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Ezxamples of Stationary Time Series

Overview

1. Stationarity
2. Linear processes
3. Cyclic models

4. Nonlinear models

Stationarity

Strict stationarity (Defn 1.6) Probability distribution of the stochastic
process {X;}is invariant under a shift in time,

]P)(th§$17Xt2§x2,...7thS$k) = F<xt17$t27-"7xtk)
= F(mh+t17$h+t27 s 7xh+tk)
= P(Xnyt, S 21, Xngt, <2, oo, Xpgy, < 1)

for any time shift h and x;.

Weak stationarity (Defn 1.7) (aka, second-order stationarity) The mean
and autocovariance of the stochastic process are finite and invariant

under a shift in time,
EXy=m=p  Cov(Xy, Xs) = B (Xy—pe)(Xs—ps) = (t,s) = y(t—s)
The separation rather than location in time matters.

Equivalence If the process is Gaussian with finite second moments, then
weak stationarity is equivalent to strong stationarity. Strict stationar-
ity implies weak stationarity only if the necessary moments exist.

Relevance Stationarity matters because it provides a framework in which
averaging makes sense. Unless properties like the mean and covariance
are either fixed or “evolve” in a known manner, we cannot average the

observed data.

What operations produce a stationary process? Can we recognize/identify
these in data?
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Moving Average

White noise Sequence of uncorrelated random variables with finite vari-
ance,

2 oft:en1

EWt:MOft:enO COV(Wt,Ws): { o if t =s,

0 otherwise

The input component ({X;} in what follows) is often modeled as white
noise. Strict white noise replaces uncorrelated by independent.

Moving average A stochastic process formed by taking a weighted average
of another time series, often formed from white noise. If we define {Y;}
from {X;} as

oo
Y, = Z i Xe—i
1=—00
then {Y;} is a moving average of {X;}. In order to guarantee finite
mean, we require {¢;} € (1, the space of absolutely summable se-
quences, Y |¢;| < oco. In order for {¥;} to have second moments (if
the input series {X;} has second moments), then {¢;} € f5. (¢ is the
space of all square summable sequences, those for which » C? < 00.)

Examples
trival Y, = X,
differences Y; = X; — X4
3-term Yi= (X1 + X+ X4-1) /3
one-sided Y =32 ¢ X¢—;

Examples in R The important commands to know are rnorm for simu-
lating Gaussian white noise and filter to form the filtering. (Use the
concatenation function c to glue values into a sequence.

Note the practical issue of end values: What value do you get for y;
when forming a moving average? Several approaches are
1. Leave them missing.

2. Extend the input series by, say, back-casting xg,z1,... (such as
by the mean or fitting a line).

3. Wrapping the coefficient weights (convolution).
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4. Reflecting the coefficients at the ends.

Question: For what choices of the weights ¢; does the moving aver-
age look “smoother” that the input realization?

Stationarity of the mean of a moving average {Y;} is immediate if F X; =
ity and the sum of the weights is finite. For {Y;} to be second-order sta-
tionary, then (assume that the mean of { X} is zero, implying that the
mean of {Y;} is also zero and that the weights are square summable)
Yy(t,t+h) =EY; Y, =E Z cici Xy i Xpynj = Z ciCjVe(t—i,t+h—j)

,J ]
If the input is weakly stationary, then
Yy(h) = Zcicj’ym(t —i,t+h—j)= Zcicjfyx(h —Jj+1)
1,J 1,J
If it also happens that the input is white noise, then the covariance

further simplifies to a “lagged inner product” of the weights used to
construct the moving average,

Yy(h) = ngcz‘czurh (1)

Remark The expression (1) can be thought of as a factorization of the
covariance matrix associated with the stochastic process {Y;}. First,
imagine writing {Y;} as a matrix product

Y=CX

where the infinite length vectors X and Y stack the elements of the
two prcesses

X/ = ( .. ,X,Q,Xfl,Xo,Xl,Xg,. . ) and Y/ = ( .. 7Y727Y717Y'07Y1’Y'2’ .. )

and C is an infinite-dimensional, square, diagonal matrix with ¢y along
the diagonal arranged by stacking and shifting the coefficients as

...,C1,CpyC-1,C_2,C_3 ...
C= c..5€2,C1,C0,C—_1,C—-2,...

