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State-Space Models

Overview

1. State-space models (a.k.a., dynamic linear models, DLM)

2. Regression Examples

3. AR, MA and ARMA models in state-space form

See S&S Chapter 6, which emphasizes fitting state-space models to data via
the Kalman filter.

State-space models

Linear filtering The observed data {Xt} is the output of a linear filter
driven by white noise, Xt =

∑
ψjwt−j . This perspective leads to

parametric ARMA models as concise expressions for the lag weights
as functions of the underlying ARMA parameters, ψj = ψj(φ, θ):

Xt =
∑

j

ψj(φ, θ)wt−j .

This expression writes each observation as a function of the entire his-
tory of the time series. State-space models represent the role of history
differently in a finite-dimensional vector, the state. Very Markovian.
Autoregressions are a special case in which the state vector — the
previous p observations — is observed.

There are several reasons to look for other ways to specify such models.
An illustration of the effects of measurement error motivates the need
for an alternative to the ARMA representation.

Motivation 1 If the sought data (signal) {St} and the interfering noise
{wt} (which may not be white noise) are independent stationary pro-
cesses, then the covariance function of the sum of these series Xt =
St + wt is the sum of the covariance functions,

Cov(Xt+h, Xt) = Cov(St+h, St) + Cov(wt+h, wt) ,
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Recall that the covariance generating function of a stationary process
{Xt} is a polynomial GX(z) defined so that the coefficient of zk is
γ(k),

GX(z) =
∑

j

γ(k)zk .

Hence, the covariance generating function of Xt is the sum

GX(z) = GS(z) +Gw(z) .

Consider the effect of additive white noise: the process {Xt} is no
longer AR(p), but in general becomes a mixed ARMA process. This
is most easily seen by considering the covariance generating process
of the sum. The covariance generating function of white noise is a
constant, σ2

w. For the sum:

GX(z) = GS(z) +Gw(z)

=
σ2

φ(z)φ(1/z)
+ σ2

w

= σ̃2 θ(z)θ(1/z)
φ(z)φ(1/z)

An ARMA(p, p) representation is not a parsimonious representation
for the process: the noise variance contributes one more parameter,
but produces p more coefficients in the model.

⇒ We ought to consider other classes of models that can handle com-
mon tasks like adding series or dealing with additive observation noise.

Motivation 2 Autoregressions simplify the prediction task. If we keep
track of the most recent p cases, then we can ’forget’ the rest of history
when it comes time to predict. Suppose, though, that the process is
not an AR(p). Do we have to keep track of the entire history? We’ve
seen that the effects of past data eventually wash out, but might there
be a finite-dimensional way to represent how the future depends on
the past?

Motivation 3 We don’t always observe the interesting process. We might
only observe linear functionals of the process, with the underlying
structure being hidden from view. State-space models are natural in
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this class of indirectly observed processes, such as an array in which
we observe only the marginal totals.

State-space models The data is a linear function of an underlying Markov
process (the “state”) plus additive noise. The state is observed directly
and only partially observable via the observed data. The resulting
models

1. Make it easier to handle missing values, measurement error.

2. Provide recursive expressions for prediction and interpolation.

3. Support evaluation of Gaussian likelihood for ARMA processes.

The methods are related to hidden Markov models, except the state-
space in the models we discuss is continuous rather than discrete.

Model equations S&S formulate the filter in a very general setting with
lots of Greek symbols (Ch 6, page 325). I will use a simpler form that
does not include non-stochastic “control” variables (a.k.a., ARMAX
models with exogenous inputs)

State (ds × 1) : Xt+1 = FtXt +GtVt (1)

Observation (do × 1) : Y t = HtXt +Wt (2)

where the state Xt is a vector-valued stochastic process of dimension
ds and the observations Y t are of dimension do. Notice that the time
indices in the state equation often look like that shown here, with the
error term Vt having a subscript less than the variable on the l.h.s.
(Xt+1).

The state Xt retains all of the memory of the process; all of the depen-
dence between past and future must “funnel” through the p dimen-
sional state vector. The observation equation is the “lens” through
which we observe the state. In most applications, the coefficient ma-
trices are time-invariant: Ft = F , Gt = G, Ht = H. Also, typically
Gt = I unless we allow dependence between the two noise processes.
(For instance, some models have Vt = Wt.)

