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Spectral Representation

Overview

1. Motivation

2. Extending the random phase model

3. Herglotz theorem, Fourier transform

4. Spectral representation

5. Spectrum of ARMA processes

Caution: I adapted some of these notes from prior material that used so-
called angular frequencies. Consequently, there’s issues with misplaced 2π’s
here and there!

Motivation

Wold representation

Xt =
∞�

j=0

ψj����
constants

Wt−j� �� �
ortho r.v.

+ Vt

The Wold representation offers a very time-localized characterization
of the variation in Xt, distributing the variation according to the
weights ψ

2
j .

Alternative representation

Xt =
�

j

Aj����
ortho r.v.

gj(t)����
known func

This representation (ultimately with an integral rather than a sum)
describes the variation as a superposition of functions. The functions
are “global” in time, rather than isolated in time as in the Wold rep-
resentation. You have to wonder how you can get something that is
non-deterministic.
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Candidate representation Expand the random phase model by adding
other frequencies λj ,

Xt =
�

j

Aj cos(2πλjt) + Bj sin(2πλjt)

where Aj and Bj are uncorrelated, mean-zero random variables with
variance Var(Aj) = Var(Bj) = σ

2
j . Because time is discrete, we need

only consider frequencies −1
2 < λj ≤ 1

2 .

The calculations are simplified (ultimately) if we switch to the complex
representation of the trig functions and write

Xt =
�

j

Cje
2πı λjt

, −1
2 < λ−j = −λj ≤ 1

2 , (1)

where Cj are complex-valued random variables with mean 0, uncorre-
lated, and have variance σ

2
j . For Xt to be real-valued, we add a bit of

symmetry by having pairs of frequencies λj ,−λj and setting C−j = Cj .

Complex random variables Expected value works as usual, but conju-
gation appears in the covariance:

Cov(X,Y ) = E (X − E X)(Y − E Y )

The previous representation requires orthogonal coefficients, but we
also have C−j = Cj . How’s this possible? Write the random variable
Cj = Aj + ıBj where Aj and Bj real-valued r.v.s. Then orthogonality
requires that

0 = Cov(Cj , C−j) = E (Aj + ıBj)(Aj − ıBj) = E (Aj + ıBj)(Aj + ıBj)
= E (A2

j −B
2
j ) + 2ıE (AjBj)

Hence the underlying real-valued components must have equal vari-
ance and be uncorrelated, as in the definition of the random phase
model.

Covariances The covariances of the process defined in (1) are (with the
mean at zero)

γ(h) = Cov(Xt, Xt−h) = E (XtXt−h)
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=
�

j,k

E (CjCk)e2πı (λjt−λk(t−h))

=
�

j

E |Cj |2e2πı λjh

The absence of t shows that the process is second-order stationary.
Now imagine adding more frequencies to the sum. Define the function
G with jumps of size E |Cj |2/2 at frequency λj and −λj . Then in the
limit we can write (see eqn (C.1) in Appendix C)

γ(h) =
� 1/2

−1/2
e
2πı hλ

dG(λ) diff=
� 1/2

−1/2
e
2πı hλ

g(λ)d(λ) ,

where the second form requires existence of a derivative dG(λ)/dλ =
g(λ). In fact, the first form of the Fourier representation holds for all
stationary processes (shown later as Herglotz theorem), as does the
associated “spectral” representation (1).

The Spectral Representation

Random measure The idea is to define a set function that associates ran-
dom variable with sets. The set function in effect associates variation
with frequency intervals. Write the random phase sum (1) as

Xt =
n�

j=−n

Cje
2πı tλj =

� 1/2

−1/2
e
2πı tλ

Zn(dλ) (2)

The frequencies are symmetrically laid out λ−j = −λj and C−j = Cj ,
and the Cj are uncorrelated with variance Var(Cj) = σ

2
j . Zn is the

random measure defined by

Zn(S) =
�

λj∈S

Cj ,

for any set S. If we define

Fn(S) =
�

λj∈S

Var(Cj) ,

then for sets A, B, we have E Zn(A) = 0 and

Var(Zn(A)) = Fn(A), Cov(Zn(A), Zn(B)) = Fn(A ∩B).
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Also, by construction in the real-valued case, the pairing of frequencies
and coefficients implies that

Z(−S) = Z(S) .

In summary,

Xt =
� 1/2

−1/2
e
2πı tλ

Zn(dλ) and γ(h) =
� 1/2

−1/2
e
2πı hλ

Fn(dλ)

Extension Consider the effect of adding more and more frequencies λj to
the interval (0, π). Since the trigonometric polynomials are dense in
the collection of continuous functions on [−1

2 ,
1
2 ], we can approximate a

continuous spectral distribution using a limiting sum of random phase
models.

