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Predicting ARMA Processes

Overview

Prediction of ARMA processes resembles in many ways prediction in regres-
sion models, at least in the case of AR models. We focus on linear predictors,
those that express the prediction as a weighted sum of past observations.

1. ARMA models, notation

2. Best linear predictor

3. Levinson’s algorithm

4. Prediction errors

5. Discussion

ARMA processes

Review notation A stationary solution {Xt} (or if its mean is not zero,
{Xt − µ}) of the linear difference equation

Xt − φ1Xt−1 − · · · − φpXt−p = wt + θ1wt−1 + · · ·+ θqwt−q, wt ∼WN(0, σ2)
φ(B)Xt = θ(B)wt (1)

In general, I will treat µ = 0 (until we fit models to data).

Moving average The one-sided MA representation is

Xt =
∞∑
j=0

ψjwt−j = ψ(B)wt , (2)

Autoregression The corresponding AR representation (assuming invert-
ibility) is

Xt = wt +
∞∑
j=1

πjXt−j or π(B)Xt = wt . (3)
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Best linear predictor

Conditional mean Consider finding the best estimator of Y given that we
can use any function of the observed variables X1:n = X1, X2, . . . , Xn

(where “best” means minimal mean squared error loss),

min
g

E (Y − g(X1, X2, . . . , Xn))2 .

The answer is given by setting g to the conditional expected value of
Y , g(X1:n) = EY |X1:n.

The proof resembles those used in regression analysis because we can
think of the conditional expected value as a projection onto X1:n. Add
and subtract E (Y |X1:n), expand the square, and then observe that
E (Y − E (Y |X1:n)(E (Y |X1:n) − g(X1:n)) = 0 (use the law of total
expectation, EY = E xE y|xY ).

Best linear predictor In general, the conditional mean is a nonlinear
function of X1:n, but we will emphasize finding linear predictors for
two reasons.

• In the Gaussian case, the conditional mean is linear.

• Linear predictors only require second-order properties of the pro-
cess. Since we assume second-order stationarity, we can estimate
these by averaging over time in the observed data.

We define (see Property 3.3) the best linear predictor of Xn+m (i.e.,
m periods beyond the end of the observed time series) as X̂n+m (the
book writes this as Xn

n+m)

min
α

E

Xt+m − (X̂n+m =
n∑
j=1

αjXn+1−j)

2

(4)

Equivalently, we can define the best squared-error predictor by de-
manding orthogonal prediction errors,

E (Xn+m − X̂n+m)Xj = 0, j = 1, 2, . . . , n (5)
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Yule-Walker equations, again Consider predicting one-step ahead at
Xn+1. Write the coefficients in the form φmk = φsize,index (some books
do these in the other order, so read carefully). Multiplying and taking
expectations in

EXn+1−k(Xn+1 −
∑

φnjXn+1−j) = 0 k = 1, . . . , n ,

gives the n× n system of equations

γ = Γnφ, [Γn]ij = γ(i− j). (6)

where γ = (γ1, . . . , γn)′ and φ = (φ1, . . . , φn)′. Solving directly gives
a large inverse and the solution to the prediction problem:

X̂n+1 =
∑
j

φjXn+1−j where φ = Γ−1
n γ .

In matrix form, the mean squared error of one-step ahead prediction
reduces to

E (Xn+1 − X̂n+1)2 = E (Xn+1 − φ′X1:n)2

= γ(0)− 2 φ′γ + φ′Γnφ
= γ(0)− γ ′ Γ−1

n γ , (7)

when you substitute φ = Γ−1
n γ. The expression (7) resembles the

expression in a linear regression for the residual sum of squares, RSS =
y′y − β̂′(X ′X)β̂.

Note: the problem changes slightly when the forecast horizon increases
from predicting Xn+1 to Xn+m for m > 1; the covariance vector γ

changes from (γ1, . . . , γn)′ to (γm, . . . , γn+m−1)′.

Levinson’s recursion

Problem How do we solve the prediction equations (6), which in general
concern an n×n system of equations? It turns out that there is a very
nice recursive solution.

Levinson’s recursion (p 112 or 113) takes as input γ(0), γ(1), . . . and
provides the coefficients φk1, φk2, . . . , φkk of the AR(k) model that min-
imizes the MSE

min E (Xn+1 − φk1Xn − φk2xn−1 − · · · − φkkXn−k+1)2
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and also gives the MSE itself (denoted P in the text)

σ2
k = E (Xn+1 − φk1Xn − φk2Xn−1 − · · · − φkkXn−k+1)2 .