The error processes in the state-space model are zero-mean white-noise
processes with, in general, time-dependent variance matrices

Var(Vt) = Qt, Var(Wt) = Rt, Cov(Vt,Wt) = St.
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In addition,
Xt = ft(Vt−1, Vt−2, . . .)

and
Y t = gt(Wt, Vt−1, Vt−2, . . .) .

Hence, using X ⊥ Y to denote Cov(X,Y ) = 0, past and current values
of the state and observation vector are uncorrelated with the current
errors,

Xs,Y s ⊥ Vt for s < t.

and
Xs ⊥Wt , ∀s, t, Y s ⊥Wt , s < t.

As with the coefficient matrices, we typically fix Qt = Q, Rt = R and
set St = 0.

Stationarity For models of stationary processes, we can fix Ft = F , Gt =
I, and Ht = H. Then, back-substitution gives

Xt+1 = FXt + Vt =
∞∑

j=0

F jVt−j .

Hence, stationarity requires powers of F to “decrease.” That is, the
eigenvalues of F must be less than 1 in absolute value. Such an F is
causal. Causality implies that the roots of the characteristic equation
satisfy:

0 = det(F − λI) = λp− f1λ
p−1− f2λ

p−2− · · · − fp =⇒ |λ| < 1 . (3)

No surprise: this condition on the eigenvalues is related to the con-
dition on the zeros of the polynomial φ(z) associated with an ARMA
process.

The covariances of the observations then have the form

Cov(Yt+h, Yt) = Cov(H(FXn+h−1 + Vt+h−1) +Wn+h, HXn +Wn)
= H F Cov(Xn+h−1,Xn) H ′

= H F h P H ′

where P = Var(Xt). In an important paper, Akaike (1975) showed
that it works the other way: if the covariances have this form, then a
Markovian representation exists.
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Origin of model The state-space approach originated in the space pro-
gram for tracking satellites. Computer systems of the time had limited
memory, motivating a search for recursive methods of prediction. In
this context, the state is the actual position of the satellite and the
observation vector contains observed estimates of the location of the
satellite.

Non-unique The representation is not unique. That is, one has many
choices of F , G, and H that manifest the same covariances. It will
be up to a model to identify a specific representation. Basically, its
like a regression: the predictions lie in a subspace spanned by the
predictors; as long as one chooses any vectors that span the subspace,
the predictions are the same (though the coefficients may be very, very
different).

For example, simply insert an orthonormal matrix M (non-singular
matrices work as well, but alter the covariances)

M Xt+1 = M F M−1MXt +M Vt ⇒ X∗t+1 = F ∗X∗t + V ∗t
Y t = GM−1MXt +Wt ⇒ Yt = G∗X∗t +Wt

Dimension of state One can increase the dimension of the state vec-
tor without “adding information.” In general, we want to find the
minimal dimension representation of the process, the form with the
smallest dimension for the state vector. (This is analogous to adding
perfectly collinear variables in regression; the predictions remain the
same though the coefficients become unstable.)

Regression Examples

Random walk plus noise & trend Consider the process {Zt} with Z1 =
0 and

Zt+1 = Zt + β + Vt = tβ +
t∑

j=1

Vj

for Vt ∼WN(0, σ2). To get the state-space form, write

Xt =

(
Zt

β

)
, Ft = F =

(
1 1
0 1

)
, Vt =

(
vt

0

)
.
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Note that constants get embedded into F . The observations are Yt =
(1 0)Xt + Wt with obs noise Wt uncorrelated with Vt. There are two
important generalizations of this model in regression analysis.

Least squares regression In the usual linear model with k covariates
xi = (xi1, . . . , xik)′ for each observation, let β denote the state (it is
constant) with the regression equation Yi = x′iβ + εi acting as the
observation equation.

Random-coefficient regression Consider the regression model

Yt = x′tβt + εt, t = 1, . . . , n, (4)

where xt is a k×1 vector of fixed covariates and {βt} is a k-dimensional
random walk,

βt = βt−1 + Vt .

The coefficient vector plays the role of the state; the last equation is
the state equation (F = Ik). Equation (4) is the observation equation,
with Ht = xt and Wt = εt.

AR and MA models in state-space form

AR(p) example Define the so-called companion matrix

F =


φ1 φ2 · · · φp−1 φp

1 0 · · · 0 0
0 1 · · · 0 0
...

. . .
...

