′(−i)X(−i))
−1X ′(−i)Y(−i)

=

(
(X ′X)−1 +

(X ′X)−1xix
′
i(X

′X)−1

1− hi

)
(X ′Y − xiyi)

= β̂ − (X ′X)xi
ei

1− hi
,

where ei is the usual residual ei = yi − x′iβ̂. Thus its quite easy to compute the

summands in (10):

yi − xiβ̂(−i) = yi − x′i(β̂ − (X ′X)−1xi
ei

1− hi
)

= ei +
hiei

1− hi
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=
ei

1− hi
,

so that (10) becomes ∑
i

(yi − x′iβ̂(−i))
2 =

∑
i

e2
i

(1− hi)2
. (13)

Thus, the cross-validation sum of squares (CVSS) is simply a weighted sum squared

residuals, and very easy to compute.

Generalized cross-validation (GCV) ...

Generalized cross validation goes one step further. Notice first that∑
i

hi = trH = trX(X ′X)−1X ′ = k ,

the number of regressors (including the constant). Rather than compute CVSS in

(13) directly, replace hi in the denominator with its average, h = k/n, obtaining the

approximation

∑
i

(yi − x′iβ̂(−i))
2 ≈

∑
i

e2
i

(1− h)2

=
∑
i

e2
i

(1− k/n)2

=
(

n

n− k

)2∑
i

e2
i

which has from (9) expected value

bias2 +
n2

n− kσ
2 ≈ bias2 + (n+ k)σ2 ,

as motivated by out-of-sample prediction. Another way to look at this last expression

is to notice that the MSE of η̂ is ‖η −Hη‖2 + kσ2, so that minimizing the CVSS is

attempting to minimize the MSE of the fitted model.

Applications in smoothing ...

In general, things are not so simple when dealing with smoothing, but one gets a long

way by treating most smoothers in a manner resembling regression. One can always

resort to “brute force” to obtain f̂(−i), but better methods are easily obtained and

generalized cross validation simplifies things further.

Smoother matrix ...

The key step in leveraging the regression calculations is to express a smoother in linear

form resembling the least squares projection Ŷ = H Y . For example, the moving

average smoother of length w can be written as

f̂ma =
1

w
W Y
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where W is the n × n matrix whose i row contains the weights (mostly 1’s) used to

compute the ith smoothed value. Similarly, using the B-spine representation for the

fitted model (6) we can write

f̂ = Bγ̂ = B(B′B + λM)−1B′ Y = SλY . (14)

We are not likely compute f̂ this way, but it makes the problem more easy to think

about. Note that Sλ depends only upon the xi’s and choice of λ. By comparison to

the true projection matrix H from regression, Sλ for smoothing splines

1. Is not a projection matrix since Sλ 6= S2
λ,

2. Is symmetric (look at (14)), and

3. Has trace which is often used as the degrees of freedom for the smoother. (Others,

such as tr S2
λ are also possible since Sλ is not a projection matrix.)

MSE of smoother ...

Writing f̂ = SλY , we get a nice expression for the MSE of the smoother,

‖f − SλY ‖2 = ‖f − Sλf − σSλε‖
= ‖f − Sλf‖2 + σ2‖Sλε‖2

= f ′(I − Sλ)2f + σ2trS2
λ .

Compare this to the previous regression expressions and you’ll see that the difference

is really just the second term, which for regression would be kσ2.

Cross-validation with smoothers ...

Note first that for smoothing splines that Sλ has two eigenvectors with eigenvalue 1,

Sλ1 = 1, Sλx = x

where x denotes a linear vector with xj = jx1. A method that leads to simple expres-

sions for CVSS is to define (suppressing λ from Sλ)

f̂(−i) =

∑
j 6=i Sijyj
1− Sii

, (15)

that is, set the weight on yi to zero and renormalize the others so that they sum to

one (How do you know they ought to sum to one?). From (15) we obtain

(1− Sii)f̂(−i) = f̂i − Siiyi
= f̂i − Sii(f̂i + ei)

= (1− Sii)f̂i − Siiei

so that we can express the “leave-one-out” fit as

f̂(−i) = f̂i −
Sii

1− Sii
ei . (16)
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Thus the CVSS for smoothing becomes

∑
i

(yi − f̂(−i))
2 =

∑
i

(yi − f̂i +
Sii

1− Sii
ei)

2

=
∑
i

(ei +
Sii

1− Sii
ei)

2

=
∑
i

e2
i

(1− Sii)2
,

which corresponds to the expression (13) for regression. One then chooses the value

of λ that minimizes this expression. Alternatively, using GCV, one can replace Sii by

the average trSλ/n as was done with regression.

Further reading... The book Generalized Additive Models by Hastie and Tibshirani dis-

cusses all this and more.


