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Eigenvectors and Eigenvalues of Stationary Processes
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Toeplitz and circulant matrices

Toeplitz matrix A banded, square matrix Γn (subscript n for the n × n
matrix) with elements [Γn]jk = γj−k,

Γn =



γ0 γ−1 γ−2 · · · γ1−n
γ1 γ0 γ−1 · · · γ2−n

γ2 γ1 γ0
. . .

...
...

. . . . . . γ−1

γn−1 γn−2 · · · γ1 γ0


(1)

Symmetry Toeplitz matrices don’t have to be symmetric or real-valued,
but ours will be since we’ll set γ−h = γh = Cov(Xt+h, Xt) for some
stationary process Xt. From now on, Γn is the covariance matrix of a
stationary process.

Assumptions We will assume that the covariances are absolutely summable,∑
h

|γh| <∞

Breadth The results shown here are in the form that’s most accessible,
without searching for too much generality. All of these extend more
generally to other types of sequences, such as those that are square
summable, and other matrices that need not be symmetric.
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Szegö’s Theorem

Fourier transform Since the covariances are absolutely summable, it is
(relatively) easy to show that we can define a continuous function
from the γh,

f(ω) =
∞∑

h=−∞
γhe

i2πωh, −1
2 < ω ≤ 1

2 . (2)

If γh are the covariances of a stationary process, then f(ω) is known as
the spectral density function or spectrum of the process. (See Section
4.1-4.3 in SS.)

Inverse transform The Fourier transform is invertible in the sense that
we can recover the sequence of covariances from the spectral density
function f(ω) by integration

γh =
∫ 1/2

−1/2
f(ω)e−i2πhωdω . (3)

Heuristically, the expression for the variance γ0 =
∫ 1/2
−1/2 f(ω)dω sug-

gests that the spectral density decomposes the variance of the process
into a continuous mix of frequencies.

Szegö’s theorem Define the eigenvalues of Γn as

τn,0, τn,1, . . . , τn,n−1 .

These are all positive if Γn is positive definite (as we often require
or assume). Szegö’s theorem shows that we can use the spectum to
approximate various various functions of the eigenvalues. (An inter-
esting question in the analysis of Toeplitz matrices in general is what
happens when Γn is not full rank.)

Let G denote an arbitrary continuous function. Then

lim
n→∞

1
n

n−1∑
h=0

G(τn,h) =
∫ 1/2

−1/2
G( f(ω) )dω (4)

That is, we get to replace a sum by an integral. The sum resembles a
Riemann approximation to an integral, as if τn,h = f(2πh/n).
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Basic examples

Trace The trace of a square matrix is the sum of the diagonal values
of the matrix, which equals the sum of the eigenvalues of the
matrix.

1
n

trace(Γn) =
1
n

∑
h

τn,h ≈
∫ 1/2

−1/2
f(ω)dω

Though it follows directly from (3) that γ0 =
∫ 1/2
−1/2 f(ω)dω, it is

also a consequence of (4) as well.

Determinant The product of the eigenvalues of a matrix.

log |Γn|1/n =
1
n

∑
log τn,h ≈

∫ 1/2

−1/2
log f(ω)dω .

Prediction application Here’s a surprising application of Szegö’s theorem
to prove a theorem of Kolmogorov. If Xt is a staionary process, how
well is it possible to predict Xn+1 linearly from its n predecessors? In
particular, what is

Vn = min
a

E (Xn+1 − a0Xn − a2Xn−1 − · · · − an−1X1)2

In the Gaussian case, the problem is equalvalent to finding the variance
of the conditional expectation of Xn+1 given X1:n. Szegö’s theorem
provides an elegant answer:

lim
n
Vn = exp

(∫ 1/2

−1/2
log f(ω)dω

)
. (5)

The answer follows from applying (4) to the ratio of determinants,
once you note that

Vn =
|Γn+1|
|Γn|

. (6)

(Long aside: To see that (6) holds, covariance manipulations of the
multivariate normal distribution show you that the variance of the
scalar r.v. Y given the vector r.v. X is Var(Y |X) = σyy−ΣyxΣ−1

xxΣxy,
where the variance matrix is partitioned as

Σ = Var

(
Y

X

)
=

(
σyy Σyx

Σxy Σxx

)
.
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To find the determinant |Σ|, postmultiply Σ by a matrix with 1s on
the diagonal, obtaining

|Σ| =

∣∣∣∣∣Σ
(

1 0
Σ−1
xxΣxy I

)∣∣∣∣∣ = (σyy − ΣyxΣ−1
xxΣxy)|Σxx|

The expression (6) follows. Note that the regression vector β =
Σ−1
xxΣxy).

Now back to the prediction problem. From Szegö’s theorem, 1
n+1

∑
log τn+1,j ≈

1
n

∑
log τn,j since both approximate the same integral. Now plug in

|Γn+1|1/(n+1) ≈ |Γn|1/n and (5) follows.

Circulant matrices

Circulant matrix is a special type of Toeplitz matrix constructed by ro-
tating a vector c0, c1, . . . , cn−1, say, cyclically by one position to fill
successive rows of a matrix,

Cn =


c0 c1 c2 · · · cn−1

cn−1 c0 c1 · · · cn−2

cn−2 cn−1 c0 c1
...

. . . . . . c1
c1 c2 · · · cn−1 c0

 (7)

Circulant matrices are an important type of Toeplitz matrix for our
purpose (they have others!) because we can easily find their eigenvec-
tors and eigenvalues.

