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Modeling paradigm

Modeling objective A common measure used to assess many statistical
models is their ability to reduce the input data to random noise. For
example, we often say that a regression model “fits well” if its residuals
ideally resemble iid random noise. We often settle for uncorrelated
processes with data.

Filters and noise Model the observed time series as the output of an un-
known process (or model) M “driven by” an input sequence composed
of independent random errors {εt}

iid∼ Dist(0, σ2) (not necessarily nor-
mal),

εt → Process M → Xt

From observing the output, say X1, . . . , Xn, the modeling task is to
characterize the process (and often predict its course). This “signal
processing” may be more appealing in the context of, say, underwater
acoustics rather than macroeconomic processes.

Prediction rationale If a model reduces the data to iid noise, then the
model captures all of the relevant structure, at least in the sense that
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we obtain the decomposition

Xt = E (Xt|Xt−1, ...) + εt = X̂t + εt .

Causal, one-sided Our notions of time and causation imply that the cur-
rent value of the process cannot depend upon the future (nonantici-
pating), allowing us to express the process M as

Xt = M(εt, εt−1, . . .) .

Volterra expansion is a general (too general?) expansion (like the infinite
Taylor series expansion of a function) that expresses the process in
terms of prior values of the driving input noise.

Differentiating M with respect to each of its arguments, we obtain the
one-sided expansion (Wiener 1958),

Xt − µ =
∞∑
j=0

ψjεt−j +
∑
j,k

ψjkεt−jεt−k +
∑
j,k,m

ψjkmεt−jεt−kεt−m + · · · ,

where, for example, ψjk = ∂2M
∂εt−j∂εt−k

evaluated at zero. The first
summand on the right gives the linear expansion.

Linearity The resulting process is linear if Xt is a linear combination
(weighed sum) of the inputs,

Xt =
∞∑
j=0

ψjεt−j (1)

Other processes are nonlinear. The process is also said to be causal
(Defn 3.7) if there exists an white noise sequence εt and an absolutely
summable sequence (or sometimes an `2 sequence) {ψj} such that (1)
holds. The key notion of causality is that the current observation is a
function of current and past white noise terms (analogous to a random
variable that is adapted to a filtration).

Invertibility The linear representation (1) suggests a big problem for iden-
tifying and then estimating the process: it resembles a regression in
which all of the explanatory variables are functions of the unobserved
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errors. The invertibility condition implies that we can also express the
errors as weighted sum of current and prior observations,

εt =
∞∑
j=0

πjXt−j .

Thinking toward prediction, we will want to have an equivalence of
the form (for any r.v. Y )

E [Y |Xt, Xt−1, . . .] = E [Y |εt, εt−1, . . .]

This equivalence implies that information in the current and past er-
rors is equivalent to information in the current and past data (i.e., the
two sigma fields generated by the sequences are equivalent). Notice
that the conditioning here relies on the infinite collection of prior val-
ues, not a finite collection back to some fixed point in time, such as
t = 1.

Implication and questions The initial goal of time series modeling using
the class of ARMA models to be defined next amounts to finding a par-
simonious, linear model which can reduce {Xt} to iid noise. Questions
remain about how to do this:

1. Do such infinite sums of random variables exist, and how are they
to be manipulated?

2. What types of stationary processes can this approach capture
(i.e., which covariance functions)?

3. Can one express these models using few parameters?

Review: Stationary Linear Processes

Notation of S&S uses {wt} as the canonical mean zero, finite variance
white-noise process (which is not necessarily normally distributed),

wt ∼WN(0, σ2)

Convergence. For the linear process defined as Xt =
∑

j ψjwt−j to exist,
we need assumptions on the weights ψj . An infinite sum is a limit,

∞∑
j=0

ψjwt−j = lim
n

n∑
j=0

ψjwt−j ,
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and limits require a notion of convergence (how else do you decide if
you are close)? Modes of convergence for r.v.s include:

• Almost sure, almost everywhere, with probability one, w.p. 1,
Xn

a.s.→ X,
P{ω : limXn = X} = 1.

• In probability, Xn
P→ X,

lim
n
P{ω : |Xn −X| > ε} = 0

• In mean square or `2, the variance goes to zero:

E (Xn −X)2 → 0.

`2 convergence of linear process requires that∑
j

ψ2
j <∞ or {ψj} ∈ `2.

