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Properties of Descriptive Estimators

Overview

1. Properties of X

2. Simulation of estimator compared to µ̂

3. Properties of γ̂(h)

4. Simulation of pointwise and “sequence-wide” properties

See S&S, Appendix A, for further details on the properties of these estima-
tors that we’ll cover in the next class. These notes consider the means and
covariances of the estimators. The text shows that the estimators are also
approximately normally distributed.

Moment estimators

Estimators
Mean:

X =
∑n

t=1Xt

n

(
=

1′Xn
1

n

)
Covariances:

γ̂(h) =

∑n−|h|
t=1 (Xt −X)(Xt+|h| −X)

n
, h = . . . ,−2,−1, 0, 1, 2, . . .

Correlations:
ρ̂(h) =

γ̂(h)
γ̂(0)

Estimating the mean

Kronecker lemma If the real-valued sequence ci is absolutely summable,
then

lim
n→∞

n∑
i=0

i
n |ci| = 0 . (1)
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The proof works by taking some N for which
∑∞

N+1 |aj | < ε for ar-
bitrary ε > 0. Then divide the sum as

∑n
i=0 =

∑N
0 +

∑n
N+1 and

observe that the first summand goes to zero as n→∞ and the second
is bounded by ε. Presto.

Unbiased Easy to see that X is unbiased. What about µ̂ if Γ is known
(unknown)?

Variance Were {Xt} uncorrelated, then Var(X) = σ2
x/n. What happens

in the case of dependence?

Let σ2
x = γ(0) so that the final expression looks more familiar. The

variance of X is the sum of the elements in the n×n covariance matrix
Γ = [γ(i− j)], i, j = 1, . . . , n divided by n2:

Var(X) =
1
n2

∑
t,s

γ(t, s)

=
1
n2

∑
t,s

γ(t− s)

=
σ2

n2

∑
t,s

ρ(t− s)

=
σ2

n

n−1∑
d=−(n−1)

(
1− |d|

n

)
ρ(d)

Comparison to GLS Compare

Var(X) = 1′Γ1/n2 to Var(µ̂) =
1

1′Γ−11
.

Start by forming a unit vector u = 1/
√
n and recognize the comparison

of eigenvalues. When are these the same?

Limiting variance In the limit, then (assuming that the correlation func-
tion is summable and using (1))

lim
n
n Var(X) = σ2

∞∑
h=−∞

ρ(h)
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Example Consider the case in which ρ(h) = αh for some |α| < 1. (Which
process is this?) Then

Var(X) =
σ2

n

∞∑
h=−∞

ρ(h) =
σ2

n

2
1− ρ

− 1

=
σ2

n

1 + ρ

1− ρ
=

σ2

n(1− ρ)/(1 + ρ)
.

Equivalent uncorrelated observations What’s the “cost” of working with
dependent data in terms of learning the mean of a stationary process?
If we use X to estimate µ, then n dependent observations with cor-
relation function ρ(h) are only worth (in the sense of the length of
confidence intervals, say)

n
1− ρ
1 + ρ

uncorrelated observations. (Of course, negative dependence is a whole
different experience!)

ρ n 1−ρ
1+ρ

0 n

0.5 n/3
0.8 n/9
0.95 n/39

Simulation evidence

Model Simulate realizations of the autoregression

(Xt − µ) = α(Xt−1 − µ) + wt, wt
iid∼ N(0, 1)

for |α| < 1. The mean of the process is µ. The process is often written
as

Xt = µ(1− α) + αXt−1 +Wt (2)

Notice that the “intercept” in this equation is not the mean.

Covariance function By back-substitution, it is easy to show that

Corr(Xt+h, Xt) = ρ(h) = α|h| .
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Convenient matrix inverse For this process, we can simulate the GLS
estimator of µ = 0 using the sample correlation. That allows us to
compare three estimators (X ′1:n = (X1, . . . , Xn)):

• The OLS estimator, ignoring the dependence: X

• The GLS estimator, using α known: 1′Γ−1X1:n/D

• The approximate GLS estimator: 1′Γ̂−1X1:n/D̂

where D = 1′Γ−11. It is easy to do this simulation because we can
approximately factor Γ−1. Notice that Xt − αXt−1 = Wt. Hence the
product

1 0 0 0 0 . . .

−α 1 0 0 0 . . .

0 −α 1 0 0 . . .

