Kalman Filter

Overview

- 1. Summary of Kalman filter
- 2. Derivations
- 3. ARMA likelihoods
- 4. Recursions for the variance

Summary of Kalman filter

Simplifications To make the derivations more direct, assume that the two noise processes are uncorrelated $(S_t = 0)$ with constant variance matrices $(Q_t = Q, R_t = R)$. In this setting, the natural way to express the model is

State:
$$X_t = F X_{t-1} + V_t$$
 (1)

Observation:
$$Y_t = H X_t + W_t$$
 (2)

The goal is to find a recursive expression for

 $\hat{X}_{t|t}$ = projection of X_t onto $\{Y_1^t\}$.

(n.b. I've changed the time lag on the error in the state equation to look more like ARMA models.)

Least squares The optimal estimates associated with these recursions are *least squares* projections. The least squares predictor of a random variable Y given X_1, X_2, \ldots is the r.v. \hat{Y} that satisfies the orthogonality condition

$$Y - \hat{Y} \perp X_1, X_2, \dots, X_n \iff \operatorname{Cov}(Y - \hat{Y}, X_i) = 0$$

Note that the space being projected on in the Kalman filter is finite dimensional, namely the space spanned by linear combinations of the prior observed random variables. **Solution** It is common to express the solution as a two-step procedure (in one of two ways!). Assume that we have observed $\{Y_1, \ldots, Y_{t-1}\} = Y_{1:t-1}$ and we have our best estimate of the state given this information,

$$\hat{X}_{t-1|t-1} = \mathbb{E} X_t \mid Y_1, \dots, Y_{t-1}$$

Assume also that we know the variance of this estimator, $Var(\hat{X}_{t-1|t-1}) = P_{t-1|t-1}$. The two steps then are

- 1. Extrapolate, obtaining $\hat{X}_{t|t-1}$.
- 2. Update once Y_t is observed, obtaining $\hat{X}_{t|t}$.

The first step is easy:

$$\hat{X}_{t|t-1} = E[X_t|Y_{1:t-1}] = F\hat{X}_{t-1|t-1} P_{t|t-1} = Var(X_t - \hat{X}_{t|t-1}) = FP_{t|t}F' + Q$$

From these we obtain the updated filtered estimates

$$\hat{X}_{t|t} = \hat{X}_{t|t-1} + K_t (Y_t - H \hat{X}_{t|t-1}) P_{t|t} = P_{t|t-1} - K_t H P_{t|t-1}$$

where the so-called *gain* of the filter is

$$K_t = P_{t|t-1}H'(HP_{t|t-1}H' + R)^{-1}.$$

The term $Y_t - H\hat{X}_{t|t-1}$ is known as the *innovation* at time t. It measures the amount of "new information" in the observation Y_t that was not known before observing Y_t .

Smoothing Estimates $\hat{X}_{t|n}$ based on all of the data Y_1, \ldots, Y_n , 1 < t < n, rather than the data up to t are known as smoothed estimates of the state (*a.k.a.*, two-sided estimate, interpolation). See S&S, Section 6.2.

Derivations

- **Summary.** Key results come from exploiting orthogonal projection and recursion using the Markovian structure of the state equation:
 - Form orthogonal regressors.
 - Simplify the orthogonal term.
 - Compute the associated regression.

In general, the derivation of the filtering equations works by thinking recursively and continually "splitting" random variables into orthogonal components

$$X_t = \widehat{X}_t + \widetilde{X}_t, \quad \widehat{X}_t \perp \widetilde{X}_t$$

by projecting X_t onto a subspace. $\tilde{X}_t = X_t - \hat{X}_t$ are the residuals of this projection.

Benefits of orthogonality It works as in regression: adding an orthogonal variable does not "interfere" with the projection on other variables. In particular, if X, Y and Z are normal random variables and $Y \perp Z$ then

$$\mathbb{E}\left(X \mid Y, Z\right) = \mathbb{E}\left(X \mid Y\right) + \mathbb{E}\left(X \mid Z\right) - \mathbb{E}X$$

proof Let $W = \{Y, Z\}$. Then the variance matrix is block diagonal so that

$$\mathbb{E} (X \mid W) = \mathbb{E} X + \operatorname{Cov}(X, W) \operatorname{Var}(W)^{-1}(W - \mathbb{E} W)$$

= $(\mathbb{E} X + \operatorname{Cov}(X, Y) \operatorname{Var}(Y)^{-1}(Y - \mathbb{E} Y))$
+ $(\mathbb{E} X + \operatorname{Cov}(X, Z) \operatorname{Var}(Z)^{-1}(Z - \mathbb{E} Z)) - \mathbb{E} X$