Eigenvectors These are relatively easy to find from the basic definition of
an eigenvector and a great guess for the answer. An eigenvector u of
Cn satisfies Cn u = τ u, which gives a system of n equations:

c0u0 + c1u1 + · · ·+ cn−1un−1 = τu0

cn−1u0 + c0u1 + · · ·+ cn−2un−1 = τu1
...

...
c1u0 + c2u1 + · · ·+ c0 un−1 = τun−1
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The equation in the rth row is, in modular form,

row r :
n−r−1∑
j=0

cjuj+r +
n−1∑
j=n−r

cju(j+r)|n = τur

or in more conventional form as

row r :
n−r−1∑
j=0

cjuj+r +
n−1∑
j=n−r

cjuj+r−n = τur .

Guess uj = ρj (maybe reasonable to guess this if you have been study-
ing differential equations.). Then

n−r−1∑
j=0

cjρ
j+r +

n−1∑
j=n−r

cjρ
j+r−n = τ ρr .

If ρn = 1, it works! These are the n roots of unity; any ρ = exp(i2πj/n)
works for j = 0, 1, . . . , n − 1. The eigenvectors have the form u′ =
(ρ0, ρ1, ρ2, . . . , ρn−1):

u′r = (1, ei2πr/n, ei2π2r/n, . . . , ei2π(n−1)r/n)

as seen in the discrete Fourier transform.

Eigenvalues These are the discrete Fourier transforms of the sequence that
defines the circulant,

τn,k =
n−1∑
j=0

cj e
i2πjk/n

If the cj = γj , then we’ve got the first n terms of the sum that defines
the spectral density (2).

Implications for covariance matrices We can now anticipate the re-
sults. Asymptotically in n, the vectors that define the discrete Fourier
transform are eigenvectors of every covariance matrix. The eigenvalues
are then the transform coefficients of the covariances, namely values
of the spectral density function. If we define an orthogonal matrix
U = (u0, u1, . . . , un−1) from the eigenvectors un, then we obtain

U ′ Γn U ≈ diag(f(ωj))
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To confirm these guesses, we need to show that a circulant matrix
provides a “good” approximation to the covariance, good enough so
that we can use the results for circulants when describing covariance
matrices. To describe what we mean by a good approximation, we
need a way to measure the distance between matrices, a norm.

Matrix norms

Norms A norm on a vector space V is any function ‖x‖ for x ∈ V for which
(α ∈ R)

1. ‖x‖ > 0, x 6= 0.

2. ‖αx‖ = |α|‖x‖

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality)

Operator norm Define the operator norm of a square matrix T as the
maximum ratio of quadratic forms,

‖T‖ = max
x

x′Tx

x′x
= max τj

where τj are the eigenvalues (singular values) of T .

Hilbert-Schmidt or weak norm. For an n× n matrix T ,

|T |2 = 1
n

∑
j,k

|tjk|2

= 1
ntrace(T ′T )

= 1
n

∑
τ2
j .

Connections It is indeed a weaker norm,

|T |2 ≤ ‖T‖2 = τ2
max

The two allow you to handle products,

|T S| ≤ ‖T‖|S| .
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Approximation via circulants

An approximation Consider the following circulant that approximates
Γn, obtained by “flipping” the covariances and running them “both
ways”:

Gn =



γ0 γ1 + γn−1 γ2 + γn−2 · · · γn−1 + γ1

γ1 + γn−1 γ0 γ1 + γn−1 · · · γn−2 + γ2

γ2 + γn−2 γ1 + γn−1 γ0
. . .

...
...

. . . . . . γ−1

γn−1 + γ1 γn−2 + γ2 · · · γ1 + γn−1 γ0


(8)

The norm of the difference Γn −Gn is a familiar type of sum,

|Γn −Gn|2 = 2
n

n−1∑
h=1

(n− h)γ2
n−h

= 2
n

n−1∑
h=1

h γ2
h reverse the sum

= 2
n−1∑
h=1

h
n γ

2
h .

Since we assume that
∑
|γj | <∞, the sum converges to 0,

lim
n→∞

|Γn −Gn| = 0 .

Eigenvalues of close matrices If two matrices are close in the weak norm,
then the averages of their eigenvalues are close. In particular, given
two matrices A and B with eigenvalues αj and βj , then

| 1n
∑
j

αj − 1
n

∑
j

βj | ≤ |A−B|

Proof: If D = A−B, then∑
j

αj −
∑
j

βj = trace(A)− trace(B) = trace(D).

Now use Cauchy-Schwarz in the form

(
∑
j

aj)2 = (
∑
j

aj 1)2 ≤ (
∑
j

a2
j )(n) (9)
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to show that

|trace(D)|2 = |
∑
j

djj |2 ≤ n
∑
j

d2
jj ≤ n

∑
j,k

d2
jk = n2|D|2 .

The loose bounds in the proof suggest you can do a lot better. In fact,
you can move the absolute value inside the sum (so that the actual
eigenvalues are getting close, not just on average).

Powers of eigenvalues A messier argument produces a similar result. Given
two matrices A and B with |A − B| → 0 and eigenvalues αj and βj ,
then for any power s,

lim 1
n

∑
j

(αsj − βsj ) = 0 .

Extension Now that we’ve found that powers of the eigenvalues converge
for close matrices in the limit, its not hard to get the result for a
continuous function. The argument is a common one: polynomials
can approximate any continuous function g. The result implies that

lim 1
n

∑
j

g(αj)− g(βj) = 0 .