Spectral representation of a zero-mean, stationary process {Xt} is

Xt =
� 1/2

−1/2
e
2πı tλ

Z(dλ) . (3)

The complex-valued random measure Z is uncorrelated over disjoint
intervals and has mean zero,

Cov(Z([a, b]), Z([c, d])) = E
�
Z([a, b])Z([c, d])

�

= 0 if [a, b] ∩ [c, d] = ∅ .

The integral in (3) is over the half-open interval (−1
2 ,

1
2 ]. In general,

you will be little hurt by thinking of this as the full interval [−1
2 ,

1
2 ].

Link to covariances The variance of the random measure is linked to the
covariance function γ of the process. Being careful to insert the con-
jugate, the spectral representation (3) makes this connection evident:

γ(h) = E Xt+h Xt = E
�� 1/2

−1/2
e
2πı (t+h)λ

Z(dλ)
� 1/2

−1/2
e
−2πı tω

Z(dω)

�

=
� 1/2

−1/2
e
2πı (t+h)λ−2πitω

E[Z(dλ)Z(dω)]dλdω

=
�

e
2πı hλ Var(Z(dλ))dλ

=
�

e
2πı hλ

dF (dλ)

The (non-stochastic) measure F is the spectral distribution function.
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Applications

Uses Just as we can replace γ(h) by its Fourier transform, we can replace
Xt by its spectral representation. This substitution often leads to
different insights into time series.

Isometry From the Hilbert space point-of-view, these manipulations pro-
duce an isometric isomorphism between second-order stationary pro-
cesses and squared integrable functions L

2(−1
2 ,

1
2 ]. The correspon-

dence is
Xt ⇔ e

2πı tλ

(between a correlated sequence of r.v.’s and a collection of functions)
with the inner products

γ(t− s) = Cov(Xt, Xs) = �Xt, Xs�

= �e2πı tλ
, e

2πı sλ�F =
� 1/2

−1/2
e
2πı (t−s)λ

dF (λ)

Key theorem Let g and h denote integrable functions such that
�

|g(λ)|2dF (λ) < ∞,

�
|f(λ)|2dF (λ) < ∞ .

Then the random variables

G =
�

g(λ)Z(dλ), H =
�

h(λ)Z(dλ)

have finite variance and covariance

Cov(G, H) =
�

g(λ)h(λ)F (dλ) Var(G) =
�

|g(λ)|2F (dλ) .

Derivative of stochastic process More relevant in the case of continu-
ous time where the integrals run over the real line and not from −1

2

to 1
2 . Assuming that the spectrum decreases rapidly as λ grows

� ∞

−∞
λ

2
F (dλ) < ∞ ,

then the “derivative” of a process is

dXt

dt
=

� ∞

−∞
iλe

itλ
Z(dλ)
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with covariance function is

γ(h) =
� ∞

−∞
λ

2
e
ihλ

F (dλ).

Spectra of ARMA Processes

Linear filter The sum Yt =
�

j ajXt−j is known as a time-invariant, linear
filter. If the Xt are in a Hilbert space, then the sum is well-defined
so long as

�
j a

2
j < ∞. If aj = 0, j < 0, the filter is one-sided or

causal. Causal ARMA processes have the infinite moving average form
Xt =

�∞
j=0 ψjwt−j and are thus the output of a linear filtering of white

noise.

Spectrum of linear filter Let Yt =
�

j ajXt−j where {Xt} is a station-
ary process with spectrum FX and

�
j a

2
j < ∞, then (aj ∈ R)

γY (h) = �
�

j ajXt+h−j ,
�

k akXt−k�
=

�

j,k

ajak�Xt+h−j , Xt−k�

=
�

j,k

ajak�e2πı (t+h−j)λ
, e

2πı (t−k)λ�Fx

=
� π

−π

�

j,k

ajake
2πı (h−j+k)λ

dFX(λ)

=
� π

−π
e
2πı hλ|A(λ)|2dFX(λ) ,

where the transfer function of the filter is A(e2πı λ) =
�

j aje
2πı jλ.

Thus, the spectrum of {Yt} is

FY (λ) =
�

(−1/2,λ]
|A(e2πı λ)|2dFX(λ) . (4)

At each frequency, the transfer function has a magnitude and phase.
The filter magnifies the presence of some frequencies and attenuates
others. It may also shift some frequencies more in time than others.
It does not, however, mix frequencies. (Evil things happen in audio
processing when nonlinearities in an amplifier mix frequencies.)
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Using the spectral representation directly gives a different derivation.
If Yt =

�
j θjXt−j , then

Yt =
� �

j

aje
2πı (t−j)λ

ZX(dλ) =
�

e
2πı tλ

A(e2πı λ)ZX(dλ) .