...
0 · · · 0 1 0


The eigenvalues of F given by (3) are the reciprocals of the zeros
of the AR(p) polynomial φ(z). (To find the characteristic equation
|F − λI|, add λ times the first column to the second, then λ times
the new second column to the third, and so forth. The polynomial
φp + λφp−1 + ... + λp = λpφ(1/λ) ends up in the top right corner.
The cofactor of this element is 1.) Hence if the associated process is
stationary, then the state-space model is causal. Define

Xt = (Xt, Xt−1, . . . , Xt−p+1)′
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W t = (wt, 0, . . . , 0)′

That is, any scalar AR(p) model can be written as a vector AR(1)
process (VAR) with

Xt = F Xt−1 +W t

The observation equation yt = HXt simply picks off the first element,
so let H = (1, 0, . . . , 0).

MA(1) example Let {Yt} denote the MA(1) process. Write the observa-
tion equation as

Yt = (1 θ)Xt

with state Xt = (wt wt−1)′ and the state equation

Xt+1 =

(
0 0
1 0

)
Xt +

(
wt+1

0

)

The state vector of an MA(q) process represented in this fashion has
dimension q+ 1. An alternative representation reduces the dimension
of the state vector to q but implies that the errors Wt and Vt in the
state and observation equations are correlated.

ARMA models in state-space form

Many choices As noted, the matrices of a state-space model are not fixed;
you can change them in many ways while preserving the correlation
structure. The choice comes back to the interpretation of the state
variables and the relationship to underlying parameters. This section
shows 3 representations along with a well-known author who uses them
in this style, and ends with the canonical representation.

Throughout this section, the observations {yt} are from a stationary
scalar ARMA(p, q) process (do = 1)

yt =
p∑

j=1

φjyt−j + wt +
q∑

j=1

θjwt−j (5)
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ARMA(p,q), Hamilton This “direct” representation relies upon the re-
sult that the lagged sum of an AR(p) process is an ARMA process.
(For example, if zt is AR(1), then zt + c zt−1 is an ARMA process.)
The dimension of the state is ds = max(p, q + 1). Arrange the AR
coefficients as a companion matrix (φj = 0 for j > p)

F =


φ1 φ2 · · · φds−1 φds

1 0 · · · 0 0
0 1 · · · 0 0
...

. . .
...

...
0 · · · 0 1 0

 =

(
φ′

Ids−1 0ds−1

)

Then we can write (θj = 0 for j > q)

Xt = F Xt−1 + V t, V t = (wt, 0, . . . , 0)′

yt = (1 θ1 · · · θds−1)Xt

(One can add measurement error in this form by adding uncorrelated
white noise to the observation equation.)

To see that this formulation produces the original ARMA process, let
xt denote the leading scalar element of the state vector. Then it follows
from the state equation that φ(B)xt = wt. The observation equation
is yt = θ(B)xt. Hence, we have

yt =
θ(B)
φ(B)

wt ⇒ yt is ARMA(p, q).

ARMA(p,q), Harvey Again, let d = max(p, q+1), but this time use F ′,

F ′ =



φ1 1 0 · · · 0
φ2 0 1 · · · 0

φ3 0 0
. . . 0

... 0 0 1
φd 0 0 · · · 0


Write the state equation as

Xt = F ′Xt−1 + wt


1
θ1
...

θds−1


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The observation equation picks off the first element of the state,

yt = (1 0 · · · 0)′Xt .

To see that this representation captures the ARMA process, work your
way up the state vector from the bottom, by back-substitution. For
example,

Xt,ds = φdsXt−1,1 + θds−1wt

so that in the next element

Xt,ds−1 = φds−1Xt−1,1 +Xt−1,ds + θds−2wt

= φds−1Xt−1,1 + (φdsXt−2,1 + θds−1wt−1) + θds−2wt

and on up.

ARMA(p,q), Akaike This form is particularly interpretable because Akaike
puts the conditional expectation of the ARMA process in the state
vector.

