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Descriptive Estimators

Overview

1. Moment estimators for µ, γ(h), and correlations ρ(h).

2. Simulate estimators using R.

See S&S, Appendix A, for further details on the properties of these estima-
tors that we’ll cover in the next class.

Moment estimators

Context, notation The general setting for estimation in this lecture is
that we

• Observe X1 = x1, X2 = x2, . . . , Xn = xn (n observations)

• Denote sequences by {X1, X2, . . . , Xn} = Xn
1 and {x1, x2, . . . , xn} =

xn
1 and similarly for other symbols.

• Assume {Xt} is weakly stationary and wt is white noise. We will
use the assumption of stationarity to allow averaging over time
in place of averaging over the ensemble of processes.

• Covariances are Cov(Xt+h, Xt) = γX(h) which are arranged in
the n× n array Γ = [γ(i− j)].

Reasons for studying moment estimators (a) They avoid the need for
a specific model (other than stationarity); models ultimately provide
more efficient estimators. Without specifying probability distributions
for {Xt} we cannot use maximum likelihood.

(b) Moment estimators provide an initial value for more efficient, iter-
ative estimation algorithms such as ML. In such cases, it’s important
that the moment estimator be consistent to order 1/

√
n in order to

obtain a one-step estimator.

Estimate of µ In general, the components of Xn
1 are dependent, implying

some sort of weighted estimator, such as the generalized least squares
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(GLS) estimator (1 = (1, 1, . . . , 1))

µ̂ =
1′Γ−1xn

1

1′Γ−11
(1)

(Think of µ̂ as the regression slope with correlated errors; all of this
discussion extends to regression.) Because we don’t know the covari-
ances (we need an estimate of µ first), we begin with a more basic
estimator,

X =
1
n

n∑
t=1

Xi

Some rationale: its often better in practice to have a simple estimator
such as X which as known properties rather than a possibly better
estimator such as µ̂ whose properties are unknown.

Sample covariances An almost unbiased estimator is

γ̃(h) =

∑n−|h|
t=1 (Xt −X)(Xt+|h| −X)

n− |h|

Many prefer the following estimator (for reasons explained below)

γ̂(h) =

∑n−|h|
t=1 (Xt −X)(Xt+|h| −X)

n

Note that γ(h) = γ(−h) and γ̂(h) = γ̂(−h). Neither estimator is
unbiased because X appears in place of µ. Note the role of the bias
in γ̂(h) is to shrink the estimator of the sequence to zero.

Sample correlations Frequently useful to have a scale-free estimator of
the dependence, namely an estimator for

ρ(h) =
γ(h)
γ(0)

We will consider the plug-in estimator

ρ̂(h) =
γ̂(h)
γ̂(0)
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Positive definite Suppose µ = 0 were known, then the biased estimator

gh =

∑n−|h|
t=1 XtXt+|h|

n

produces a positive semi-definite sequence (i.e., the resulting covari-
ance matrix G = [gij ] is p.s.d., implying that quadratic forms such as
c′Gc ≥ 0) The unbiased estimator does not. In this sense, tolerating a
little bias pointwise (at each lag h) provides a “better” estimator with
a desired global property.

To see thatG is p.s.d., consider the cross-products obtained by padding
this series by zeros and then forming inner-products. (See exercise
1.24.) Other proofs rely on the Fourier transform. We will do these
later.

Simulation results

Simulate the properties of estimates of the mean and covariances (and
correlations) for several processes:

• White noise (Gaussian or Poisson), random walk

• One-sided moving average

• Autoregression

R commands that are useful in this case are pairs to see plots of the
dependence of the estimates, in addition to rnorm, rpois, filter

and commands to control looping (for). The function acf computes
the autocovariances and autocorrelations.

Examples in the R code include:

• How well does X perform compared to the GLS estimator? The
simulation compares the standard error and bias of X to those
of the GLS estmator What are the properties of these estimators
of the covariances? (Notice that it does this without having to
compute the GLS estimator.)

• What are the sampling properties of ρ̂(h)? The simulation con-
siders the dependence among the estimates of γ(h). In fact, for
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large |h|, the estimated correlations look a lot like a stationary
process themselves.


