Hilbert Spaces

Overview

- 1. Ideas
- 2. Preliminaries: vector spaces, metric spaces, normed linear spaces
- 3. Hilbert spaces
- 4. Projection
- 5. Orthonormal bases
- 6. Separability and the fundamental isomorphism
- 7. Applications to random variables

Ideas

Rationale for studying Hilbert spaces:

- 1. Formalize intuition from regression on prediction, orthogonality
- 2. Define infinite sums of random variables, such as $\sum_{j} \psi_{j} w_{t-j}$
- 3. Frequency domain analysis
- 4. Representation theorems

The related Fourier analysis establishes an *isometry* between the collection of stationary stochastic processes $\{X_t\}$ and squared integrable functions on $[-\pi, \pi]$. This isometry lets us replace

$$X_t \Rightarrow e^{it\lambda}$$

in a way that preserves covariances. In the notation of inner-products, $\langle x,\,y\rangle$

$$Cov(X_{t+h}, X_t) = \langle X_{t+h}, X_t \rangle$$

= $\langle e^{i(t+h)\lambda}, e^{it\lambda} \rangle_f$
= $\int_{-\pi}^{\pi} e^{ih\lambda} f(\lambda) d\lambda$

more generally
$$= \int_{-\pi}^{\pi} e^{ih\lambda} dF(\lambda)$$

for a suitably defined function f, the spectral density function, or F, the spectral measure. (The spectral density might not exist.)

- **Fourier transform** The relationship $\gamma(h) = \int_{-\pi}^{\pi} e^{ih\lambda} f(\lambda) d\lambda$ indicates that the s.d.f. is the Fourier transform of the covariances. The Fourier transform is an isometry between Hilbert spaces.
- **Related ideas** For more reading see Appendix C in Shumway and Stoffer as well as these classics (and one newer edition)
 - Halmos, P. R. (1958). Finite Dimensional Vector Spaces, Springer.
 - Lax, P. (2002). Functional Analysis, Wiley.
 - Reed and Simon (1972). Functional Analysis, Academic Press.
 - Rudin, W. (1973). Functional Analysis, McGraw-Hill.

and for time series, see Brockwell and Davis, *Time Series: Theory and Methods*.

Vector Spaces

- **Key ideas** associated with a vector space (a.k.a, *linear space*) are subspaces, basis, and dimension.
- **Define.** A complex vector space is a set \mathcal{V} of elements called vectors that satisfy the following axioms on *addition of vectors*
 - 1. For every $x, y \in \mathcal{V}$, there exists a sum $x + y \in \mathcal{V}$
 - 2. Addition is commutative, x + y = y + x.
 - 3. Addition is associative, x + (y + z) = (x + y) + z.
 - 4. There exists an *origin* denoted 0 such that x + 0 = x.
 - 5. For every $x \in \mathcal{V}$, there exists -x such that x + (-x) = 0, the origin.

and the following axioms on multiplication by a (complex) scalar

1. For every $x \in \mathcal{V}$ and $\alpha \in \mathcal{C}$, the product $\alpha x \in \mathcal{V}$.

- 2. Multiplication is commutative.
- 3. 1 x = x.
- 4. Multiplication is distributive: $\alpha(x+y) = \alpha x + \alpha y$ and $(\alpha + \beta)x = \alpha x + \beta x$.

A vector space must have at least one element, the origin.

Examples. Some common examples of vector spaces are:

- 1. Set of all complex numbers \mathbb{C} or real numbers \mathbb{R} .
- 2. Set of all polynomials with complex coefficients.
- 3. Euclidean *n*-space ("vectors") whose elements are complex numbers, often labelled \mathbb{C}^n .
- **Subspaces.** A set $\mathcal{M} \subset \mathcal{V}$ is a subspace or *linear manifold* if it is *algebraically closed*,

$$x, y \in \mathcal{M} \quad \Rightarrow \quad \alpha x + \beta y \in \mathcal{M}$$

Consequently, each subspace must include the origin, since x - x = 0. The typical way to *generate* a subspace is to begin with a collection of vectors and consider the set of all possible linear combinations of this set; the resulting collection is a subspace. Intersections of subspaces are also subspaces. (Note: "closure" here is not in the sense of open and closed sets. A vector space need not have a topology.)

Linear dependence. A countable set of vectors $\{x_i\}$ is linearly dependent if there exists a set of scalars, not all zero, s.t.

$$\sum_{i} \alpha_i x_i = 0$$

The sum $\sum_{i} \alpha_i x_i$ is known as a *linear combination* of vectors. Alternatively, the collection of vectors $\{x_i\}$ is linearly dependent iff some member x_k is a linear combination the preceding vectors.