The idea works like this. Define the conditional expectation ŷt|s =
E yt|y1, . . . , ys. We want a recursion for the state, and the vector of
conditional expectations of the next d = ds = max(p, q + 1) observa-
tions works well since d > q implies we are “beyond” the influences of
the moving average component:

ŷt+d|t = φ1ŷt+d−1|t + · · ·+ φdŷt+1|t

as in an autoregression. Hence, define the state vector,

Xt = (ŷt|t = yt, ŷt+1|t, . . . , ŷt+d−1|t)

The state equation updates the conditional expectations as new infor-
mation becomes available when we observe yt+1. This time write

F =

(
0d−1 Id−1

φ̃
′

)

with the reversed coefficients φ̃ = (φp, φp−1, . . . , φ1)′ in the last row.
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How should you “update” these predictions to the next time period
when the value of wt+1 becomes available? Notice that

yt+f =
∞∑

j=0

ψjwt+f−j

= wt+f + ψ1wt+f−1 + · · ·+ ψfwt + ψf+1wt−1 + · · · .

The ψj ’s determine the impact of a given error wt upon the future
estimates. The state equation is then

Xt = FXt−1 + wt


1
ψ1

...
ψd−1


As in the prior form, the observation equation picks off the first element
of the state,

yt = (1 0 · · · 0)′Xt .

Canonical representation. This form uses a different time lag. The di-
mension is possibly smaller, d = max(p, q), but it introduces de-
pendence between the errors in the two equations – but using wt

in both equations. It’s basically a compressed version of Akaike’s
form; the state again consists of predictions, without the data term
Xt = (ŷt+1|t, ŷt+2|t, . . . , ŷt+d|t)′. Define the state equation as

Xt+1 = FXt + wt


ψ1

ψ2

...
ψd−1


where the ψ’s are the infinite moving average coefficients, omitting
ψ0 = 1. The observation equation adds this term, reusing the “cur-
rent” error:

Yt = (1, . . . , 0, 0)Xt + wt.

The value of the process is yt = ŷt|t−1+wt. This defines the observation
equation. (Recent discussion of this approach appears in de Jong and
Penzer (2004)).
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Example ARMA(1,1) of the canonical representation. First observe
that the moving average weights have a recursive form,

ψ0 = 1, ψ1 = φ1 + θ1, ψj = φψj−1, j = 2, 3, . . . .

The moving average form makes it easy to recognize the minimum
mean squared error predictor

X̂t|t−1 = Xt − wt = ψ1wt−1 + ψ2wt−2 + · · · =
∞∑

j=1

ψjwt−j .

Thus we can write

Xt+1 = wt+1 + ψ1wt + ψ2wt−1 + ψ3wt−2 + · · ·
= wt+1 + ψ1wt + φ(ψ1wt−1 + ψ2wt−2 + · · · )
= wt+1 + ψ1wt + φX̂t|t−1 . (6)

Hence, we obtain the scalar state equation

X̂t+1|t = φ(X̂t|t−1) + ψ1wt;

and the observation equation

Xt = X̂t|t−1 + wt .

Comments on the canonical representation:

• Prediction from this representation is easy, simply compute F fXt+1.

• Moving average representation is simple to obtain via back-substitution.
Let H = (ψv, . . . , ψ1)′ and write

Xt = HZt−1 + FHZt−2 + F 2HZt−2 + · · ·

so that

Yt = Zt +G(HZt−1 + FHZt−2 + F 2HZt−2 + · · · ).
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Equivalence of ARMA and state-space models

Equivalence Just as we can write an ARMA model in state space form, it
is also possible to write a state-space model in ARMA form. The result
is most evident if we suppress the noise in the observation equation
(2) so that

Xt+1 = FXt + Vt, yt = HXt .

Back-substitute Assuming F has of dimension p, write

yt+p = H(F pXt + Vt+p−1 + FVt+p−2 + · · ·F p−1Vt)
yt+p−1 = H(F p−1Xt + Vt+p−2 + FVt+p−3 + · · ·F p−2Vt)

...

yt+1 = H(FXt + Vt)
yt = HXt

Referring to the characteristic equation (3), multiply the first equation
by 1, the second by −f1, the next by −f2 etc, and add them up:

yt+p − f1yt+p−1 − · · · − fpyt = H(F p − f1F
p−1 − · · · fp) +

p∑
j=1

CjVt+p−j

=
p∑

j=1

CjVt+p−j

by the Cayley-Hamilton theorem (matrices satisfy their characteristic
equation). Thus, the observed series yt satisfies a difference equation
of the ARMA form (with error terms Vt).

Further reading

1. Jaczwinski

2. Astrom

3. Harvey

4. Hamilton

5. Akaike papers


