
Statistics 910, #1 1

Introduction

Overview

1. Data

2. Concepts

3. Models, methods

Text Examples of Time Series

JJ earnings Choice between complicated polynomial with changing vari-
ance versus percentage change modeled as constant.

Transformations often simplify a model. The example shows that it
can be very easy to confuse model specification error for dependence.
The Durbin-Watson statistic is quite significant, but should we blame
dependence?

Temperature Trend is the key here. Is the trend real, and is it short-term
or long-term? What are the driving factors? Example expands the
data used in the text.

Causation? Later example with glacial varve (sediments left when a
glacier melts, page 63) as a proxy series; Adi Wyner has done related
work.

Speech is highly periodic, with an echo in the periodogram. What does it
mean to be periodic? Not just a sine wave. Perhaps changes state.

Long term dependence produces less precise (i.e., higher standard er-
ror) estimates of statistics like the mean since

Var(Y ) = 1
n2 (nσ2 +

∑
t6=s

Cov(Yt, Ys)

=
σ2

n
+

2
n

n−1∑
h=1

(1− h/n) Cov(Yt+h, Yt)
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The second line requires that the covariance only dependent on the
separation rather than position, that is, stationarity. The covariances
must decay to zero in order for Y to be a consistent estimator.

Finance such as the NYSE stock returns is more the domain of Steele
and financial time series course; time series without signal versus time
series with signal.

El nino and fish give example of trying to find a leading indicator, and
the science suggests which is which.

The complicated cross-correlations have a possibly simple explanation.
If Yt = βXt−` +εt, then the cross-correlations are just a shifted version
of the correlations in Xt itself (note the notation)

Cov(Yt+h, Xt) = β Cov(Xt+h−`, Xt) = βγX(h− `) .

Hence, if Xt has a complex structure, then so do the cross-correlations,
even though the lead-lag association is very simple.

Earthquakes and explosions illustarates classification. (See the pop-
science overview in Scientific American, 2009.)

Random walk simulation shows the dangers of ignoring, incorrectly mod-
eling dependence, as well as the difficulty of recognizing the presence
of dependence.

Perspective, concepts

Variety of objectives Predict, classify, associate (as in regression). All
are helped by forming a model, a way of describing the data as a
mixture of pattern (which is predictable, regular) and noise.

Model = Pattern + Noise

Pattern in a time series captures/describes the association between
values observed over time, concepts such as autocorrelation.

Time series is a stochastic process, a sequence of random variables defined
on a common probability space.

We will stick to discrete index sets, not continuous. After all, data is
always discrete.
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Stationarity Does a time series define a lot or rows or a lot of columns?
Sometimes its both (e.g., longitudinal data), but we’ll emphasize the
analysis of a univariate series. Stationarity allows averaging.

Basic Models, Methods

Smoothing as a way to remove “noise” and emphasize the signal, improve
the signal-to-noise ratio. Depends on what you mean by noise, as in
the example of low-pass and high-pass filtering used in telephone lines.

Moving averages as a common way to remove the noise, taking local
averages of the data to produce a new, “smoother” series. More de-
scriptive, but important to appreciate how such methods influence the
dependence as well.

Autoregression Recursive filtering (or insering feedback) is common; pre-
dict the future as a weighted average of recent values (E εt = 0)

Yt = φYt−1 + εt, Var(εt) = σ2. (1)

Backsubstitution shows the role of noise as a forcing function; the
current value is just a weighted average of prior noise terms.

Yt = εt + φεt−1 + φ2εt−2 + ...+ φt−1ε1 + φtY0 , t = 1, 2, . . . (2)

Notice that:

1. Markovian if εt is independent of past,
f(Yt

∣∣ Yt−1, Yt−2, . . . , Y0) = f(Yt

∣∣ Yt−1).

2. Asymptotically stationary with dependence on “boundary” con-
ditions, here in the form of Y0.

3. What’s it mean as t→∞; need the notion of an infinite sequence
of random variables? Most easily handled as a Hilbert space.

4. Random walk if φ = 1.

5. Hints at the form of the Volterra expansion.
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Sinusoids Decompose time series as a collection of orthogonal variables, as
in

Yt =
∑

j

Aj1 cos 2πjt/n+Aj2 sin 2πjt/n, j = 0, 1, . . . , n/2. (3)

Note that this is just an orthogonal transformation, from one coor-
dinate system determined by time order to another determined by
frequency, A = M Y . Its not a model in our sense; there’s no noise
in this or a description of signal. Wavelets define another orthogonal
transformation of the series.

Hidden state Models with a latent variable, a hidden state, such as those
modeled by a Kalman filter (linear) or a hidden Markov model (HMM).