Bases and dimension. A basis for \mathcal{V} is a set of linear independent vectors $\{x_i\}$ such that every vector $v \in \mathcal{V}$ can be written as a linear combination of the basis,

$$v = \sum_{i} \alpha_i x_i.$$

The *dimension* of a vector space is the number of elements in a basis for that space.

Isometry. Two vector spaces are *isomorphic* if there exists a linear bijection (one-to-one, onto) $T: X \to Y$,

$$T(\alpha_1 x_1 + \alpha_2 x_2) = \alpha_1 T(x_1) + \alpha_2 T(x_2).$$

Metric spaces

- **Distance** metric defines topology (open, closed sets) and convergence.
- **Define.** A metric space X combines a set of elements (that need not be a vector space) with the notion of a distance, called the *metric*, d. The metric $d: (X \times X) \to R$ must satisfy:
 - Non-negative: $d(x, y) \ge 0$, with equality iff x = y.
 - Symmetric: d(x, y) = d(y, x).
 - Triangle: $d(x, y) \le d(x, z) + d(z, y)$.
- **Examples.** Three important metrics defined on space of continuous functions C[a, b] are
 - $d_{\infty}(f,g) = \max |f(x) g(x)|$. (Uniform topology)
 - $d_1(f,g) = \int_a^b |f(x) g(x)| dx.$
 - $d_2(f,g)^2 = \int_a^b (f(x) g(x))^2 dx.$
- **Convergence** is defined in the metric, $x_n \to x$ if $d(x_n, x) \to 0$. Different metrics induce different notions of convergence. The "triangle functions" h_n defined on $\frac{1}{2n+1}, \frac{1}{2n}, \frac{1}{2n-1}$ converge to zero in d_1 , but not in d_{∞} .
- **Cauchy sequences and completeness.** The sequence x_n is Cauchy if for all $\epsilon > 0$, there exists an N such that $n, m \ge N$ implies $d(x_n, x_m) < \epsilon$. All convergent sequences must be Cauchy, though the converse need not be true. If all Cauchy sequences converge to a member of the metric space, the space is said to be *complete*.

Since the triangle functions have disjoint support, $d_{\infty}(h_n, h_m) = 1$, $\{h_n\}$ is not Cauchy, and thus does not converge. With d_{∞} , C[a, b] is complete since sequences like $\{h_n\}$ do not converge in this metric; C[a, b] is not complete with d_1 (or d_2) as the metric.

Continuous functions. With the notion of convergence in hand, we can define a function f to be continuous if it preserves convergence of arguments. The function f is continuous iff

$$x_n \to x \quad \Rightarrow \quad f(x_n) \to f(x)$$

Isometry. Two metric spaces (X, d_x) and (Y, d_y) are isometric if if there exists a bijection (1-1, onto) $f: X \to Y$ which preserves distance,

$$d_x(a,b) = d_y(f(a), f(b)) .$$

Isomorphism between two vector spaces requires the preservation of linearity (linear combinations), whereas in metric spaces, the metric must preserve distance. These two notions — the algebra of vector spaces and distances of metric spaces — combine in normed linear spaces.

Normed linear spaces.

Combine the algebra of vector spaces and distance of metric spaces.

- **Define.** A normed vector space \mathcal{V} is a vector space together with a realvalued function ||x||, the "norm" which is
 - 1. Non-negative: $||x|| \ge 0$, with equality iff x = 0.
 - 2. Scalar mult: $\|\alpha x\| = |\alpha| \|x\|$.
 - 3. Triangle: $||x + y|| \le ||x|| + ||y||$.
- **Continuity of norm.** If $x_n \to x$, then $||x_n|| \to ||x||$. This follows from the triangle inequality (noting $x = x x_n + x_n$)

$$|||x_n|| - ||x||| \le ||x_n - x||$$
.

Complete space A normed vector space \mathcal{V} is complete if all Cauchy sequences $\{X_i\} \in \mathcal{V}$ have limits within the space:

$$\lim \|X_i - X_j\| \to 0 \implies \lim X_i \in \mathcal{V}$$

Examples. Several common normed spaces are ℓ_1 and the collection L^1 of Legesgue integrable functions with the norm

$$\|f\| = \int_{-\infty}^{\infty} |f(x)| dx < \infty$$

While it is true that $\ell_1 \subset \ell_2$, the same does not hold for functions due to problems at the origin. There is not a nesting of L^2 and L^1 . For example,

$$1/(1+|x|) \in L^2$$
 but not in L^1 .

Conversely,

$$|x|^{-1/2}e^{-|x|} \in L^1$$
 but not in L^2 .

Remarks. Using the Lebesgue integral, L^1 is complete and is thus a *Banach space*. Also, the space of continuous functions C[a, b] is *dense* is $L^1[a, b]$.

