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Examples of Stationary Time Series

Overview

1. Stationarity

2. Linear processes

3. Cyclic models

4. Nonlinear models

Stationarity

Strict stationarity (Defn 1.6) Probability distribution of the stochastic
process {Xt}is invariant under a shift in time,

P (Xt1 ≤ x1, Xt2 ≤ x2, . . . , Xtk ≤ xk) = F (xt1 , xt2 , . . . , xtk)
= F (xh+t1 , xh+t2 , . . . , xh+tk)
= P (Xh+t1 ≤ x1, Xh+t2 ≤ x2, . . . , Xh+tk ≤ xk)

for any time shift h and xj .

Weak stationarity (Defn 1.7) (aka, second-order stationarity) The mean
and autocovariance of the stochastic process are finite and invariant
under a shift in time,

EXt = µt = µ Cov(Xt, Xs) = E (Xt−µt)(Xs−µs) = γ(t, s) = γ(t−s)

The separation rather than location in time matters.

Equivalence If the process is Gaussian with finite second moments, then
weak stationarity is equivalent to strong stationarity. Strict stationar-
ity implies weak stationarity only if the necessary moments exist.

Relevance Stationarity matters because it provides a framework in which
averaging makes sense. Unless properties like the mean and covariance
are either fixed or “evolve” in a known manner, we cannot average the
observed data.

What operations produce a stationary process? Can we recognize/identify
these in data?
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Moving Average

White noise Sequence of uncorrelated random variables with finite vari-
ance,

EWt = µ
often= 0 Cov(Wt,Ws) =

{
σ2
w

often= 1 if t = s,

0 otherwise

The input component ({Xt} in what follows) is often modeled as white
noise. Strict white noise replaces uncorrelated by independent.

Moving average A stochastic process formed by taking a weighted average
of another time series, often formed from white noise. If we define {Yt}
from {Xt} as

Yt =
∞∑

i=−∞
ciXt−i

then {Yt} is a moving average of {Xt}. In order to guarantee finite
mean, we require {ci} ∈ `1, the space of absolutely summable se-
quences,

∑
|ci| < ∞. In order for {Yt} to have second moments (if

the input series {Xt} has second moments), then {ci} ∈ `2. (`2 is the
space of all square summable sequences, those for which

∑
c2i <∞.)

Examples
trival Yt = Xt

differences Yt = Xt −Xt−1

3-term Yt = (Xt+1 +Xt +Xt−1) /3
one-sided Yt =

∑∞
i=0 ciXt−i

Examples in R The important commands to know are rnorm for simu-
lating Gaussian white noise and filter to form the filtering. (Use the
concatenation function c to glue values into a sequence.

Note the practical issue of end values: What value do you get for y1

when forming a moving average? Several approaches are

1. Leave them missing.

2. Extend the input series by, say, back-casting x0, x1, . . . (such as
by the mean or fitting a line).

3. Wrapping the coefficient weights (convolution).
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4. Reflecting the coefficients at the ends.

Question: For what choices of the weights cj does the moving aver-
age look “smoother” that the input realization?

Stationarity of the mean of a moving average {Yt} is immediate if EXt =
µx and the sum of the weights is finite. For {Yt} to be second-order sta-
tionary, then (assume that the mean of {Xt} is zero, implying that the
mean of {Yt} is also zero and that the weights are square summable)

γy(t, t+h) = EYt Yt+h = E
∑
i,j

cicjXt−iXt+h−j =
∑
i,j

cicjγx(t−i, t+h−j)

If the input is weakly stationary, then

γy(h) =
∑
i,j

cicjγx(t− i, t+ h− j) =
∑
i,j

cicjγx(h− j + i)

If it also happens that the input is white noise, then the covariance
further simplifies to a “lagged inner product” of the weights used to
construct the moving average,

γy(h) = σ2
x

∑
i

cici+h (1)

Remark The expression (1) can be thought of as a factorization of the
covariance matrix associated with the stochastic process {Yt}. First,
imagine writing {Yt} as a matrix product

Y = C X

where the infinite length vectors X and Y stack the elements of the
two prcesses

X ′ = (. . . , X−2, X−1, X0, X1, X2, . . .) and Y ′ = (. . . , Y−2, Y−1, Y0, Y1, Y2, . . .)

and C is an infinite-dimensional, square, diagonal matrix with c0 along
the diagonal arranged by stacking and shifting the coefficients as

C =



...
. . . , c1, c0, c−1, c−2, c−3 . . .

