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Regression Methods

Overview

1. Idea: effects of dependence

2. Examples of estimation (in R)

3. Review of regression

4. Comparisons and relative efficiencies

Idea

Decomposition Well-known way to approach time series analysis is to
decompose the observed series into several components,

Xt = Trendt + Seasonalt + Irregulart

and then model the additive components separately. Here “trend”
usually means linear or quadratic patterns.

Stationarity The methods we have developed require (or at least assume
to be plausible) the assumption of stationarity to permit averaging
over time. That does not make sense for the trend component. A
simpler view of the problem is to think of the data as

Xt = deterministic patternst + stationary variationt

and then model the deterministic component using tools like regres-
sion, leaving the rest to be handled as a stationary process, eventually
reducing the data to

Xt = predictable variationt + white noiset

Examples

Data series from the text are:
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• Global temperature (since 1900, comparing annual and monthly)
A univariate model, with no exogenous variables.

• Mortality data, with several exogenous variables.

• Fish harvest (SOI), with many plausible variables.

Question In these examples, the regression residuals show correlations at
several lags. Are the usual summaries of the fitted models (standard
errors and t-statistics) reliable?

Quick Review of Regression

Data Response is a column vector y = y1:n = (y1, . . . , yn)′ that is a time
series in our examples. The explanatory variables (including a leading
column of 1s for the intercept) are collected as columns in the n × q
matrix X. Denote a row of X as the column vector xt.

Model Linear equation with stationary errors in scalar form is

yt = x′tβ + et, E(et) = 0, Cov(et, es) = γ(t, s) = γ(|t− s|)

and in matrix form with the errors in the vector e = e1:n

y = X β + e, E(e) = 0, Var(e) = Γ = σ2Φ (1)

where Φ is normalized to have 1’s along its diagonal (a correlation
matrix) by dividing each element in Γ by γ(0). Hence Var(et) =
γ(0) = σ2. (Notation with γ(0) = σ2 gives expressions that look more
familiar.)

OLS Estimator Assuming the explanatory variables are known and ob-
served, the OLS estimator for β is

β̂ = (X ′X)−1X ′y = β + (X ′X)−1X ′e (2)

with the residuals êt = yt − x′tβ̂. The usual unbiased estimator of σ2

(given uncorrelated errors) is

σ̂2 =
∑
ê2t

n− q
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Tests The text reviews the basic tests (such as the F test for added vari-
ables) in Section 2.2.

Properties of the OLS estimator The second form of (2) makes it easy
to see that although it ignores dependence among the observations,
the OLS estimator is unbiased. The variance of the estimator is

Var(β̂) = (X ′X)−1X ′ Var(e) X(X ′X)−1

= (X ′X)−1X ′ Γ X(X ′X)−1

= σ2(X ′X)−1X ′ΦX(X ′X)−1

This contrasts with the usual expression in the case of uncorrelated
errors,

Var(β̂) = σ2(X ′X)−1

Sandwich estimator The form of the variance of the OLS estimator sug-
gests a simple, robust estimate of its variance:

var(β̂) = (X ′X)−1X ′Γ̂X(X ′X)−1 (3)

In the heteroscedastic case, this leads to the White estimator which
uses

White estimator: Γ̂ = diag(e2t ) .

For dependence, one can use blocked estimates of the covariances.

GLS Estimator The GLS estimator (which is the MLE under a normal
distribution) is the solution to the following minimization:

min
α

(y −Xα)′Γ−1(y −Xα) (4)

To solve (4), assume that we know Γ and factor this matrix as Γ =
Γ1/2Γ1/2′ and express the sum of squares to be minimized as

(Γ−1/2y − (Γ−1/2X)α)′(Γ−1/2y − (Γ−1/2X)α) = (ỹ − X̃α)′(ỹ − X̃α)

where ỹ = Γ−1/2y and X̃ = Γ−1/2X. This is now formulated as a
regular least squares problem, for which the solution is

β̃ = (X̃ ′X̃)−1X̃ ′ỹ = (X ′Γ−1X)−1X ′Γ−1y = β + (X ′Γ−1X)−1X ′Γ−1e

The variance of the GLS estimator is

Var(β̃) = σ2(X ′ΦX)−1
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Comparison of Estimators: Scalar Model

Scalar model (q = 1) simplifies the arithmetic and suggests the matrix
expressions.

yt = βxt + et ⇒ β̂ =
x′y

x′x
= β +

x′e

x′x

Assume that the errors are autoregressive with coefficient α:

et = αet−1 + wt, |α| < 1.

Impact of dependence The variance of the OLS estimator is (use the fact
that Φij = α|i−j|)

Var(β̂) =
Var(x′e)
(x′x)2

=
σ2

(x′x)2
x′Φx

=
σ2

(x′x)2
(∑

x2
t + 2α

∑
xtxt−1 + 2α2

∑
xtxt−2 · · ·

)
=

σ2

(x′x)

(
1 + 2α

∑
xtxt−1∑
x2
t

+ 2α2

∑
xtxt−2∑
x2
t

· · ·
)

We can obtain nicer expressions by choosing values of xt so that these
sums (which look like estimated correlations) have known values (ap-
proximately). The easiest way to do this is to imagine xt as an au-
toregression with some coefficient,

xt = ρ xt−1 + ut, |ρ| < 1.

With this choice, the sums
P
xt+hxtP
x2

t
≈ ρ|h| and the approximation

becomes

Var(β̂) =
σ2

(x′x)
(
1 + 2αρ+ 2α2ρ2 · · ·

)
≈ σ2

(x′x)
1 + αρ

1− αρ
Notice that we are not thinking of xt as a random variable; we are
using this method to generate a sequence of numbers with a specific
set of autocorrelations.