Hilbert Spaces

- **Geometry** Hilbert spaces conform to our sense of geometry and regression. For example, a key notion is the orthogonal decomposition (data = fit + residual, or $Y = \hat{Y} + (Y - \hat{Y})$).
- **Inner product space** A vector space \mathcal{H} is an *inner-product space* if for each $x, y \in \mathcal{H}$ there exists a real-valued, bilinear function $\langle x, y \rangle$ which is
 - 1. Linear: $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$
 - 2. Scalar multiplication: $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$
 - 3. Non-negative: $\langle x, x \rangle \ge 0$, with $\langle x, x \rangle = 0$ iff x = 0
 - 4. Conjugate symmetric: $\langle x, y \rangle = \overline{\langle y, x \rangle}$ (symmetry in real-valued case)

Hilbert space A Hilbert space is a *complete* inner-product space. An inner-product space can always be "completed" to a Hilbert space by adding the limits of its Cauchy sequences to the space.

Examples The most common examples of Hilbert spaces are

- 1. Euclidean \mathbb{R}^n and \mathbb{C}^n with inner products defined by the dotproduct $\langle x, y \rangle = \sum_i x_i \bar{y}_i$.
- 2. ℓ_2 sequences (square summable sequences). This is the canonical Hilbert space.
- 3. $L_2[a,b]$; $f \in L_2$ iff $\int_a^b f^2 < \infty$. L_2 is complete, and is thus a Hilbert space. Note that the inner-product $\langle f, g \rangle = \int f\overline{g}$ is valid (integrable) since

$$(f-g)^2 \ge 0 \implies |f(x)\overline{g(x)}| \le (|f(x)|^2 + |g(x)|^2)/2$$

so that the product $f \overline{g}$ is integrable (lies in L_1).

- 4. Random variables with finite variance, an idea that we will explore further. The inner product is $\langle X, Y \rangle = \text{Cov}(X, y)$.
- **Norm** Every Hilbert space has an associated *norm* defined using its inner product,

$$||x||^2 = \langle x, x \rangle,$$

which reduces to the (squared) length of a vector in \mathbb{R}^n . Observe that $\|\alpha x\| = |\alpha| \|x\|$, as in the definition of a normed space. Norms in i.p. spaces are special; in particular, they also satisfy the Parallelogram Law

$$||x + y||^{2} + ||x - y||^{2} = 2(||x||^{2} + ||y||^{2})$$

- **Orthonormal** If $\langle x, y \rangle = 0$, then x and y are orthogonal, often written as $x \perp y$. A collection of orthogonal vectors having norm 1 is an *orthonormal* set. For example, in \mathbb{R}^n , the columns of an orthogonal matrix form an orthonormal set.
- **Pythagorean theorem** Let $\mathcal{X} = \{x_j\}_{j=1}^n$ denote an orthonormal set in \mathcal{H} . Then for any $x \in \mathcal{H}$,

$$||x||^{2} = \sum_{j=1}^{n} |\langle x, x_{j} \rangle|^{2} + ||x - \sum_{j} \langle x, x_{j} \rangle x_{j}||^{2}.$$
(1)

We know this in statistics as the ANOVA decomposition in statistics, Total SS = Fit SS + Resid SS. Furthermore, the vector $r = x - \sum_i \langle x, x_i \rangle x_i$ is orthogonal to the subspace spanned by \mathcal{X} . Compare to

$$x = (I - H + H)x = Hx + (I - H)x$$

where H is a projection (idempotent) matrix.

Proof. Begin with the identity (once again, add and subtract)

$$x = \sum_{j} \langle x, x_j \rangle x_j + \left(x - \sum_{j} \langle x, x_j \rangle x_j \right) ,$$

The two on the r.h.s are orthogonal and thus (1) holds. The coefficients $\langle x, x_j \rangle$ seen in (1) are known as Fourier coefficients.

Bessel's inequality If $\mathcal{X} = \{x_1, \ldots, x_n\}$ is an orthonormal set in $\mathcal{H}, x \in \mathcal{H}$ is any vector, and the Fourier coefficients are $\alpha_j = \langle x, x_j \rangle$, then

$$\|x\|^2 \ge \sum_j |\alpha_j|^2$$

Proof. Immediate from Pythagorean theorem.

Cauchy-Schwarz inequality For any $x, y \in \mathcal{H}$,

$$|\langle x, y \rangle| \leq ||x|| ||y||.$$

Equality occurs when $\{x, y\}$ are linearly dependent. Hence we can think of the norm as an upper bound on the size of inner products:

$$||x|| = \max_{\|y\|=1} |\langle x, y\rangle|$$

Proof. The proof suggests that the C-S inequality is closely related to the ideas of projection. The result is immediate if y = 0. Assume $y \neq 0$ and consider the orthonormal set $\{y/||y||\}$. Bessel's inequality implies

$$|\alpha|^2 = \langle x, y/||y||\rangle^2 \le ||x||^2.$$

Equality occurs when x is a multiple of y, for then the term omitted from the Pythagorean theorem that leads to Bessel's inequality is zero.