0 0 −α 1 0 . . .

0 0 0
. . . . . .


︸ ︷︷ ︸

A


X1 − µ
X2 − µ
X3 − µ
X4 − µ

...

 =


X1 − µ
w2

w3

w4

...

 ≈ w1:n

but for the end effects. It follows that A ≈ Γ−1/2 since A converts X1:n

into white noise (but for the first value). To make the expression work
perfectly, standardize the leading random variable (which has variance
σ2/(1 − α2) to have the variance σ2 as Wt. Do this by replacing the
leading diagonal 1 in A by

√
1− α2.

Mean estimator If we apply A directly to X1:n, then the average of the
result is approximately (look back at (2)) µ(1− α), so to estimate µ,
we have to then divide by 1− α̂.

Effects of mean estimation

Goal Approximate the covariance of the covariances within a certain order
of error: could you recognize the process, such as an AR(1) shown in
(2) from seeing estimates of γ(h) or ρ(h)?

Note: Treat the lag h as positive throughout to avoid having to add
absolute values in the expressions that follow.
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Simplify calculations by replacing the sample mean X by µ. To see the
effect of this substitution, add and subtract µ in each of the terms in
the numerator of γ̂(h),

nγ̂(h) =
n−h∑
t=1

(Xt+h−µ)(Xt−µ)−(Xt+h−µ)(X−µ)−(Xt−µ)(X−µ)+(Xn−µ)2

Only the first term on the r.h.s. is ultimately needed since the other
terms are of smaller magnitude. Basically, the sum of the deviations
from the mean is zero (but for end effects). For example,

n−h∑
t=1

(Xt − µ)(X − µ) = (n− h)(X − µ)(Xh − µ) ≈ (n− h)(Xn − µ)2 ,

where Xh is the average of X1, X2, . . . , Xn−h. When we divide by n,
the expected value of this term is approximately

E (1− h

n
)(Xn − µ)2 ≈ Var(Xn)→ 0 as n→∞.

Simplified estimator. With X replaced by µ, assume “without loss of
generality” that µ = 0 and consider

c(h) =
∑n−h

t=1 Xt+hXt

n
, h ≥ 0,

with c(−h) = c(h).

Covariances of covariances

Bias The p.s.d. estimator of γ(h) is biased, having been pulled toward zero
(particularly for h large),

E c(h) =
(

1− h

n

)
γ(h) . (3)

By definition

Cov(c(h), c(h+ v)) = E (c(h)c(h+ v))− E c(h) E c(h+ v).
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Expand the terms on the right, noting from (3) that the estimates are
biased,

Cov(c(h), c(h+v)) =
1
n2

n−h∑
t=1

n−(h+v)∑
s=1

EXtXt+hXsXs+h+v−(1−h
n

)(1−h+ v

n
)γ(h)γ(h+v).

(4)

Isserlis’ theorem The expected value of the product of four r.v.’s with
mean zero is given by the old (Biometrika, 1918) result:

EY1Y2Y3Y4 = E (Y1Y2)E (Y3Y4)+E (Y1Y3)E (Y2Y4)+E (Y1Y4)E (Y2Y3)+κ4 ,

where κ4 is the fourth-order cumulant of the joint distribution of
Y1, Y2, Y3, and Y4. The fourth-order cumulant measures the kurtosis
of the joint distribution. In the univariate case,

κ4 = E (Y − EY )4 − 3E (Y − EY )2.

You can check that κ4 = 0 for normal random variables. The key step
in the proof is “regression”:

E (X1X2X3X4) = E (E (x1X2X3X4|X1 = x1))

and noting that (for normal r.v.) the conditional expectations have
the form E (X2|X1) = (ρσ2/σ1)x1.

Covariances, cntd. Using Isserlis’ expression in (4)

Cov =
1
n2

n−h∑
t=1

n−h−v∑
s=1

EXt+hXt EXs+h+vXs + EXtXs EXt+hXs+h+v

+EXtXs+h+v EXt+hXs − (1− h

n
)(1− h+ v

n
)γ(h)γ(h+ v).