Along the way to producting the solution φkj , the recursion also solves
the lower order approximations of order p = 1, 2, . . . , k − 1.

Algorithm Initialize φ00 = 0 and σ2
0 = γ(0) = Var(Xt). Compute the

reflection coefficient φkk (which gives the PACF) using (k = 1, 2, . . .)

φkk =
ρ(k)−

∑k−1
j=1 φk−1,jρ(k − j)

1−
∑k−1

j=1 φk−1,jρ(j)

(Note that φ11 = ρ(1).) The update to the prediction MSE is

σ2
k = σ2

k−1(1− φ2
kk) .

Since the asolute value of the reflection coefficient |φkk| < 1, it follows
that the error variances are decreasing, σ2

k ≤ σ2
k−1. (Or, since the

minimization over more parameters cannot give a larger MSE, maybe
this is a way to prove |φkk| ≤ 1!)

The remaining coefficients that determine the predictor are

φkj = φk−1,j − φkkφk−1,k−j .

Derivation resembles the updating a regression equation when a variable
is added to the fitted model. The special form relies on the symmetry
of Γk around both the usual and transverse diagonal. Write the k

prediction equations that determine φk = (φk1, . . . , φkk) in correlation
form as (

Rk−1 ρ̃k−1

ρ̃′k−1 1

)(
β

φkk

)
=

(
ρk−1

ρ(k)

)
whereRk is the k×k correlation matrix of the process, ρk = (ρ(1), . . . , ρ(k)),
ρ̃k = (ρ(k), ρ(k − 1), . . . , ρ(1))′ (the elements in ρk in reversed order)
and the leading k−1 terms in φk are β′ = (φk1, φk2, . . . , φk,k−1). Write
this system of equations as two equations, one a matrix equation and
the other a scalar equation,

Rk−1β + ρ̃k−1φkk = ρk−1
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ρ̃′k−1β + φkk = ρ(k)

Noting that Rk−1 is invertible (make sure you remember why), mul-
tiply the first equation by ρ̃′k−1R

−1
k−1 and combine the equations to

eliminate β. Then solve for φkk, obtaining the equation for the reflec-
tion coefficient

φkk =
ρ(k)− ρ̃′k−1R

−1
k−1ρk−1

1 − ρ̃′k−1R
−1
k−1ρ̃k−1

=
ρ(k)− ρ̃′k−1φk−1

1 − ρk−1
′φk−1

(8)

since R−1
k−1ρk−1 = φk−1 (the coefficients obtained at the prior step)

and R−1
k−1ρ̃k−1 = φ̃k−1 (in reverse order; think about this one... you

might want to consider the rotation matrix W for which ρ̃ = Wρ. W
has 1s along its opposite diagonal). Plugging this expression for φkk
back in the first equation gives the formula for the leading k−1 terms:

β = φk−1 − φkkφ̃k−1

Error variance To see this result, consider the usual regression model.
In the linear model y = x′β + ε in which x is a random vector that is
uncorrelated with ε (β is fixed), the variance of the error is given by

Var(y) = Var(x′β) + Var(ε)⇒ σ2
ε = σ2

y − β′Var(x)β

This expression suggests the relationship among the sums of squares,
Total SS = Residual SS + Regression SS, or Y ′Y = e′e+ β̂′(X ′X)β̂.

The unexplained variance after k steps of Levinson’s recursion is thus

σ2
k = γ(0)− φ′kΓkφk

= γ(0)(1− ρ′kφk)
= σ2

k−1(1− φ2
kk) . (9)

Since φkk is the partial correlation betweenXt andXt−p givenXt−1,. . .,
Xt−p+1, think about the last step as in the use of the R2 statistic in
regression analysis. Adding Xk to a model that contains the predictors
X1, . . . , Xk−1 explains φ2

kk (the square of its partial correlation with
the response) of the remaining variation.

Algebraically, substitute partitioned vectors into the second expression
for σ2

k given in (9) and solve; it’s not too messy:

1− ρ′kφk = 1− ρ′k−1β − ρ(k)φkk
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= 1− ρ′k−1(φk−1 − φkkφ̃k−1)− ρ(k)φkk
= (1− ρ′k−1φk−1)− φkk(ρ(k)− ρ′k−1φ̃k−1)
= (1− ρ′k−1φk−1)− φ2

kk(1− ρ′k−1φk−1)
= (1− ρ′k−1φ)k − 1)(1− φ2

kk) (10)

where the next-to-the-last line follows from (8).