Othogonalize regressors Develop a recursion for the estimate of the state at time t given $Y_{1:t}$. The idea is to split $Y_{1:t}$ into two orthogonal subspaces $\tilde{Y}_{t|t-1}$ and Y_1^{t-1} , so that the projection is the sum of two simpler projections. Without defining $\tilde{Y}_{t|t-1}$ (yet), we obtain (assume as usual that the mean of Y_t and X_t is zero)

$$\begin{split} \widehat{X}_{t|t} &= \mathbb{E}\left[X_t|Y_t, \dots, Y_1\right] \\ &= \mathbb{E}\left[X_t|\tilde{Y}_{t|t-1}, Y_{1:t-1}\right] \\ &= \mathbb{E}\left[X_t|\tilde{Y}_{t|t-1}\right] + \mathbb{E}\left[X_t|Y_{1:t-1}\right] \end{split}$$

$$= K_t \tilde{Y}_{t|t-1} + \hat{X}_{t|t-1} \tag{3}$$

$$= K_t \tilde{Y}_{t|t-1} + \mathbb{E} \left[F X_{t-1} + V_t | Y_1^{t-1} \right]$$

$$= K_t Y_{t|t-1} + F X_{t-1|t-1} \tag{4}$$

Note:

- The (as yet unknown) coefficient K_t is the *gain* of the filter at time t.
- The term $\tilde{Y}_{t|t-1}$ of Y_t orthogonal to the past $Y_{1:t-1}$ is known as the *innovation* at time t.
- **Structure of innovation** Using the linearity of conditional expectations (or projections), write the innovation as

$$\widetilde{Y}_{t|t-1} = Y_t - \mathbb{E} \left[Y_t | Y_{1:t-1} \right]
= Y_t - \mathbb{E} \left[H X_t + W_t | Y_{1:t-1} \right]
= (H X_t + W_t) - H \widehat{X}_{t|t-1}
= H \widetilde{X}_{t|t-1} + W_t$$
(5)
$$= H(X_t - \widehat{X}_{t|t-1}) + W_t
= H(F X_{t-1} + V_t - F \widehat{X}_{t-1|t-1}) + W_t
= HF \widetilde{X}_{t-1|t-1} + HV_t + W_t$$
(6)

The expression (5) leads to an important form of the recursion. Substituting (5) into (4) gives

$$\widehat{X}_{t|t} = F\widehat{X}_{t-1|t-1} + K_t(Y_t - HF\widehat{X}_{t-1|t-1})
= (I - K_t H)F\widehat{X}_{t-1|t-1} + K_t Y_t$$
(7)

The form in the first line of (7) is generally preferred since it focuses attention upon the innovation rather than the actual observation Y_t .

Compute the gain K_t This part is easy if we remember the fundamentals of regression. We need to regress X_t on the innovation $\tilde{Y}_{t|t-1}$. The orthogonality condition

$$0 = \operatorname{Cov}(X_t - K_t \tilde{Y}_{t|t-1}, \tilde{Y}_{t|t-1}) = E[(X_t - K_t \tilde{Y}_{t|t-1}) \tilde{Y}'_{t|t-1}]$$

implies

$$\operatorname{Cov}(X_t, \tilde{Y}_{t|t-1}) = K_t \operatorname{Var}(\tilde{Y}_{t|t-1}).$$

Splitting X_t into orthogonal parts and using (5), we find the gain matrix via regression:

$$K_{t} = \operatorname{Cov}(X_{t}, \tilde{Y}_{t|t-1}) \operatorname{Var}(\tilde{Y}_{t|t-1})^{-1}$$

= $\operatorname{Cov}(\hat{X}_{t|t-1} + \tilde{X}_{t|t-1}, H\tilde{X}_{t|t-1} + W_{t}) \operatorname{Var}(H\tilde{X}_{t|t-1} + W_{t})^{-1}$
= $\operatorname{Cov}(\tilde{X}_{t|t-1}, H\tilde{X}_{t|t-1}) (HP_{t|t-1}H' + R)^{-1}$
= $P_{t|t-1}H'(HP_{t|t-1}H' + R)^{-1}$ (8)

Variance matrices The matrices P_t and $P_{t|t-1}$ which are both variance matrices of the error in estimating the state.

$$P_t = P_{t|t} = \operatorname{Var}(\tilde{X}_{t|t}) = (I - K_t H) P_{t|t-1}.$$
(9)

The matrix $P_{t|t-1}$ also has nice interpretation, namely as the conditional variance of the one-step-ahead prediction error,

$$P_{t|t-1} = FP_{t-1}F' + Q = \operatorname{Var}(X_{t|t-1})$$
.

ARMA likelihood

Akaike representation The canonical representation (minimal dimension state) requires correlated errors, so use the larger formulation with uncorrelated errors and dimension $d = \max(p, q + 1)$ and state coefficients arranged as

$$F = \left(\begin{array}{c} 0_{d-1} & I_{d-1} \\ \tilde{\phi}' & \end{array}\right)$$

with the reversed coefficients in the last row. Then

 $\psi = (1, \psi_1, \psi_2, \dots, \psi_{d-1})'$ are the weights from the infinite moving average representation. The observation equation picks off the first element of the state,

$$y_t = (1 \ 0 \ \cdots \ 0)' \boldsymbol{X}_t \ .$$

The state vector is

$$\boldsymbol{X}_t = (y_t, \mathbb{E}(y_{t+1}|t), \dots, \mathbb{E}(y_{t+d-1}|t))'.$$