Consequently ∑
j

ψjψj+k ≤
∑

ψ2
j <∞.

In general, if {ψj} ∈ `2 and {Xt} is stationary, then the linear filter

Yt =
∞∑
j=0

ψjXt−j

defines a stationary process with covariance function

Cov(Yt+h, Yt) = γY (h) =
∑
j,k

ψjψkγX(h− j + k).

Informally, Var(Yt) =
∑

j,k ψjψkγ(k − j) ≤ γ(0)
∑

j ψ
2
j .

Covariances When the “input” is white noise, then the covariances are
infinite sums of the coefficients of the white noise,

γY (h) = σ2
X

∞∑
j=0

ψjψj+h. (2)
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Absolutely summable S&S often assume that
∑
|ψj | < ∞ (absolutely

summable). This is a stronger assumption that simplifies proofs of
a.s. convergence. For example, 1

j is not absolutely summable, but is
square summable. We will not be too concerned with a.s. convergence
and will focus on mean-square convergence. (The issue is moot for
ARMA processes.)

Question Does the collection of linear processes as given define a vector
space that allows operations like addition? The answer is yes, using
the concept of a Hilbert space of random variables.
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ARMA Processes

Conflicting goals Obtain models that possess a wide range of covariance
functions (2) and that characterize ψj as functions of a few parameters
that are reasonably easy to estimate. We have seen several of these
parsimonious models previously, e.g.,

• Finite moving averages: ψj = 0, j > q > 0.

• First-order autoregression: ψj = φj , |φ| < 1.

ARMA processes also arise when sampling a continuous time solution
to a stochastic differential equation. (The sampled solution to a pth
degree SDE is an ARMA(p,p− 1) process.)

Definition 3.5 The process {Xt} is an ARMA(p,q) process if

1. It is stationary.

2. It (or the deviations Xt − EXt) satisfies the linear difference
equation written in “regression form” (as in S&S, with negative
signs attached to the φs) as

Xt − φ1Xt−1 − · · · − φpXt−p = wt + θ1wt−1 + · · ·+ θqwt−q (3)

where wt ∼WN(0, σ2).

Backshift operator Abbreviate the equation (3) using the so-called back-
shift operator defined as BkXt = Xt−k. Using B, write (3) as

φ(B)Xt = θ(B)wt

where the polynomials are (note the differences in signs)

φ(z) = 1− φ1z − · · · − φpzp

and
θ(z) = 1 + θ1z + · · ·+ θqz

q

Closure The backshift operator shifts the stochastic process in time. Be-
cause the process is stationary (having a distribution that is invariant
of the time indices), this transformation maps a stationary process
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into another stationary process. Similarly, scalar multiplication and
finite summation preserve stationarity; that is, the vector space of sta-
tionary processes is closed in the sense that if Xt is stationary, then
so too is Θ(B)Xt so long as

∑
j θ

2
j <∞.

Aside: Shifts elsewhere in math The notion of shifting a stationary
process {. . . , Xt, Xt+1, . . . to {. . . , Xt−1, Xt, . . . has parallels. For ex-
ample, suppose that p(x) is a polynomial. Define the operator S on
the space of polynomials defined as S p(x) = p(x− 1). If the space of
polynomials is finite dimensional (up to degree m), then we can write

S = I +D +D2/2 +D3/3! + · · ·Dm/m!

where I is the identity (I p = p) and D is the differntiation operator.
(The proof is a direct application of Taylor’s theorem.)

Value of backshift notation

1. Compact way to write difference equations and avoid backsub-
stitution, Backsubstitution becomes the conversion of 1/(1 − x)
into a geometric series; If we manipulate B algebraically in the
conversion of the AR(1) to moving average form, we obtain the
same geometric representation without explicitly doing the te-
dious backsubstitution:

φ(B)Xt = wt ⇒ Xt =
wt

1− φB
= (1 + φB + φ2B2 + . . .)wt
= wt + φwt−1 + φ2wt−2 + . . . . (4)

Which clearly requires (as in a geometric series) that |φ| < 1.

2. Expression of constraints that assure stationarity and identifia-
bility.

3. Express effects of operations on a process:

• Adding uncorrelated observation random noise to an AR pro-
cess produces an ARMA process.