We can also approximate x′x as nVar(X) and write

Var(β̂) ≈ σ2

nVar(X)
1 + αρ

1− αρ
(5)
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Optimistic Compared the expression for the variance with uncorrelated
errors, the actual variance differs from the usual expression by the
factor

1 + αρ

1− αρ
If you set ρ = 1, you get the factor from the previous lecture for the
variance of X in the presence of autocorrelated data. In this case, the
presence of positive correlation in the exogenous series compounds the
loss of efficiency.

For example, if α = ρ = 0.8, then 1+αρ
1−αρ = 1+0.64

0.36 ≈ 4.56. Ignoring the
dependence leads to a false sense of accuracy (i.e., confidence intervals
based on the OLS expression are too narrow for the stated coverage).

Bias of σ̂2 The estimator is also biased due to the autocorreation. In the
scalar model under these same conditions, we can approximate the
bias easily: (Note that β̂ − β = (

∑
xtet)/

∑
x2
t )

E
∑

ê2t = E
∑(

et − xt(β̂ − β)
)2

= E
∑(

e2t + x2
t (β̂ − β)2 − 2(β̂ − β)xtet

)
≈ σ2

(
n+

1 + αρ

1− αρ
− 2

1 + αρ

1− αρ

)
= σ2(n− 1 + αρ

1− αρ
)

which is also shrunken toward zero. Hence the usual OLS expression
s2/(x′x) is going to be much too small.

Relative efficiency The simplified univariate setup makes it easy to com-
pare the variances of the OLS and GLS estimators. To obtain the GLS
estimator in the scalar case, we can write the effects of multiplying by
Γ−1/2 directly. Namely, subtract the expression for αyt−1 from the
expression for yt:

yt − αyt−1 = β(xt − αxt−1) + (et − αet−1)︸ ︷︷ ︸
wt

Hence, we can estimate β efficiently via OLS using these so-called
“generalized differences” of the observed data. The resulting GLS
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estimator is
β̃ =

∑
(xt − αxt−1)(yt − αyt−1)∑

(xt − αxt−1)2

The variance is then (treating xt as uncorrelated with wt, a must for
least squares, and then viewing as conditional on xt)

Var(β̃) = Var
(∑

(xt − αxt−1)wt∑
(xt − αxt−1)2

)
=

σ2
w∑

(xt − αxt−1)2

Assuming {Xt} is autoregressive with coefficient ρ as before implies
that (expand the square and approximate the 3 sums)

(1/n)
∑

(xt − αxt−1)2 ≈ σ2
x(1 + α2 − 2αρ)

We also know that Var(et) = σ2
w/(1− α2), so σ2

w = (1− α2)σ2 (note:
σ2 = Var(et)). Hence, when all are pulled together we get

Var(β̃) ≈ σ2

nσ2
x

1− α2

1 + α2 − 2αρ

and the ratio of variances (see (5)) is

Var(β̃)

Var(β̂)
≈ 1− αρ

1 + αρ

1− α2

1 + α2 − 2αρ
.

For the example with α = ρ = 0.8, the efficiency is 0.21.

Conclusion OLS is not only not efficient, it makes claims as though it
were. Under this model of positively correlated data,

• OLS expressions underestimate the variance of β̂

• OLS estimates are much less efficient than GLS estimates.

Comparison of Estimators: General Case

Variances The variances of the estimators are

OLS: Var(β̂) = σ2(X ′X)−1X ′ΦX(X ′X)−1

and
GLS: Var(β̃) = σ2(X ′Φ−1X)−1
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Equality of estimators The columns of X must span the same linear sub-
space as the columns of ΦX (as if ΦX = X). In general, that does not
happen. (We will later see some situations in which it does, at least
for n large.) If the columns of X are eigenvectors of Φ, equality also
obtains. Asymptotically, that will occur for some very special Xs.

Comparison criterion There’s no unique way to order matrices. To find
a criterion, consider this one: because the GLS estimator has smaller
variance than OLS, we know that for any linear combination of esti-
mates

Var(a′β̃) ≤ Var(a′β̂)

It follows then that we can use “generalized variances” (i.e., determi-
nants) to order the estimators:

|V ar(β̃)| ≤ |Var(β̂)|

and the ratio of these generalized variances (efficiency?) is

|Var(β̃)|
|Var(β̂)|

=
|X ′X|2

|X ′ΦX| |X ′Φ−1X|

Bounds By orthogonalizing X so that X ′X = I, it can be shown that there
is a lower bound to the efficiency given by

Var(a′β̃)

Var(a′β̂)
≥ 4λ1λn

(λ1 + λn)2

where λ1 ≥ λ2 ≥ · · ·λn > 0 are the eigenvalues of Φ (which is assumed
to be full rank). These bounds come from the Kantorovich inequality:
For 0 < λ1 ≤ λ2 . . . ≤ λn and nonnegative weights pi for which

∑
pi =

1, then (∑
piλi

) (∑
pi

1
λi

)
≤ A2

G2

where A = (λ1 + λn)/2 is the arithmetic mean and G =
√
λ1λn is the

geometric mean.
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Lingering Questions

Computing in practice Suppose that we estimate α from the data. Is the
resulting approximate GLS estimator as good as suggested by these
approximations?

Model specification What if we don’t know that the process is autore-
gressive, much less its coefficient? Are the gains going to be so large
as possible from these indications?