- **Some results** that are simple to prove with the Cauchy-Schwarz theorem are:
 - 1. The inner product is continuous, $\langle x_n, y_n \rangle \to \langle x, y \rangle$. The proof essentially uses $x_n = x_n x + x$ and the Cauchy-Schwarz theorem. Thus, we can always replace $\langle x, y \rangle = \lim_n \langle x_n, y \rangle$.
 - 2. Every inner product space is a normed linear space, as can be seen by using the C-S inequality to verify the triangle inequality for the implied norm.
- **Isometry** between Hilbert spaces combines linearity from vector spaces with distances from metric spaces. Two Hilbert spaces \mathcal{H}_1 and \mathcal{H}_2 are isomorphic if there exists a linear function U which preserves inner products,

$$\forall x, y \in \mathcal{H}_1, \quad \langle x, y \rangle_1 = \langle Ux, Uy \rangle_2.$$

Such an operator U is called *unitary*. The canonical example of an isometry is the linear transformation implied by an orthogonal matrix.

- Summary of theorems For these, $\{x_j\}_{j=1}^n$ denotes a finite orthonormal set in an inner product space \mathcal{H} :
 - 1. Pythgorean theorem: $||x||^2 = \sum_{j=1}^n |\langle x, x_j \rangle|^2 + ||x \sum_j \langle x, x_j, x \rangle_j||^2$.
 - 2. Bessel's inequality: $||x||^2 \ge \sum_j |\langle x, x_j \rangle|^2$.
 - 3. Cauchy-Schwarz inequality: $|\langle x, y \rangle| \leq ||x|| ||y||$.
 - 4. Inner product spaces are normed spaces with $||x||^2 = \langle x, x \rangle$. This norm satisfies the parallelogram law.
 - 5. The i.p. is continuous, $\lim_n \langle x_n, y \rangle = \langle x, y \rangle$.

Projection

Orthogonal complement Let \mathcal{M} denote any subset of \mathcal{H} . Then the set of all vectors orthogonal to \mathcal{M} is denoted \mathcal{M}^{\perp} , meaning

$$x \in \mathcal{M}, y \in \mathcal{M}^{\perp} \quad \Rightarrow \quad \langle x, y \rangle = 0.$$

Notice that

- 1. \mathcal{M}^{\perp} is a subspace since the i.p. is linear.
- 2. \mathcal{M}^{\perp} is closed (contains limit points) since the i.p. is continuous:

$$y \in \mathcal{M}, x_n \in \mathcal{M}^{\perp} \to x \implies \langle x, y \rangle = \lim_n \langle x_n, y \rangle = 0$$

Projection lemma Let \mathcal{M} denote a closed subspace of \mathcal{H} . Then for any $x \in \mathcal{H}$, there exists a *unique* element $\hat{x} = P_{\mathcal{M}}x \in \mathcal{M}$ closest to x,

$$d = \inf_{y \in \mathcal{M}} ||x - y||^2 = ||x - \hat{x}||^2, \quad \hat{x} \text{ is unique.}$$

The vector \hat{x} is known as the projection of x onto \mathcal{M} . A picture suggests the "shape" of closed subspaces in a Hilbert space is very regular (not "curved"). This lemma only says that such a closest element exists; it does not attempt to describe it.

Proof. Relies on the parallelogram law and closure properties of the subspace. The first part of the proof shows that there is a Cauchy sequence y_n in \mathcal{M} for which $\lim ||x - y_n|| = \inf_{\mathcal{M}} ||x - y||$. To see unique, suppose there were two, then use the parallelogram law to show that they are the same:

$$0 \le \|\hat{x} - \hat{z}\|^2 = \|(\hat{x} - x) - (\hat{z} - x)\|^2$$

= $-\|(\hat{x} - x) + (\hat{z} - x)\|^2 + 2(\|\hat{x} - x\|^2 + \|\hat{z} - x\|^2)$
= $-4\|(\hat{x} + \hat{z})/2 - x)\|^2 + 2(\|\hat{x} - x\|^2 + \|\hat{z} - x\|^2)$
 $\le -4d + 4d = 0$