-+-5C3,C2,C1,C0,C—1, - - -
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If the input is white noise, then (1) represents the covariance matrix
I' as the product
Iy, =oiCC

with I'" holding the covariances

Lyij =i —3)

Recursive Processes (Autoregression)

Feedback Allow past values of the process to influence current values:
Yi=aY 1+ Xy
Usually, the input series in these models would be white noise.

Stationarity To see when/if such a process is stationary, use back-substitution
to write such a series as a moving average:

Y = alaYio+ X4 1 +X;
= (oY 3+ Xi0)+ X +aX;
= Xi+aXp1+a?Xp ot

Stationarity requires that |a| < 1. If @ = 1, then you have random
walk if {X;} consists of independent inputs.

Linear The ability to represent the autoregression (in this case, a first-order
autoregression) as a moving average implies that the autoregression is
a linear process (albeit, one with an infinite sequence of weights).

Cyclic Processes

Random phase model Define a stochastic process as follows. Let U de-
note a random variable that is uniformly distributed on [—m, 7], and
define (Here R is a constant, but we could allow it to be an independent
r.v. with mean zero and positive variance.)

Xt =R cos(pt+U)

Each realization of {X;} is a single sinusoidal “wave” with frequency
¢ and amplitude R.
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Trig sums are always easier in complex notation unless you use them a lot.
You just need to recall Euler’s form (with i = /—1),

exp(i0) = cos(f) + i sin(0)
Using Euler’s result

cos(0 4+ A) +isin(0+ ) = exp(i(6 + X))
= exp(if) exp(iN)
= (cos(#) + i sin(@))(cos(A) + @ sin(N))

)
= (cos(f) cos(N) — sin(@) sin(A)) + i(sin(f) cos(A) + cos() sin(N))

Hence we get
cos(a+b) = cosacosb —sinasinb, cos(2a) = cos® a — sin?b
and

sin(a + b) = cosasinb + cosbsin a, sin(2a) = 2cosasina

Stationarity of random phase now follows by using these identities,
EX; = RE cos(¢t +U) = RE (cos(¢t) cos(U) — sin(¢t) sin(U)) =0

since the integral of sine and cosine is zero over a full period is 0,

27 27
/ cosudu—/ sinu du =0
0 0

Similarly, but with a bit more algebra, (expand the cosine terms and
collect the terms in the product)

Cov(X;, Xs) = RZE (cos(¢t+ U)cos(ps+ U))
= R’E [cos2 U cos(¢t) cos(¢ps) + sin? U sin(¢pt) sin(ps)
—cos U sin U (cos(¢t) sin(¢s) + cos(¢s) sin(¢t))]
2
= & (cos ¢t cos ¢s + sin ¢t sin ¢s)
2

= 5 cos(g(t — )

using the results that the squared norm of the sine and cosine are
1 2w 1 2
— c052$dx:/ sin?z do =1/2
2T 0 2T 0

and the orthogonality property

27
/ coszsinxz dr =0
0
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Nonlinear Models

Linear process A moving average is a weighted sum of the input series,
which we can express as the linear equation ¥ = C X.

Nonlinear processes describe a time series that does not simply take a
weighted average of the input series. For example, we can allow the
weights to depend on the value of the input:

Vi = co1(Xi-1) + co(Xp) + e1(Xev1)

The conditions that assure stationarity depend on the nature of the
input series and the functions c;(Xy).

Example To form a nonlinear process, simply let prior values of the input
sequence determine the weights. For example, consider

Y =Xt +aXi 1 X9 (2)

eBcause the expression for {Y;} is not linear in {X;}, the process is
nonlinear. Is it stationary?

(Think about this situation: Suppose {X;} consists of iid r.v.s. What
linear process does {Y;} resemble? If we were to model such data as
this linear process, we would miss a very useful, improved predictor.)

Recursive More interesting examples of nonlinear processes use some type
of feedback in which the current value of the process Y; is determined
by past values Y;_1, Y;_2, ... as well as past values of the input series.
For example, the following is an example of a bilinear process:

Yi=Xi+a1Y 1 +aY; 1 Xy

Can we recognize the presence of nonlinearity in data?



