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Bootstrap resampling

Main idea Estimate the sampling distribution of a statistic, with par-
ticular emphasis on the standard error of the statistic and finding a
confidence interval for a statistic.

The idea is to get these properties from the data at hand by analogy
to the usual “thought experiment” that motivates the sampling distri-
bution. The sampling distribution of a statistic θ̂ is the distribution of
the θ̂ computed from repeated samples X of size n from some distri-
bution F . The trick is to sample from the data itself rather than the
population.

Bootstrap sample is a sample drawn with replacement from the original
sample X, denoted by X∗ ∼ Fn where Fn is the empirical distribution
of the observed sample X, the step function

Fn(x) = 1
n

∑
i

HXi(x) where Hc(x) =

{
0 if x ≤ c,
1 if x > c .

(1)

Some call Hc the heaviside function. For now, X∗ is the same size as
X, so obviously X∗ is going to have lots of ties. (If the Xi are unique,
then about 63% of the individual values show up in X∗; the other 37%
are duplicates.)

Example Suppose we didn’t know the CLT and could not figure out the
standard error of a mean. Consider the following iterations: for b =
1, 2, . . . , B,
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1. Draw a bootstrap sample X∗b of size n from Fn.

2. Compute the statistic θ̂∗b from X∗b

Compute the bootstrap standard error as the standard deviation of
the θ̂∗

se∗B(θ̂) = 1
B−1

∑
(θ̂∗b − θ̂∗)2

and for a, say, 95% confidence interval for θ, use the 2.5% and 97.5%
quantiles of the θ̂∗. (Just put them in order and pick off the needed
percentiles.)

Does this work? Yes. Showing that the percentiles give the right answer
is harder, but it is easy for a linear statistic like the mean to figure
out what the simulation of the standard error estimates. (Bootstrap
resampling is not about simulation, it’s about using the empirical dis-
tribution Fn in place of F . We simulate because its easy and because
we often need this for statistics that are not linear.)

First, define expectation with respect to Fn as

E∗X∗i = X1
1
n +X2

1
n + · · ·+Xn

1
n = X

Using this operator, we see no bias in the mean,

E∗X∗ = (X +X + · · ·+X)/n = X .

The squared sampling variation is

Var∗(X∗i ) = σ̂2 = 1
n

∑
(Xi −X)2

( Var∗ is the variance with respect to Fn) and

Var∗(X∗) =
σ̂2

n

rather than s2/n. For confidence intervals, see the associated R ex-
ample.

Key analogy is that resampling from the data X ought to resemble — in
the sense of reproducing the sampling distribution — sampling from
the population. Let θ̂∗ denote the value of the statistic when computed
from the bootstrap sample X∗. The analogy can then be expressed as

θ̂∗ : θ̂ :: θ̂ : θ
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Some math Some math suggests why this might work more generally (we
don’t need it for linear statistics). Think of the statistic θ̂ as a function
of the empirical distribution. For example, the sample mean X can be
written as

X = T (Fn) =
∫
x dFn(x)

if you’re willing to think in terms of point measures (integrating with
respect to a step function). The parameter θ (in this case the mean)
has a similar representation

µ = T (F ) =
∫
x dF (x) .

Now consider two linear expansions, thinking of T as an operator on
distributions and T ′ as a derivative (Frechet),

θ̂∗ = T (F ∗n) ≈ T (Fn) + T ′(Fn)(F ∗n − Fn)

and
θ̂ = T (Fn) ≈ T (F ) + T ′(F )(Fn − F )

You get a hint that things are going in a nice direction because both
Fn−F and F ∗n −Fn tend to a Brownian bridge as n→∞. Of course,
we also need for the derivatives to be close as well.

Reference Efron and Tibshirani (1993) An Introduction to the Bootstrap,
Chapman and Hall.

Effects of Dependence

Sampling distribution of mean If the data are a realization of a sta-
tionary process, we know that

Var(X) = 1
n

∑
(n− |h|)γ(h) .

What’s the bootstrap going to do in this case?

Naive resampling fails Sampling with replacement creates bootstrap sam-
ples with independent observations,

Var(X∗i ) = σ̂2, Var∗(X∗) =
σ̂2

n

as before, and σ̂2 will be close to γ(0). That’s not the right answer.
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Parametric bootstrap Suppose we know that the underlying process is
AR(1). Then we can estimate the parameters and general bootstrap
data as

X∗t = φ̂X∗t−1 + w∗t

where w∗t ∼ Gn and Gn is the empirical distribution of the estimated
model residuals. This works, but requires that we know the data
generating process.

The use of long autoregressions in estimation suggests a workable ap-
proach, knowns as a sieve bootstrap. The idea is simple. Fit an AR
model with a large number of lags and use that model to generate the
bootstrap replications. The success clearly depends on how well the
AR model captures the dependence and the ratio of the length n to
the number of AR coefficients p.

Parameter bias The estimates of the AR coefficients are biased. Hence
the “true” model that generates the bootstrap series is shifted away
from the actual generating process. The effects of the bias are most
pronounced for coefficients of processes with zeros near the unit circle.

Subsampling

Nonparametric Subsampling relies on the same ideas that we used in
proving the CLT for a stationary process: arrange the data into blocks,
and rely on the blocks becoming less dependent as they get farther
apart. The key assumption is that the distribution of the statistic has
the form √

n(θ̂ − θ) ∼ G

Procedure

1. Arrange the time series X1, X2, . . . , Xn into N overlapping blocks,
each of length b, with overlap `:

{X1, . . . , Xb}, {X1+`, . . . , Xb+`, . . .

2. Treat each of the N blocks as if it were the time series of interest,
computing the relevant statistic, obtaining θ̃1, θ̃2, . . . , θ̃N .
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3. Estimate the sampling properties of the estimator computed from
the original time series

√
n(θ̂n − θ)

l from the rescaled empirical distribution of the θ̃i,

F̃b(x) = 1
N

∑
i

H√b(θ̃i−θ̂)(x)

Theory The coverage probabilities implied by the distribution F̃b con-
verges in probability to the correct limits under relatively weak con-
ditions (see reference), so long as the b → ∞ with b/n → 0 (e.g., b =
O(
√
n)). For iid samples, the theory resembles that used when study-

ing leave-out-several versions of the jackknife and cross-validation.
Subsampling provably works in many applications with the type of
“weak” dependence associated with ARMA processes.

Not independent The subsampled estimates θ̃ are not independent (or
even uncorrelated), so we cannot use them directly to estimate the
variance, say, of θ̂. The computation of the empirical distribution F̃b
only relies on the expected values of the indicators. Still, it feels odd:
How can you get the distribution correct without getting the variance
right?

Questions

1. How long to make the blocks?
A bias/variance trade-off.

2. How much should the blocks overlap?

Reference Politis, Romano, and Wolf (1999) Subsampling. Springer.

Further ideas

Prediction intervals Bootstrap prediction intervals avoid assumptions
about the distribution of the model errors.