Projection theorem. Let \mathcal{M} denote a closed subspace of \mathcal{H} . Then every $x \in \mathcal{M}$ can be uniquely written as

$$x = P_{\mathcal{M}}x + z$$
 where $z \in \mathcal{M}^{\perp}$

Proof. Let $P_{\mathcal{M}}x$ be the vector identified in the lemma so that uniqueness is established. Define $z = x - P_{\mathcal{M}}x$. The challenge is to show that $\langle z, y \rangle = 0$ for all $y \in \mathcal{M}$ so that z indeed lies in \mathcal{M}^{\perp} . Again, the proof is via a contradiction. Suppose $\exists y \in \mathcal{M}$ such that $\langle x - \hat{x}, y \rangle \neq 0$. This contradicts \hat{x} being the closest to x. Let $b = \langle x - \hat{x}, y \rangle / ||y||^2$, the "regression coefficient of the residual $x - \hat{x}$ on y. Using real numbers,

$$||x - \hat{x} - by||^2 = ||x - \hat{x}||^2 - \frac{\langle x - \hat{x}, y \rangle^2}{||y||^2} < ||x - \hat{x}||^2$$

a contradiction.

- **Properties of projection mapping** Important properties of the projection mapping $P_{\mathcal{M}}$ are
 - 1. Linear: $P_{\mathcal{M}}(\alpha x + \beta y) = \alpha P_{\mathcal{M}} x + \beta P_{\mathcal{M}} y$.
 - 2. Anova decomposition: $||x||^2 = ||P_{\mathcal{M}}x||^2 + ||(I P_{\mathcal{M}})x||^2$.
 - 3. Representation $x = P_{\mathcal{M}}x + (I P_{\mathcal{M}})x$ is unique from the projection theorem.
 - 4. Continuous: $P_{\mathcal{M}}x_n \to P_{\mathcal{M}}x$ if $x_n \to x$. (use linearity and the anova decomposition)
 - 5. Idempotent: $P_{\mathcal{M}}x = x \Leftrightarrow x \in \mathcal{M}$ and $P_{\mathcal{M}}x = 0 \Leftrightarrow x \in \mathcal{M}^{\perp}$
 - 6. Subspaces: $P_{\mathcal{M}_1}P_{\mathcal{M}_2}x = P_{\mathcal{M}_1}x \Leftrightarrow \mathcal{M}_1 \subseteq \mathcal{M}_2$.
- **Regression** Least squares regression fits nicely into the Hilbert space setting. Let \mathcal{H} denote real Euclidean n-space \mathbb{R}^n with the usual dotproduct as inner product, and let \mathcal{M} denote the subspace formed by linear combinations of the vectors x_1, x_2, \ldots, x_k .

Consider a vector $y \in \mathcal{H}$. The projection theorem tells us that we can form an orthogonal decomposition of y as

$$y = P_{\mathcal{X}}y + z$$
 where $P_{\mathcal{X}}y = \sum \alpha_j x_j$,

and $z = y - P_{\mathcal{X}}y$. Since $\langle z, x_j \rangle = 0$, we obtain a system of equations (*the normal equations* — it's also clear now why these are called the normal equations!)

$$\langle z, x_j \rangle = \langle y - \sum \alpha_i x_i, x_j \rangle = 0, \quad j = 1, \dots, k$$

Solving this system gives the usual OLS regression coefficients. Notice that we can also express the projection theorem explicitly as

$$y = Hy + (I - H)y ,$$

where the idempotent projection matrix $P_{\mathcal{X}} = H$ is $H = X(X'X)^{-1}X'$, the "hat matrix".

Orthonormal bases.

- **Regression** is most easy to interpret and compute if the columns x_1, x_2, \ldots, x_k are orthonormal. In that case, the normal equations are diagonal and regression coefficients are simply $\alpha_j = \langle y, x_j \rangle$. This idea of an *orthonormal basis* extends to *all* Hilbert spaces, not just those that are finite dimensional. If the o.n. basis $\{x_j\}_{j=1}^n$ is finite, though, the projection is $P_{\mathcal{M}}y = \sum \langle y, x_j \rangle x_j$ as in regression with orthogonal X.
- Theorem. Every Hilbert space has an orthonormal basis.

The *proof* amounts to Zorn's lemma or the axiom of choice. Consider the collection of all orthonormal sets, ...

Fourier representation Let \mathcal{H} denote a Hilbert space and let $\{x_{\alpha}\}$ denote an orthonormal basis (Note: α is a member of some set A, not just integers.) Then for any $y \in \mathcal{H}$, we have

$$y = \sum_{A} \langle y, x_{\alpha} \rangle x_{\alpha}$$
 and $||y||^2 = \sum_{A} |\langle y, x_{\alpha} \rangle|^2$

The latter equality is called *Parseval's identity*.