• A weighted mixture of lags of an AR(p) model is ARMA.
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Consider the claim that an average of several lags of an autoregression
forms an ARMA process. Backshift polynomials make it trival to show
this claim holds:

φ(B)Xt = wt ⇒ θ(B)Xt =
θ(B)
φ(B)

wt ,

which has the rational form of an ARMA process.

Converting to MA form, in general In order to determine ψ(z), notice
that θ(z)/φ(z) = ψ(z) implies that

φ(z)ψ(z) = θ(z) .

Given the normalization φ0 = θ0 = ψ0 = 1, one solves for the ψj by
equating coefficients in the two polynomials (recursively).

Stationarity of ARMA Processes

Moving averages If p = 0, the process is a moving averge of order q,
abbreviated an MA(q) process,

Xt = wt + θ1wt−1 + · · ·+ θqwt−q . (5)

This is a special case of the general linear process, having a finite
number of nonzero coefficients (i.e., ψj = θj , j = 1, . . . , q). Thus the
MA(q) process must be stationary with covariances of the form (2):

γX(h) =
q−|h|∑
j=0

θjθj+|h|, |h| ≤ q,

and zero otherwise.

All moving averages are stationary Under the typical constraint of S&S
that the coefficients of a moving average are absolutely summable, all
moving averages are stationary — even moving averages of other mov-
ing averages.

Proof. Suppose
∑

j θ
2
j <∞ and that Xt is stationary with covariance

function γX(h). The covariance function of Yt =
∑

j θjXt−j is

Cov(Yt+h, Yt) = Cov

 ∞∑
j=0

θjYt+h−j ,

∞∑
k=0

θkYt−k
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=
∞∑

j,k=0

θjθk Cov(Yt+h−j , Yt−k)

=
∞∑

j,k=0

θjθkγX(h− j + k)

≤

∑
j

θ2
j

∑
j

γX(j)


The covariances are summable and invariant of t.

Constraints remain An MA(q) process of finite order models a process
that becomes uncorrelated beyond time separation q. There may be
other limitations on the structure of the covariances. For example,
consider the MA(1) model, Xt = wt + θ1wt−1. The covariances of this
process are are

γ(0) = σ2(1 + θ2
1), γ(1) = σ2θ1, γ(h) = 0, h > 1.

Hence,

ρ(1) =
θ1

1 + θ2
1

< 1
2

which we can see from a graph or by noting that the maximum occurs
where the derivative

∂ρ(1)/∂θ1 =
1− θ2

(1 + θ2)2
= 0 .

Don’t try to model the covariance function {γ(h)} = (1, 0.8, 0, . . .)
with an MA(1) process! Other ARMA models place similar types of
constraints on the possible covariances.

Autoregressions If q = 0, the process is an autoregression, or AR(p),

Xt = φ1Xt−1 + · · ·+ φpXt−p + wt (6)

The stationarity of a solution to (6) is less obvious because of the pres-
ence of “feedback” (beyond the AR(1) case considered previously). To
investigate initially we make the AR process resemble a linear process
(a weighted sum of past white noise) since we know that such a process
is stationary.
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Factor the polynomial φ(z) as using its zeros (φ(zj) = 0) as

φ(z) = (1− z/z1) · · · (1− z/zp) =
∏
j

(1− z/zj) .

Some of the zeros zj are likely to be complex. (Complex zeros come
in conjugate pairs (say zj = zk) since the coefficients φj are real).

As long as all of the zeros are greater than one in modulus (|zj | > 1),
we can repeat the method used in (4) to convert {Xt} into a moving
average, one term at a time. Since at each step we form a linear
filtering of a stationary process with square-summable weights (indeed,
absolutely summable weights), the steps are valid.

AR(2) example These processes are interesting because they allow for
complex-valued zeros in the polynomial φ(z). The presence of complex
pairs produces oscillations in the observed process.

For the process to be stationary, we need the zeros of φ(z) to lie outside
the unit circle. If the two zeros are z1 and z2, then

φ(z) = 1− φ1z − φ2z
2 = (1− z/z1)(1− z/z2). (7)

Since φ1 = 1/z1 + 1/z2 and φ2 = −1/(z1z2), the coefficients lie within
the rectangular region

−2 < φ1 = 1/z1 + 1/z2 < +2, −1 < φ2 =
−1
z1z2

< +1 .