. . . , c2, c1, c0, c−1, c−2, . . .

. . . , c3, c2, c1, c0, c−1, . . .
...
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If the input is white noise, then (1) represents the covariance matrix
Γ as the product

Γy = σ2
xCC

′

with Γ holding the covariances

Γy,ij = γy(i− j)

Recursive Processes (Autoregression)

Feedback Allow past values of the process to influence current values:

Yt = αYt−1 +Xt

Usually, the input series in these models would be white noise.

Stationarity To see when/if such a process is stationary, use back-substitution
to write such a series as a moving average:

Yt = α(αYt−2 +Xt−1 +Xt

= α2(αYt−3 +Xt−2) +Xt + αXt−1

= Xt + αXt−1 + α2Xt−2 + · · ·

Stationarity requires that |α| < 1. If α = 1, then you have random
walk if {Xt} consists of independent inputs.

Linear The ability to represent the autoregression (in this case, a first-order
autoregression) as a moving average implies that the autoregression is
a linear process (albeit, one with an infinite sequence of weights).

Cyclic Processes

Random phase model Define a stochastic process as follows. Let U de-
note a random variable that is uniformly distributed on [−π, π], and
define (Here R is a constant, but we could allow it to be an independent
r.v. with mean zero and positive variance.)

Xt = R cos(φ t+ U)

Each realization of {Xt} is a single sinusoidal “wave” with frequency
φ and amplitude R.
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Trig sums are always easier in complex notation unless you use them a lot.
You just need to recall Euler’s form (with i =

√
−1),

exp(i θ) = cos(θ) + i sin(θ)

Using Euler’s result

cos(θ + λ) + i sin(θ + λ) = exp(i(θ + λ))
= exp(iθ) exp(iλ)
= (cos(θ) + i sin(θ))(cos(λ) + i sin(λ))
= (cos(θ) cos(λ)− sin(θ) sin(λ)) + i(sin(θ) cos(λ) + cos(θ) sin(λ))

Hence we get

cos(a+ b) = cos a cos b− sin a sin b, cos(2a) = cos2 a− sin2 b

and

sin(a+ b) = cos a sin b+ cos b sin a, sin(2a) = 2 cos a sin a

Stationarity of random phase now follows by using these identities,

EXt = RE cos(φt+ U) = RE (cos(φt) cos(U)− sin(φt) sin(U)) = 0

since the integral of sine and cosine is zero over a full period is 0,∫ 2π

0
cosu du =

∫ 2π

0
sinu du = 0

Similarly, but with a bit more algebra, (expand the cosine terms and
collect the terms in the product)

Cov(Xt, Xs) = R2 E (cos(φt+ U) cos(φs+ U))
= R2 E

[
cos2 U cos(φt) cos(φs) + sin2 U sin(φt) sin(φs)

− cosU sinU (cos(φt) sin(φs) + cos(φs) sin(φt))]

=
R2

2
(cosφt cosφs+ sinφt sinφs)

=
R2

2
cos(φ(t− s))

using the results that the squared norm of the sine and cosine are

1
2π

∫ 2π

0
cos2 x dx =

1
2π

∫ 2π

0
sin2 x dx = 1/2

and the orthogonality property∫ 2π

0
cosx sinx dx = 0
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Nonlinear Models

Linear process A moving average is a weighted sum of the input series,
which we can express as the linear equation Y = C X.

Nonlinear processes describe a time series that does not simply take a
weighted average of the input series. For example, we can allow the
weights to depend on the value of the input:

Yt = c−1(Xt−1) + c0(Xt) + c1(Xt+1)

The conditions that assure stationarity depend on the nature of the
input series and the functions cj(Xt).

Example To form a nonlinear process, simply let prior values of the input
sequence determine the weights. For example, consider

Yt = Xt + αXt−1Xt−2 (2)

eBcause the expression for {Yt} is not linear in {Xt}, the process is
nonlinear. Is it stationary?

(Think about this situation: Suppose {Xt} consists of iid r.v.s. What
linear process does {Yt} resemble? If we were to model such data as
this linear process, we would miss a very useful, improved predictor.)

Recursive More interesting examples of nonlinear processes use some type
of feedback in which the current value of the process Yt is determined
by past values Yt−1, Yt−2, . . . as well as past values of the input series.
For example, the following is an example of a bilinear process:

Yt = Xt + α1Yt−1 + α2Yt−1Xt−1

Can we recognize the presence of nonlinearity in data?