Proof. Bessel's inequality works for half of the equality for any finite subsets $A' \subset A$,

$$\sum_{A'} |\langle y, \, x_{\alpha} \rangle|^2 \le ||y||^2$$

This implies that $\langle y, x_{\alpha} \rangle \geq \neq 0$ for at most countable α 's so that (with some ordering of the elements of $A, j = \alpha_j$) $\sum_{j=1}^n |\langle y, x_j \rangle|^2$ is a monotone series with an upper bound and is thus convergent as $n \to \infty$. The proof continues by showing that the resulting approximation $\hat{y}_n = \sum_{j=1}^n \langle y, x_j \rangle x_j$ converges to y.

Now show it's Cauchy, and use completeness of \mathcal{H} to conclude that the limit y' must be y,

$$\begin{array}{rcl} \langle y - y', \, x_k \rangle & = & \lim_n \langle y - \sum_{j=1}^n \langle y, \, x_j \rangle x_j, \, x_k \rangle \\ & = & \langle y, \, x_k \rangle - \langle y, \, x_k \rangle \\ & = & 0. \end{array}$$

For any other $\alpha \neq \alpha_j$, the same argument shows $\langle y - y', x_\alpha \rangle = 0$. Since y - y' is orthogonal to all of the x_α 's, it must be zero (or we could extend the orthonormal basis).

To prove the norm relationship, use the continity of the norm and orthogonality,

$$0 = \lim_{n} \|y - \sum_{j=1}^{n} \langle y, x_j \rangle x_j \|^2 = \|y\|^2 - \sum_{A} |\langle y, x_\alpha \rangle|^2$$

Construction The *Gram-Schmidt* construction converts a set of vectors into an orthonormal basis. The method proceeds recursively,

$$\begin{array}{ll} x_1 &\Rightarrow & o_1 = x_1 / \|x_1\| \\ x_2 &\Rightarrow & u_2 = x_2 - \langle x_2, \, o_1 \rangle o_1, o_2 = u_2 / \|u_2\| \\ & \cdots \\ x_n &\Rightarrow & u_n = x_n - \sum_{j=1}^{n-1} \langle x_n, \, o_j \rangle o_j, o_n = u_n / \|u_n\| \end{array}$$

QR decomposition In regression analysis, a modified version of the Gram-Schmidt process leads to the so-called QR decomposition of the matrix X. The QR decomposition expresses the covariate matrix X as

$$X = QR$$
 where $Q'Q = I$,

and R is upper-triangular. With X in this form, one solves the modified system

$$Y = X\beta + \epsilon \quad \Rightarrow \quad Y = Q(\alpha = R\beta) + \epsilon$$

using $\hat{\alpha}_i = \langle Y, q_i \rangle$. The β 's come via back-substitution if needed.

Separability and the Fundamental Isomorphism.

Separable A Hilbert space is *separable* if it has a countable dense subset. Examples: (1) real number system (rationals), (2) Continuous functions C[a, b] (polynomials with rational coefs). A Hilbert space is separable iff it has a countable orthonormal basis.

Proof. If its separable, use G-S to convert the countable dense subset to an orthonormal set (removing those that are dependent). If it has a countable basis, use the Fourier representation to see that it is dense.

Isomorphisms If a separable Hilbert space is finite dimensional, it is isomorphic to \mathbb{C}^n . If it not finite dimensional, it is isomorphic to ℓ_2 .

Proof. Define the isomorphism that maps $y \in \mathcal{H}$ to ℓ_2 by

$$Uy = \{\langle y, x_j \rangle\}_{j=1}^{\infty}$$

where $\{x_j\}$ is an orthonormal basis. The sequence in ℓ_2 is the sequence of Fourier coefficients in the chosen basis. Note that the inner product is preserved since

$$\langle y, w \rangle = \langle \sum_j \langle y, x_j \rangle x_j, \sum_k \langle w, x_k \rangle x_k \rangle = \sum_j \langle y, x_j \rangle \overline{\langle w, x_j \rangle}$$

which is the i.p. on ℓ_2 .

L₂ Space of Random variables

Define the inner product space of random variables with finite variance $L_2 = L_2(\Omega, F, P)$ as the collection of measureable complex-valued functions f for which

$$\int f^2(\omega) P(d\omega) = \int f^2 dP < \infty$$

With the inner product $\langle f, g \rangle = \int f \overline{g} dP$, L_2 is a Hilbert space.

Translated to the language of random variables, we form an i.p. space from random variables X for which $E X^2 < \infty$ with the inner product

$$\langle X, Y \rangle = E X Y$$

If the random variables have mean zero, then $\langle X, Y \rangle = \operatorname{Cov}(X, Y)$.