Gaussian likelihood Let y_1, \ldots, y_n denote a partial realization from a Gaussian ARMA process. Then the log likelihood has the form

$$\ell(\phi,\theta) = \sum_{t} \log f(y_t | y_{t-1}, \dots, y_1) \; .$$

Since each conditional density is normal (assumed to have mean zero), the likelihood may be evaluated by knowing the sequence of conditional means and variances,

$$\mathbb{E}(y_1) = 1, \text{ Var}(y_1), \quad \mathbb{E}[y_2|y_1], \quad \text{Var}(y_2|y_1), \quad \mathbb{E}[y_3|y_2, y_1], \text{ Var}(y_3|y_2, y_1), \\ \dots, \qquad \mathbb{E}[y_n|y_{n-1}, \dots, y_1], \text{ Var}(y_n|y_{n-1}, \dots, y_1)$$

Kalman recursions give both of these. The first element in $\widehat{X}_{t|t-1}$ is $\mathbb{E}[y_t|y_{t-1},\ldots,y_1]$ and the associated conditional variance is the leading diagonal element of $P_{t|t-1}$. The only messy issue is *initializing* the variance of the state at time 0 before observations. (R cites Jones, 1980, *Technometrics*)

Recursions for the variance

- **Notation** Let $P_t X$ denote the projection of X onto $\{Y_t, Y_{t-1}, \ldots, Y_1\}$ (not probability), $\langle X, Y \rangle$ denote Cov(X, Y), and $||x||^2 = Var(X)$.
- Filtering equations The Kalman filter defines the one-step-ahead estimates

$$\widehat{X}_{t|t-1} = P_{t-1}X_t = F\widehat{X}_{t-1|t-1} P_{t|t-1} = \operatorname{Var}(X_t - \widehat{X}_{t|t-1}) = FP_{t|t}F' + Q .$$

The updated filtered estimates are

$$\begin{aligned} \hat{X}_{t|t} &= \hat{X}_{t|t-1} + K_t (Y_t - H \hat{X}_{t|t-1}) \\ P_{t|t} &= P_{t|t-1} - K_t H P_{t|t-1} \end{aligned}$$

where the gain (the regression coefficient) is

$$K_t = P_{t|t-1}H'(HP_{t|t-1}H' + R)^{-1}.$$

Recursions 1. Expression for $P_{t|t-1}$ is immediate. For $P_{t|t}$,

$$P_{t|t} = \|\mathbf{X}_{t} - \widehat{X}_{t|t}\|^{2}$$

= $\|\mathbf{X}_{t} - \widehat{X}_{t|t-1} - K_{t}(Y_{t} - H\widehat{X}_{t|t-1})\|^{2}$
= $\| - K_{t}W_{t} + (I - K_{t}H)\widetilde{X}_{t|t-1}\|^{2}$
= $K_{t}RK'_{t} + (I - K_{t}H)P_{t|t-1}(I - K_{t}H)'$

While correct (and avoiding any matrix inversions), this expression for $P_{t|t}$ conceals the evolution of the recursion... After all, shouldn't $P_{t|t}$ be "smaller" than $P_{t|t-1}$?

Regression analogy Notice the form for the residual SS in a regression equation,

$$\begin{aligned} (Y - X\hat{\beta})'(Y - X\hat{\beta}) &= Y'Y - \hat{\beta}'X'Y - Y'X\hat{\beta} + \hat{\beta}'X'X\hat{\beta} \\ &= Y'Y - \hat{\beta}'X'Y \end{aligned}$$

Recursions 2. For $P_{t|t}$,

$$\begin{split} P_{t|t} &= \left\| \left(\boldsymbol{X}_{t} - \hat{X}_{t|t-1} \right) - K_{t} \tilde{Y}_{t|t-1} \right\|^{2} \\ &= \left\| \tilde{X}_{t|t-1} \right\|^{2} - \left\langle \tilde{X}_{t|t-1}, K_{t} \tilde{Y}_{t|t-1} \right\rangle - \left\langle K_{t} \tilde{Y}_{t|t-1}, \tilde{X}_{t|t-1} \right\rangle + \left\| K_{t} \tilde{Y}_{t|t-1} \right\|^{2} \\ &= P_{t|t-1} - \operatorname{Cov}(\tilde{X}_{t|t-1}, K_{t} H \tilde{X}_{t|t-1}) - \operatorname{Cov}(K_{t} H \tilde{X}_{t|t-1}, \tilde{X}_{t|t-1}) + K_{t} \operatorname{Var}(\tilde{Y}_{t|t-1}) K'_{t} \\ &= P_{t|t-1} - \operatorname{Cov}(\tilde{X}_{t|t-1}, \tilde{X}_{t|t-1}) H' K'_{t} - K_{t} H \operatorname{Cov}(\tilde{X}_{t|t-1}, \tilde{X}_{t|t-1}) + \operatorname{Cov}(\tilde{X}_{t|t-1}, \tilde{Y}_{t|t-1}) K'_{t} \\ &= P_{t|t-1} - K_{t} H P_{t|t-1} \\ &= (I - K_{t} H) P_{t|t-1} \;, \end{split}$$

where the terms cancel as in regression. Clearly, the gain controls the rate at which the information accumulates with new observations.