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Homework #3

Chapter 3, Shumway and Stoffer

3.2 AR(1) process with starting values, initialization

(a) Write the process as
xt = wt + φwt−1 + φ2wt−2 + · · · + φtw1

The mean is the sum of the means, E xt = 0 and the variance is

Varxt = σ2
t∑

j=0

φ2j = σ2 1− φ2(t+1)

1− φ2
.

Hence, because the variance depends on t, xt is not stationary.

(b) Part (a) gives the variance. The covariance is the collection of overlapping terms,

Cov(xt, xt−h) = Cov




t−h∑

j=0

φj+hwt−h−j ,
t−h∑

j=0

φjwt−h−j





= φh Var xt−h

The correlation is thus

Corr(xt, xt−h) =
Cov(xt, xt−h)

( Var xt Var xt−h)1/2
= φh

(
Var xt−h

Var xt

)1/2

(c) Take the limit in the expression for the variance in part (a). In the limit, the role of the
starting value vanishes since φh → 0.

(d) Use normals as the wt and discard some initial “burn in” period of data. In practice, when
this procedure is used, the length of the burn-in is determined by the memory of the process
which in turn is controled by the proximity of the zeros of φ(z) to the unit circle. Modern
techniques avoid this by forming an initial block of p observations which have the stationary
distribution – albeit only in the Gaussian case.

(e) Start the process in its stationary form. This process is now stationary without the need
for an approximate burn-in period. It’s easy to do in the AR(1) case, but requires a matrix
factorization (Cholesky decomposition of Γp for p > 1). For this problem, write

xt =
t−2∑

j=0

φjwt + φt−1x1.

This has constant mean zero, and its variance does not depend on t:

Var(xt) = σ2
w

1− φ2(t−1)

1− φ2
+ σ2

w
φ2(t−1)

1− φ2
= σ2

w
1

1− φ2
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The covariances are also invariance of t (for |h| < t),

Cov(xt, xt−h) = Cov(
h−1∑

j=0

φjwt−j + φhxt−h, xt−h) = Var(xt−h)

which was shown to be stationary previously.

3.3 Polynomial zeros
Use R to find the zeros of the polynomial (i.e., use the function polyroot).

(a) xt = 0.8xt−1 − 0.15xt−2 + wt − 0.3wt−1

φ(z) = 1− 0.8z + 0.15z2 ⇒ z1 = 2, z2 = 1/0.3

θ(z) = 1− 0.3z z1 = 1/0.3

The process is causal and invertible as the zeros lie outside the unit circle. The zero of the
moving average cancels one of those for the AR, reducing to an AR(1) process.

(b) xt = xt−1 − 0.5xt−2 + wt − wt−1

φ(z) = 1− z + 0.5z2 ⇒ z1 = 1− ı, z2 = 1 + ı

θ(z) = 1− z z1 = 1

The process is causal, but not invertible.

3.7 ARMA(1,1)
The point of this exercise is to see the qualitative differences among the autocorrelations and

partial autocorrelations of the AR(1), MA(1) and ARMA(1,1) processes (i.e., to appreciate what’s
in Table 1 on page 109).

In particular, the covariances of the ARMA(1,1) process are very similar to those of an AR(1),
decaying geometrically past the initial values: γ(1), γ(k) = φγ(k − 1) for k = 2, 3, . . . . The Yule-
Walker equations provide the starting values for this recursion. Multiply both sides of the equation

xt = φ1xt−1 + θ1wt−1 + wt

by xt, xt−1, . . . and take expectations (use the infinite moving average form xt =
∑

ψjwt−j as
well):

γ(0) = φ1γ(1) + (1 + θ1ψ1)σ2

γ(1) = φ1γ(0) + θ1σ
2

γ(2) = φ1γ(1)
γ(h) = φ1γ(h− 1), h = 3, 4, . . .

3.8 Simulate ARMA(1,1)
The point of this exercise is to notice that the estimated correlations don’t always look very

much like the actual autocorrelations. Hence, using Table 1 is a lot harder than you might think
unless the series is hundreds of points long.
3.9 Cardio mortality, data analysis
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(a) I was curious whether any of you would extend the correlation function far enough to see the
clear seasonal oscillation around 52 weeks. The data have a strong annual cycle.

(b) The predictions revert to the mean quickly, with rather wide intervals.

(c) The forecast errors are clearly dependent. In particular, even if we knew the model order, its
parameters, and had infinite amounts of data, the errors are

yn+1 − ŷn+1 = wn+1

yn+2 − ŷn+2 = ψ1wn+1 + wn+2

yn+3 − ŷn+3 = ψ2wn+1 + ψ1wn+1 + wn+3

and so forth. The presence of estimated coefficients adds further dependence, but the order
of that effect is dominated by the role of the ws.

(d) Bonferroni adjustment is a start (i.e., set the coverage to 1-α/4, say) and works even though
the implied tests are dependent. You still get 95% coverage even though the intervals are
correlated. Make sure that you aren’t using independence of the coverage of the intervals; as
noted in “c”, they are dependent.

3.31 Global temperature deviations, data analysis
The standard diagnostics show that the series ought to be differenced. I let arima fit a model

with differencing to build the predictions since this left the messy task of integrating up the pre-
dictions to the R software. There are problems, however, with R’s calculations for an integrated
model (check out the book’s web site).

Forward-Backward Question

(a) The first task is to write the residual (estimate of the error) at step p + 1 as a function of the
residual at step p. This requires substituting the expression from the Levinson recursion into
the calculations

φp+1,j = φp,j − φp+1,p+1φp,p−j , j = 1, . . . , p. (1)

As vectors, define φp+1,−1 = (φp+1,1, . . . ,φp+1,p)′ (without the last one) and write

φp+1,−1 = φp − φp+1,p+1φ̃p , (2)

where the tilde indicates a vector in reverse order. The error at time t and step p + 1 is then

wp+1,t = xt − φp+1,1xt−1 − · · · φp+1,pxt−p − φp+1,p+1xt−p−1

= xt − (xt−1, . . . , xt−p)(φp − φp+1,p+1φ̃p)− φp+1,p+1xt−p−1

= xt − xt−p
t−1

′
φp − φp+1,p+1(xt−p−1 − xt−1

t−p
′
φp)

= wp,t − φp+1,p+1w̃p,t−p−1
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(b) To interpret the expression in (a), consider adding the variable xt−p−1 to the AR(p) model.
The partial regression of xt on xt−1, . . . , xt−p leaves residuals wp,t. The partial regression
of the added variable xt−p−1 on xt−p, xt−p+1 . . . , xt−1 uses the coefficients in reverse order
and produces residuals w̃p,t−p−1. The partial regression of of wp,t on w̃p,t−p−1 has coefficient
φp+1,p+1 and in turn produces the residuals found in (a).