Innovations algorithm alternatively solves recursively for the moving
average representation, increasing the number of terms in the mov-
ing average form of the model. See page 115.

Prediction errors

Another view of predictor Levinson’s algorithm (for AR models) and
the corresponding innovations algorithm (MA models) determine the
best linear predictor X̂n+m and E (Xn+m− X̂n+m)2 for a fixed lead m
beyond the observed data. It is also useful to have expressions that
summarize the effect of increasing m.

Prediction horizon The moving average representation (2) (from the in-
novations algorithm) is useful because the orthogonality of the errors.
Write the time series Xt =

∑
ψjwt−j in staggered form as

Xn+1 = wn+1 +ψ1wn + ψ2wn−1 + · · ·
Xn+2 = wn+2 +ψ1wn+1 +ψ2wn + ψ3wn−1 + · · ·
Xn+3 = wn+3 +ψ1wn+2 +ψ2wn+1 +ψ3wn + ψ4wn−1 + · · ·
Xn+4 = wn+4 +ψ1wn+3 +ψ2wn+2 +ψ3wn+1 +ψ4wn + ψ5wn−1 + · · ·

Since the white noise wt, wt−1, . . . up to time n is “observable” given
that we know the infinite past X−∞:n, the best linear predictor of
Xn+m is

X̂n+m =
∞∑
j=0

ψm+jwn−j

Notice that the predictions are mean-reverting: X̂n+m tends to EXt =
µ as m increases.

Infinite past? This description of predictors and their MSE assumes we
have the entire history of the process. This assumption is for con-
venience, and not unreasonable in practice. The convenience arises
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because in this setting the information in Xn, Xn−1, . . . is equivalent
to that in wn, wn−1, . . . (the sigma fields agree). This equivalence al-
lows us to swap between Xt and wt.

For instance, consider predicting an ARMA(1,1) process (Example
3.22, p 119). The process is Xt = φ1Xt−1 +wt + θ1wt−1. Clearly, the
best predictor of Xn+1 is

X̂n+1 = φ1Xn + θ1wn .

But if we observe only X1:n, how can we learn wn? We know from (3)
that wn =

∑
j πjXn−j , but this sum continues back in time past X1.

For a quick (and accurate so long as n is large relative to the strength
of dependence) approximation to wn, we can construct estimates of
the errors from the start of the series. (Set w̃1 = 0, then estimate
w̃2 = X2 − φ1X1 − θ1w̃1 and continue recursively.)

MSE The mean squared prediction error is also evident in this expression,

E (Xn+m − X̂n+m)2 = σ2
m−1∑
j=0

ψ2
j .

This prediction error approaches the variance of the process rapidly
because typically only the leading ψj are large. For example, for an
AR(1) process with φ1 = 0.8 and σ2 = 1, Var(Xt) = 1/(1 − 0.82) =
2.78. The prediction MSE is

Lead MSE
1 1
2 1 + 0.82 = 1.64
3 1 + 0.82 + 0.642 = 2.05
4 1 + 0.82 + 0.642 + 0.5122 = 2.31

Good habit: plot the mean squared error σ2(
∑k

j=1 ψ
2
j ) versus k to see

how close the MSE has approached the series variance, Var(Xt) =
σ2
∑

j ψ
2
j . For moderate values of k, the MSE is typically very near

Var(Xt), implying that the time series model predicts only slightly
better than µ at this degree of extrapolation. ARMA models are most
useful for short-term forecasts, particularly when you consider that
this calculation gives an “optimistic” estimate of the actual MSE:
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1. We don’t know the infinite history;

2. We don’t know the parameters φ, θ, µ;

3. We don’t know the order of the process (p, q);

4. We don’t even know that the process is ARMA.

When these are taken into account, it’s likely that our MSE is larger
than suggested by these calculations, perhaps higher than the MSE of
simply predicting with X.

Discussion

Example 3.23 illustrates the use of an ARMA model for forecasting the
fish recruitment time series. Figure 3.6 shows the rapid growth of
the MSE of an AR(2) forecast based on estimates. The forecasts are
“interesting” for about six periods out and then settle down to the
mean of the process.

Estimates? Up to now, we have considered the properties of ARMA pro-
cesses. Now we have to see how well we can identify and then estimate
these from data.


