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Summary of Kalman filter

Simplifications To make the derivations more direct, assume that the
two noise processes are uncorrelated (St = 0) with constant variance
matrices (Qt = Q,Rt = R). In this setting, the natural way to express
the model is

State: Xt = F Xt−1 + Vt (1)

Observation: Yt = HXt +Wt (2)

The goal is to find a recursive expression for

X̂t|t = projection of Xt onto {Y t
1 }.

(n.b. I’ve changed the time lag on the error in the state equation to
look more like ARMA models.)

Least squares The optimal estimates associated with these recursions are
least squares projections. The least squares predictor of a random vari-
able Y given X1, X2, . . . is the r.v. Ŷ that satisfies the orthogonality
condition

Y − Ŷ ⊥ X1, X2, . . . , Xn ⇐⇒ Cov(Y − Ŷ , Xj) = 0

Note that the space being projected on in the Kalman filter is finite
dimensional, namely the space spanned by linear combinations of the
prior observed random variables.
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Solution It is common to express the solution as a two-step procedure (in
one of two ways!). Assume that we have observed {Y1, . . . , Yt−1} =
Y1:t−1 and we have our best estimate of the state given this informa-
tion,

X̂t−1|t−1 = EXt

∣∣ Y1, . . . , Yt−1 .

Assume also that we know the variance of this estimator, Var(X̂t−1|t−1) =
Pt−1|t−1. The two steps then are

1. Extrapolate, obtaining X̂t|t−1.

2. Update once Yt is observed, obtaining X̂t|t.

The first step is easy:

X̂t|t−1 = E[Xt|Y1:t−1] = FX̂t−1|t−1

Pt|t−1 = Var(Xt − X̂t|t−1) = FPt|tF
′ +Q

From these we obtain the updated filtered estimates

X̂t|t = X̂t|t−1 +Kt(Yt −HX̂t|t−1)
Pt|t = Pt|t−1 −KtHPt|t−1

where the so-called gain of the filter is

Kt = Pt|t−1H
′(HPt|t−1H

′ +R)−1.

The term Yt −HX̂t|t−1 is known as the innovation at time t. It mea-
sures the amount of “new information” in the observation Yt that was
not known before observing Yt.

Smoothing Estimates X̂t|n based on all of the data Y1, . . . , Yn, 1 < t < n,

rather than the data up to t are known as smoothed estimates of the
state (a.k.a., two-sided estimate, interpolation). See S&S, Section 6.2.
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Derivations

Summary. Key results come from exploiting orthogonal projection and
recursion using the Markovian structure of the state equation:

• Form orthogonal regressors.

• Simplify the orthogonal term.

• Compute the associated regression.

In general, the derivation of the filtering equations works by thinking
recursively and continually “splitting” random variables into orthogo-
nal components

Xt = X̂t + X̃t, X̂t ⊥ X̃t

by projecting Xt onto a subspace. X̃t = Xt − X̂t are the residuals of
this projection.

Benefits of orthogonality It works as in regression: adding an orthogo-
nal variable does not “interfere” with the projection on other variables.
In particular, if X, Y and Z are normal random variables and Y ⊥ Z
then

E (X
∣∣ Y,Z) = E (X

∣∣ Y ) + E (X
∣∣ Z)− EX

proof Let W = {Y,Z}. Then the variance matrix is block diagonal so
that

E (X
∣∣W ) = EX + Cov(X,W ) Var(W )−1(W − EW )

= (EX + Cov(X,Y ) Var(Y )−1(Y − EY ))
+(EX + Cov(X,Z) Var(Z)−1(Z − EZ))− EX

Othogonalize regressors Develop a recursion for the estimate of the
state at time t given Y1:t. The idea is to split Y1:t into two orthogonal
subspaces Ỹt|t−1 and Y t−1

1 , so that the projection is the sum of two
simpler projections. Without defining Ỹt|t−1 (yet), we obtain (assume
as usual that the mean of Yt and Xt is zero)

X̂t|t = E [Xt|Yt, . . . , Y1]
= E [Xt|Ỹt|t−1, Y1:t−1]
= E [Xt|Ỹt|t−1] + E [Xt|Y1:t−1]
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= KtỸt|t−1 + X̂t|t−1 (3)

= KtỸt|t−1 + E [F Xt−1 + Vt|Y t−1
1 ]

= KtỸt|t−1 + FX̂t−1|t−1 (4)

Note:

• The (as yet unknown) coefficient Kt is the gain of the filter at
time t.

• The term Ỹt|t−1 of Yt orthogonal to the past Y1:t−1 is known as
the innovation at time t.

Structure of innovation Using the linearity of conditional expectations
(or projections), write the innovation as

Ỹt|t−1 = Yt − E [Yt|Y1:t−1]
= Yt − E [HXt +Wt|Y1:t−1]
= (HXt +Wt)−HX̂t|t−1

= HX̃t|t−1 +Wt (5)

= H(Xt − X̂t|t−1) +Wt

= H(FXt−1 + Vt − FX̂t−1|t−1) +Wt

= HFX̃t−1|t−1 +HVt +Wt (6)

The expression (5) leads to an important form of the recursion. Sub-
stituting (5) into (4) gives

X̂t|t = FX̂t−1|t−1 +Kt(Yt −HFX̂t−1|t−1)
= (I −KtH)FX̂t−1|t−1 +KtYt (7)

The form in the first line of (7) is generally preferred since it focuses
attention upon the innovation rather than the actual observation Yt.