Now replace the expectations of products by the covariances, assuming
the process is Gaussian, (otherwise have a cumulant term)

Cov =
1
n2

n−h∑
t=1

n−h−v∑
s=1

γ(h)γ(h+ v) + γ(t− s)γ(t− s− v) + γ(t− s− h− v)γ(t+ h− s)

−(1− h

n
)(1− h+ v

n
)γ(h)γ(h+ v).
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The first term on the right cancels with the product of the covariances
since it has neither of the variables being summed (t nor s). Thus,

Cov =
1
n2

n−h∑
t=1

n−h−v∑
s=1

γ(t− s)γ(t− s− v) + γ(t− s−h− v)γ(t− s+h) .

Since the indices in the sum always appear in the stationary form t−s,
we can collapse this sum just as we did in the expression for the vari-
ance of X. Replacing t− s by m, we obtain the useful approximation
first derived by Bartlett (1946),

Cov(γ̂(h), γ̂(h+v)) ≈ 1
n

∑
|m|

γ(m)γ(m−v)+γ(m−h−v)γ(m+h) (5)

Example. Consider again an AR(1) process for which γ(h) = γ(0)αh. From
(5) with v = h = 0,

Var(γ̂(0)) ≈ 2
n

∑
|m|

γ(m)2 =
2γ(0)2

n

∑
|m|

α2|m|.

Since this is a geometric series,

Var(c0) ≈ 2γ(0)2

n

1 + α2

1− α2
.

Compare this to the iid normal case where for Z1, . . . , Zn ∼ N(0, σ2
z)

for which the variance of the usual variance estimator s2z is

Var(s2z) ≈
2σ4

z

n
.

Thus, the effect of the dependence upon the estimated variance is less
than its effect upon the estimate of the mean ( VarXn = σ2

x
n

1+α
1−α).

(Humm... Is this true in general???)

More general expressions. In general, using (5)

Var(γ̂h) ≈ 1
n

∑
|m|

γ(m)2 + γ(m+ h)γ(m− h).

This formula reduces to the usual expression for the variance of the
familiar estimator s2 when α = 0. Hence, the variance of covariance
estimates depends on
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1. the lag h we are considering and

2. the properties of the underlying process.

In the case of a non-Gaussian process, one has to assume more than
second-order stationarity in order to derive these properties. In par-
ticular, we have to assume that the process is stationary to fourth
order, so that moments like EXt+hXtXs+vXs do not depend on the
time origin.

Correlations

Similar expressions exist for the covariances of the estimated correlation
function formed by the ratio ρ̂(h) = γ̂h

γ̂0
. The calculations are, in gen-

eral, more difficult since we must consider properties of a ratio of
estimators. Like most classical results in statistics, one uses a Taylor
series expansion.

Delta method. Think of the estimated correlation ρ̂(h) = g(γ̂(0), γ̂(h)) =
γ̂(h)/γ̂(0). Now expand the function g about the point (γ(0), γ(h))
and use the linear expansion in place of g.

Result. The approximation, also derived by Bartlett, resembles the previ-
ous expression for the covariance of the covariance estimates:

Cov(ρ̂(h), ρ̂(h+ v)) ≈ 1
n

∑
|m|

ρ(m)ρ(m+ v) + ρ(m+ h+ v)ρ(m− h)

≈ 1
n

∑
|m|

ρ(m)ρ(m+ v) .

The last approximation drops the second summand and only applies
for large sample size n and large lags h.

Stationarity Notice that, in the most approximate approximation, the co-
variances of the autocorrelations do not depend on h, but only on the
separation v.

In this sense, the estimated autocorrelations of a stationary process
at substantial lags themselves behave like a stationary process. Their
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covariance function only depends on the separation, not the lags be-
ing considered. Indeed, the estimated correlations are more strongly
correlated than the process itself.

No cumulant The cumulant κ4 does not appear in this approximation for
the covariance of the estimated correlations even if the process is not
Gaussian. Its absence only requires that process under consideration
is a moving average of an independent white noise sequence rather
than an uncorrelated sequence — normality is not needed.

Examples. If the process is white noise, the covariances of the autocorrela-
tion estimates are approximately zero. The variance of the estimates
is about 1/n. These properties are the origin of the +/- limits that ap-
pear in many autocorrelation plots (noted in the text, equation 1.38).

For an AR(1) process with coefficient |α| < 1

Var(ρ̂(h)) ≈ 1
n

∑
|m|

α2|m| =
1
n

1 + α2

1− α2

and

Cov(ρ̂(h), ρ̂(h+ v)) ≈ 1
n
α|v|(

1 + α2

1− α2
+ |v|).


