Solutions for Assignment #1

(1) This example uses the intervals [\$3392, \$3644] and [\$3491, \$3749] for the convenience store sales. I used 100 observations for each simulated column.

Here is a table with my results:

(a) Subset selection, #1	3578	SD	29	n=11
(c) Subset selection, #2	3535		51	n=12
(b) Regression, #1	3570		42	
(d) Regression, #2	3558		45	

If you compare the results of the two procedures to the "exact" interval [\$3480, \$3658] or 3569 with SD \approx 44.5, you'll see that regression consistently was near the target mean and SD with both samples. The results from the subset selection (which here only use 10% of the data) are quite variable from sample to sample and do not give reliable estimates of the pooled results.

(2) As the time to make your decision approaches, a third source of information comes on the scene. This source of information at the chain of convenience stores has access to other information and said
"A 66.67% interval for the average sales of the outlet is [\$3575, \$3585]." Combine this new information with the pooled interval [\$3480, \$3658] based on the 200 pooled observations.

The intent of this question was simply to remind you that not all intervals are 95% intervals, as well as to convey the effect of combining a precise interval with a much wider interval. When "decoding" the SD from the interval for the third source, you need to simulate it using the formula 3580 + 5*?normal. The length of this interval is only 2 SDs since it's a 66.67% coverage interval, not a 95% interval. Combining this interval which is very, very narrow with the pooled interval gives the following result: a center of 3580 with an SD of 5. These are basically the same as the narrow interval alone.

Pooled =	3580.3 -	1.01322	S3-Pooled

Summary of Fit	
RSquare	0.98
RSquare Adj	0.98
Root Mean Square Error	5.06