Compute the gain Kt This part is easy if we remember the fundamen-
tals of regression. We need to regress Xt on the innovation Ỹt|t−1. The
orthogonality condition

0 = Cov(Xt −KtỸt|t−1, Ỹt|t−1) = E[(Xt −KtỸt|t−1)Ỹ ′t|t−1]

implies
Cov(Xt, Ỹt|t−1) = Kt Var(Ỹt|t−1).
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Splitting Xt into orthogonal parts and using (5), we find the gain
matrix via regression:

Kt = Cov(Xt, Ỹt|t−1) Var(Ỹt|t−1)−1

= Cov(X̂t|t−1 + X̃t|t−1, HX̃t|t−1 +Wt) Var(HX̃t|t−1 +Wt)−1

= Cov(X̃t|t−1, HX̃t|t−1)(HPt|t−1H
′ +R)−1

= Pt|t−1H
′(HPt|t−1H

′ +R)−1 (8)

Variance matrices The matrices Pt and Pt|t−1 which are both variance
matrices of the error in estimating the state.

Pt = Pt|t = Var(X̃t|t) = (I −KtH)Pt|t−1. (9)

The matrix Pt|t−1 also has nice interpretation, namely as the condi-
tional variance of the one-step-ahead prediction error,

Pt|t−1 = FPt−1F
′ +Q = Var(X̃t|t−1) .

ARMA likelihood

Akaike representation The canonical representation (minimal dimen-
sion state) requires correlated errors, so use the larger formulation
with uncorrelated errors and dimension d = max(p, q + 1) and state
coefficients arranged as

F =

(
0d−1 Id−1

φ̃
′

)
with the reversed coefficients in the last row. Then

Xt = FXt−1 + wt


1
ψ1

...
ψd


ψ = (1, ψ1, ψ2, . . . , ψd−1)′ are the weights from the infinite moving
average representation. The observation equation picks off the first
element of the state,

yt = (1 0 · · · 0)′Xt .
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The state vector is

Xt = (yt,E (yt+1|t), . . . ,E (yt+d−1|t))′.

Gaussian likelihood Let y1, . . . , yn denote a partial realization from a
Gaussian ARMA process. Then the log likelihood has the form

`(φ, θ) =
∑

t

log f(yt|yt−1, . . . , y1) .

Since each conditional density is normal (assumed to have mean zero),
the likelihood may be evaluated by knowing the sequence of conditional
means and variances,

E (y1) = 1, Var(y1), E [y2|y1], Var(y2|y1), E [y3|y2, y1], Var(y3|y2, y1),
. . . , E [yn|yn−1, . . . , y1], Var(yn|yn−1, . . . , y1) .

Kalman recursions give both of these. The first element in X̂t|t−1 is
E [yt|yt−1, . . . , y1] and the associated conditional variance is the lead-
ing diagonal element of Pt|t−1. The only messy issue is initializing the
variance of the state at time 0 before observations. (R cites Jones,
1980, Technometrics)

Recursions for the variance

Notation Let PtX denote the projection of X onto {Yt, Yt−1, . . . , Y1} (not
probability), 〈X, Y 〉 denote Cov(X,Y ), and ‖x‖2 = Var(X).

Filtering equations The Kalman filter defines the one-step-ahead esti-
mates

X̂t|t−1 = Pt−1Xt = FX̂t−1|t−1

Pt|t−1 = Var(Xt − X̂t|t−1) = FPt|tF
′ +Q .

The updated filtered estimates are

X̂t|t = X̂t|t−1 +Kt(Yt −HX̂t|t−1)
Pt|t = Pt|t−1 −KtHPt|t−1

where the gain (the regression coefficient) is

Kt = Pt|t−1H
′(HPt|t−1H

′ +R)−1.
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Recursions 1. Expression for Pt|t−1 is immediate. For Pt|t,

Pt|t = ‖Xt − X̂t|t‖
2

= ‖Xt − X̂t|t−1 −Kt(Yt −HX̂t|t−1)‖
2

= ‖ −KtWt + (I −KtH)X̃t|t−1‖
2

= KtRK
′
t + (I −KtH)Pt|t−1(I −KtH)′

While correct (and avoiding any matrix inversions), this expression for
Pt|t conceals the evolution of the recursion... After all, shouldn’t Pt|t
be “smaller” than Pt|t−1?

Regression analogy Notice the form for the residual SS in a regression
equation,

(Y −Xβ̂)′(Y −Xβ̂) = Y ′Y − β̂′X ′Y − Y ′Xβ̂ + β̂′X ′Xβ̂

= Y ′Y − β̂′X ′Y

Recursions 2. For Pt|t,

Pt|t = ‖(Xt − X̂t|t−1)−KtỸt|t−1‖
2

= ‖X̃t|t−1‖
2 − 〈X̃t|t−1, KtỸt|t−1〉 − 〈KtỸt|t−1, X̃t|t−1〉+ ‖KtỸt|t−1‖

2

= Pt|t−1 − Cov(X̃t|t−1,KtHX̃t|t−1)− Cov(KtHX̃t|t−1, X̃t|t−1) +Kt Var(Ỹt|t−1)K ′t
= Pt|t−1 − Cov(X̃t|t−1, X̃t|t−1)H ′K ′t −KtH Cov(X̃t|t−1, X̃t|t−1) + Cov(X̃t|t−1, Ỹt|t−1)K ′t
= Pt|t−1 −KtHPt|t−1

= (I −KtH)Pt|t−1 ,

where the terms cancel as in regression. Clearly, the gain controls the
rate at which the information accumulates with new observations.