Equivalence classes Observe that $\langle X, X \rangle = E X^2 = 0$ does not imply that X is identically zero. It only implies that X = 0 a.e. In L_2 , the symbol X really stands for an *equivalence class* of functions which are equal almost everywhere. The inner product retains the important property that $\langle X, X \rangle = 0$ iff X = 0, but the claim only holds for X a.e.

Mean square convergence Convergence in L_2 is convergence in mean square (m.s.),

 $X_n \to X \quad \Leftrightarrow \quad ||X_n - X|| \to 0.$

That is, $\mathbb{E}(X_n - X)^2$ must go to zero.

- **Properties** of mean square convergence derive from those of the associated inner product. We can interchange limits with means, variances and covariances. If $||X_n X|| \to 0$, then
 - 1. Mean: $\lim_{n \to \infty} EX_n = \lim_{n \to \infty} \langle X_n, 1 \rangle = \langle \lim_{n \to \infty} X_n, 1 \rangle = EX.$
 - 2. Variance: $\lim_{n \to \infty} EX_n^2 = \lim_{n \to \infty} \langle X_n, X_n \rangle = \langle X, X \rangle = EX^2$.
 - 3. Covariance: $\lim_{n \to \infty} E X_n Y_n = \lim_{n \to \infty} \langle X_n, Y_n \rangle = \langle X, Y \rangle = E X Y$

The first two are consequences of the third, with $Y_n = 1$ or $Y_n = X_n$.

Note: Probabilistic modes of convergence are:

- Convergence in probability: $\lim_{n \to \infty} P\{\omega : |X_n(\omega) X(\omega)| < \epsilon\} = 1.$
- Convergence almost surely:

$$P\{\omega: \lim_{n} X_n(\omega) = X\} = 1 \quad \text{or} \quad \lim_{n} P\{\omega: \sup_{m>n} |X_m(\omega) - X(\omega)| < \epsilon\} = 1.$$

Chebyshev's inequality implies that convergence in mean square implies convergence in probability; also, by definition, a.s. convergence implies convergence in probability. The reverse holds for subsequences. For example, the Borel-Cantelli lemma implies that if a sequence converges in probability, then a subsequence converges almost everywhere. Counter-examples to converses include the "rotating functions" $X_n = I_{[(j-1)/k,j/k]}$ and "thin peaks" $X_n = nI_{[0,1/n]}$. I will emphasize mean square convergence, a Hilbert space idea. However, m.s. convergence also implies a.s. convergence along a subsequence.

Projection and conditional expectation

Conditional mean is the *minimum mean squared predictor* of any random variable Y given a collection $\{X_1, \ldots, X_n\}$ is the conditional expectation of Y given the X's. Need to assume that $\operatorname{Var}(Y) < \infty$.

Proof. We need to show that for any function g (not just linear)

$$\min_{g} E (Y - g(X_1, \dots, X_n))^2 = E (Y - E[Y|X_1, \dots, X_n])^2$$

As usual, one cleverly adds and substracts, writing (with X for $\{X_1, \ldots, X_n\}$)

$$\mathbb{E} (Y - g(X))^2 = \mathbb{E} (Y \pm \mathbb{E} [Y|X] - g(X))^2$$

= $\mathbb{E} (Y - \mathbb{E} [Y|X])^2 + \mathbb{E} (\mathbb{E} [Y|X] - g(X))^2$
+ $2\mathbb{E} [(\mathbb{E} [Y|X] - g(X))\mathbb{E} (Y - \mathbb{E} [Y|X])]$
= $\mathbb{E} (Y - \mathbb{E} [Y|X])^2 + \mathbb{E} (\mathbb{E} [Y|X] - g(X))^2$
> $\mathbb{E} (Y - \mathbb{E} [Y|X])^2$

Projection The last step in this proof suggests that we can think of the conditional mean as a projection into a subspace. Let \mathcal{M} denote the closed subspace associated with the X's, where by closed we mean random variables Z that can be expressed as functions of the X's. Define a "projection" into \mathcal{M} as

$$P_{\mathcal{M}}Y = \mathbb{E}\left[Y|\{X_1,\ldots,X_j,\ldots\}\right].$$

This operation has the properties seen for projection in a Hilbert space,

- 1. Linear $(\mathbb{E}[aY + bX|Z] = a\mathbb{E}[Y|Z] + b\mathbb{E}[X|Z])$
- 2. Continuous $(Y_n \to Y \text{ implies } P_{\mathcal{M}} Y_n \to P_{\mathcal{M}} Y)$.
- 3. Nests $(\mathbb{E}[Y|X] = \mathbb{E}[\mathbb{E}[Y|X,Z]|X]).$

Indeed, we also obtain a form of orthogonality in that we can write

$$Y = Y \pm \mathbb{E}\left[Y|X\right] = \mathbb{E}\left[Y|X\right] + \left(Y - \mathbb{E}\left[Y|X\right]\right)$$

with

$$\langle \mathbb{E}\left[Y|X
ight], \, Y - \mathbb{E}\left[Y|X
ight]
angle = 0$$

Since $\mathbb{E}[Y|nothing] = \mathbb{E}Y$, the subspace \mathcal{M} should contain the constant vector 1 for this sense of projection to be consistent with our earlier definitions.