Since φ(z) 6= 0 for |z| ≤ 1 and φ(0) = 1, φ(z) is positive for over the
unit disc |z| ≤ 1 and

φ(1) = 1− φ1 − φ2 > 0 ⇒ φ1 + φ2 < 1
φ(−1) = 1 + φ1 − φ2 > 0 ⇒ φ2 − φ2 < 1

From the quadratic formula applied to (7), φ2
1 + 4φ2 < 0 implies that

the zeros form a complex conjugate pair,

z1 = reiλ, z2 = re−iλ ⇒ φ1 = 2 cos(λ)/r, φ2 = −1/r2.

Turning to the covariances of the AR(2) process, these satisfy the
difference equation γ(h)−φ1γ(h−1)−φ2γ(h−2) = 0 for h = 1, 2, . . ..
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We need two initial values to start these recursions. To make this
chore easier, work with correlations. Dividing by γ(0) gives

ρ(h)− φ1ρ(h− 1)− φ2ρ(h− 2) = 0 ,

and we know ρ(0) = 1. To find ρ(1), use the equation defined by γ(0)
and γ(1) = γ(−1):

ρ(1) = φ1ρ(0) + φ2ρ(−1) = φ1 + φ2ρ(1),

which shows ρ(1) = φ1/(1− φ2). When the zeros are a complex pair,
ρ(h) = c rh cos(hλ), a damped sinusoid, and realizations exhibit quasi-
periodic behavior.

ARMA(p,q) case In general, the process has the representation (again,
|zj | > 1)

Xt =
θ(B)
φ(B)

wt =

∏
j(1−B/sj)∏
j(1−B/zj)

wt = ψ(B)wt (8)

where sj , j = 1, . . . , q are the zeros of θ(B) and ψ(B) = θ(B)/φ(B).
This is a sum of q stationary processes, and thus stationary. Station-
arity does not require that |sj | > 1; that’s required for invertibility
(defined below).

Identifiability of ARMA processes

Identifiable A model with likelihood L(θ) is identified if different param-
eters produce different likelihoods, θ1 6= θ2 → L(θ1) 6= L(θ2). For
Gaussian time series, this condition amounts to having a 1-to-1 corre-
spondence between the parameters and the covariances of the process.

Analogy to regression The most common example of a poorly identified
model is a regression model with collinear explanatory variables. If
X1 +X2 = 1, say, then

Y = β0 + β1X1 + 0 X2 + ε ⇔ Y = (β0 + β1) + 0 X1 − β1X2 + ε

Both models obtain the same fit, but with very different coefficients.
Least squares can find many fits that all obtain the same R2 (the
coefficients lie in a subspace).
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Non-causal process. These “odd” processes hint at how models are not
identifiable. Suppose that |φ̃| > 1. Is there a stationary solution to
Xt − φ̃Xt−1 = Zt for some white-noise process Zt? The surprising
answer is yes, but it’s weird because it runs backwards in time. The
hint that this might happen lies in the symmetry of the covariances,
Cov(Xt+h, Xt) = Cov(Xt, Xt+h).

To arrive at this representation, forward-substitute rather than back-
substitute. This flips the coefficient from φ̃ to 1/φ̃ < 1. Start with the
process at time t+ 1

Xt+1 = φ̃Xt + wt+1 ⇒ Xt = (1/φ̃)Xt+1 − (1/φ̃)wt+1 .

Continuing recursively,

Xt = −wt+1/φ̃+ (1/φ̃)Xt+1

= −wt+1/φ̃+ (1/φ̃)
(
−wt+2/φ̃+ (1/φ̃)Xt+2

)
= −wt+1/φ̃− wt+2/φ̃

2 +Xt+2/φ̃
2

. . .

= −
k∑
j=1

wt+j/φ̃
j +Xt+k/φ̃

k

which in the limit becomes

Xt = −wt+1

φ̃
− wt+2

φ̃2
− · · · = −

∞∑
j=1

φ̃−jwt+j = −
∞∑
j=0

φ̃−jw̃t+1+j ,

where w̃t = wt/φ̃. This is the unique stationary solution to the differ-
ence equation Xt − φ̃Xt−1 = wt. The process is said to be non-causal
since Xt depends on “future” errors ws, s > t, rather than those in
the past. If |φ̃| = 1, no stationary solution exists.

Non-uniqueness of covariance The covariance formula (2) implies that

Cov(−
∞∑
j=0

φ̃−jw̃t+1+h+j ,−
∞∑
j=0

φ̃−jw̃t+1+j) =
σ2

φ̃2

(1/φ̃)|h|

1− (1/φ̃)2

Thus, the non-causal process also has same correlation function as the
more familiar process with coefficient |1/φ̃| < 1 (the non-causal version
has smaller error variance).
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Not identified Either choice for φ 6= 1 (φ and 1/φ) generates a solution of
the first-order difference equation

Xt = φXt−1 + wt .

If |φ| < 1, we can find a solution via back-substitution. If |φ| > 1,
we obtain a stationary distribution via forward substitution. For a
Gaussian process with mean zero, the likelihood is a function of the
covariances. Since these two have the same correlations, the model is
not identified. Either way, we cannot allow |φ| = 1.

Moving averages: one more condition Such issues also appear in the
analysis of moving averages. Consider the covariances of the two pro-
cesses

Xt = wt + θwt−1 and Xt = wt−1 + θwt−2

The second incorporates a time delay. Since both are finite moving
averages, both are stationary. Is the model identified? It is with the
added condition that ψ0 = 1.

Covariance generating function This function expresses the covariance
of an ARMA process in terms of the polynomials φ(z) and θ(z). The
moving average representation of the ARMA(p, q) process given by (8)
combined with our fundamental result (2) implies that the covariances
of {Xt} are

γ(h) = σ2
∞∑
j=0

ψj+|h|ψj (9)

where ψj is the coefficient of zj in ψ(z). The sum in (9) can be
recognized as the coefficient of zh in the product ψ(z)ψ(z−1), implying
that the covariance γ(h) is the coefficient of zh in

Γ(z) = σ2ψ(z)ψ(z−1)

= σ2 θ(z)θ(z
−1)

φ(z)φ(z−1)
,

which is known as the covariance generating function of the process.

Reciprocals of zeros The zeros of φ(1/z) are the reciprocals of those of
φ(z). Hence, as far as the covariances are concerned, it does not matter
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whether the zeros go inside or outside the unit circle. They cannot lie
on the unit circle.

Since both φ(z) (which has zeros outside the unit circle) and φ(1/z)
(which has zeros inside the unit circle) both appear in the definition
of Γ(z), some authors state the conditions for stationarity in terms of
one polynomial or the other. In any case, no zero can lie on the unit
circle.

Further identifiability issue: Common factors Suppose that the poly-
nomials share a common zero r,

θ(z) = θ̃(z)(1− z/r), φ(z) = φ̃(z)(1− z/r)

Then this term cancels in the covariance generating function. Thus,
the process φ̃(B)Xt = θ̃(B)wt has the same covariances as the process
φ(B)Xt = θ(B)wt. To avoid this type of non-identifiability, we require
that φ(z) and θ(z) have distinct zeros.

Invertibility of ARMA processes

Invertible (Defn 3.8) An ARMA process {Xt} is invertible if there exists
an absolutely summable sequence (or perhaps `2 sequence) {πj} such
that

wt =
∞∑
j=0

πjXt−j .

Conditions for invertible ARMA Assume that the polynomials φ(B)
and θ(B) have no common zeros. The process {Xt} is invertible if and
only if the zeros of the moving average polynomial θ(B) lie outside the
unit circle.

ARIMA processes

Nonstationary processes are common in many situations, and these would
at first appear outside the scope of ARMA models (certainly by the
definition of S&S). The use of differencing, via the operator (1 −
B)Xt = Xt −Xt−1 changes this.
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Differencing is the discrete-time version of differentiation. For example,
differencing a process whose mean function EXt = a+ b t is trending
in time removes this source of nonstationarity. For example, if {Xt}
is a stationary process, then differencing

Yt = α+ β t+Xt ⇒ (1−B)Yt = β +Xt −Xt−1

reveals the possibly stationary component of the process. (Note, how-
ever, that if Xt were stationary to begin with, the differences of Xt

would not be stationary!)

ARIMA(p,d,q) models are simply ARMA(p,q) models with

Xt replaced by (1−B)dXt

where (1−B)d is manipulated algebraically.

Long-memory processes are stationary (unlike ARIMA processes) and
formed by raising the differencing operator to a fractional power, say
(1−B)1/4. With time, we will study these later.