Tie to regression The fitted values in regression (with a constant) preserve the covariances with the predictors,

$$\operatorname{Cov}(Y, X_j) = \operatorname{Cov}(Y \pm \hat{Y}, X_j) = \operatorname{Cov}(\hat{Y}, X_j).$$

Similarly, for any $Z = g(X_1, \ldots) \in \mathcal{M}$,

$$\mathbb{E}[Y Z] = \mathbb{E}[(Y \pm \mathbb{E}[Y|X]) Z] = \mathbb{E}[\mathbb{E}[Y|X] Z].$$
(2)

Best linear prediction

Linear projection. We need to make it easier to satisfy the orthogonality conditions. Simplest way to do this is to project onto a space formed by linear operations rather than *any* measureable function. Consider the projection defined as

$$P_{\overline{sp}(1,X_1,\dots,X_n)}Y = \sum_{j=0}^n \alpha_j X_j, \quad X_0 = 1,$$

where the coefficients are chosen as in regression to make the "residual" orthogonal to the X's; that is, the coefficients satisfy the normal equations

$$\langle Y, X_k \rangle = \langle \sum_j \alpha_j X_j, X_k \rangle \implies \langle Y - \sum_j \alpha_j X_j, X_k \rangle = 0, \quad k = 0, 1, \dots, n$$

Note that

- The m.s.e. of the linear projection will be at least as large as that of the conditional mean, and sometimes much more (see below).
- The two are the same if the random variables are Gaussian.
- **Example** Define $Y = X^2 + Z$ where $X, Z \sim N(0, 1)$, and are independent. In this case, $E[Y|X] = X^2$ which has m.s.e 1. In contrast, the best linear predictor into $\overline{sp}(1, X)$ is the combination $b_0 + b_1 X$ with, from the normal equations,

$$\begin{array}{rcl} \langle Y, 1 \rangle &=& 1 = \langle b_0 + b_1 X, 1 \rangle \\ \langle Y, X \rangle &=& 0 = \langle b_0 + b_1 X, X \rangle \ , \end{array}$$

 $b_0 = 1$ and $b_1 = 0$. The m.s.e of this predictor is $E(Y-1)^2 = EY^2 - 1 = 3$.

Predictors for ARMA processes

Infinite past In these examples, the Hilbert space is defined by a stationary process $\{X_t\}$. We wish to project members of this space into the closed subspace defined by the process up to time n, $\mathcal{X}_n = \overline{sp}\{X_n, X_{n-1}, \ldots\}$

AR(p) Let $\{X_t\}$ denote the covariance stationary AR(p) process

$$X_t = \phi_1 X_{t-1} + \dots + \phi_p X_{t-p} + w_t$$

where $w_t \sim WN(0, \sigma^2)$. What is the best linear predictor of X_{n+1} in \mathcal{X}_n ? The prediction/orthogonality equations that the predictor \hat{X}_{n+1} must satisfy are

$$\langle X_{n+1}, X_k \rangle = \langle X_{n+1}, X_k \rangle, \quad k = n, n-1, \dots$$

Since $w_{n+1} \perp \mathcal{X}_n$ we have

$$\begin{aligned} \langle X_{n+1}, X_j \rangle &= \langle w_t + \sum_{j=1}^p \phi_j X_{t-j}, X_k \rangle \\ &= \langle \sum_{j=1}^p \phi_j X_{t-j}, X_k \rangle, \end{aligned}$$

so that $\hat{X}_{n+1} = \sum_{j=1}^{p} \phi_j X_{t-j}$. These lead back to the Yule-Walker equations. Note that this argument does not require that the order of the autoregression p be finite.

MA(1) Let $\{X_t\}$ denote the *invertible* MA(1) process

$$X_t = w_t - \theta w_{t-1}$$

with $|\theta| < 1$ and $w_t \sim WN(0, \sigma^2)$. Since the process is invertible, express it as the autoregression $(1 - \theta B)^{-1}X_t = w_t$, or

$$X_t = w_t - \theta X_{t-1} - \theta^2 X_{t-2} - \dots$$

From the AR example, it follows that $\hat{X}_{n+1} = -\sum_{j=1}^{\infty} \theta^j X_{n-j+1}$.

Role for Kalman filter? What about conditioning on the finite past? That's what the Kalman filter is all about.