Hence,

γY (h) =
� 1/2

−1/2
|A(e2πı λ)|2FX(dλ) .

Spectrum of white noise If wt ∼ WN(0, σ
2), then the spectral density

is constant, a mix of equal variance across all frequencies.

f(λ) =
�

h

γ(h)e−2πı λh = σ
2

.

Hence the name white noise.

Spectrum of AR If
�

j

φjXt−j = wt, wt ∼ WN(0, σ
2),

then via the spectral representation, for all t,
� 1/2

−1/2
e
2πı tλ

�

j

φje
−2πı jλ

dZX(λ) =
� 1/2

−1/2
e
2πı tλ

dZw(λ) .

Both sides have the same spectral density. Since φ(z) has no zeros on
the unit circle, φ(λ) =

�
j φje

−2πı jλ) �= 0 and we have

|φ(λ)|2fX(λ) = fw(λ) = σ
2

,

or
fX(λ) =

σ
2

|φ(λ)|2 .

Spectra of ARMA If φ(B)Yt = θ(B)wt, then from (4) and existence of
a spectral density f ,

fY (λ) = |ψ(e2πı λ)|2fw(λ) = σ
2 θ(e2πı λ)θ(e−2πı λ)
φ(e2πı λ)φ(e−2πı λ)

.

Note the presence of the covariance generating function, so that all is
consistent with earlier results.

Examples generated via R.
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Herglotz Theorem and the Fourier Transform

Complex r.v. and covariance The use of complex-valued random vari-
ables complicates the definition of the covariance function.

• Dominated: |γ(h)| ≤ γ(0) ∀h.

• Conjugate: γ(h) = Cov(Xt+h, Xt) = E (Xt − µ)(Xs − µ).

• Hermitian: γ(h) = γ(−h).

As with real-valued processes, an Hermitian function K is the autoco-
variance function of a complex stationary process iff it is non-negative
definite (n.n.d.) as generalized to complex processes:

n�

j,k=1

ajakK(j − k) ≥ 0 , (5)

for all n > 0 and n-tuples a ∈ Cn.

Herglotz’s Theorem (Appendix C) A complex-valued sequence {γ(h)}
is n.n.d. Hermitian iff

γ(h) =
� 1/2

−1/2
e
2πı hλ

dF (λ) ∀h = 0,±1, . . . . (6)

where the spectral distribution F is right-continuous, non-decreasing,
and bounded on (−1

2 ,
1
2 ] and F (−1

2) = 0. If F is absolutely continuous
with F (λ) =

� λ
−1/2 f(ω)dω, then f is the spectral density function.

(The continuous time version of this theorem is known as Bochner’s
theorem.)

Fourier transform pair From Herglotz’s theorem, it follows that the co-
variances and spectrum are a Fourier transform pair, with the inverse
transform being

F (λ) =
1
2π

∞�

j=−∞

γ(j)
ij

e
−2πı λj or f(λ) =

�

j

γ(j)e−2πı λj

when the spectral density exists.
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Analogy to CDF The spectral distribution F is essentially a rescaled cu-
mulative distribution function. It does not integrate to 1, but rather
integrates to the variance of the process since

γ(0) =
� 1/2

−1/2
dF (λ) = F (1

2)− F (−1
2) = F (1

2)

The covariance function thus resembles the characteristic function of
a random variable. Both the spectral distribution and the CDF of a
random variable are right-continuous, non-decreasing bounded func-
tions, with at most countable jumps (think of mixtures of discrete and
continuous random variables).

Anova The spectrum represents an analysis of variance of a stationary
process. Rather than decompose variance by categories, the spectrum
indicates how much of the variance of the process can be assigned
to various frequency ranges. The total variance is γ(0), whereas the
variance associated with frequencies in the interval [a, b] is

� b
a f(λ)dλ.

Real-valued If Xt is real-valued, then γ(h) is symmetric. In this case
(assuming a spectral density), f(λ) is symmetric as well,

f(λ) =
�

j

γ(j)e−2πı λj = f(−λ) ,

and

γ(h) =
� 1/2

−1/2
cos(2πhλ)f(λ)dλ .

In addition, the spectral density of a real-valued process has the fol-
lowing properties:

1. Non-negative
2. Integrable on [−1

2 ,
1
2 ]

Proof of Herglotz’s. ⇐ Given the existence of the representation, write
the Hermitian form and observe that γ must be Hermitian (the con-
jugate of an integral is the integral of the conjugate). The quadratic
form is non-negative since (think of the integral as the expected value
of a non-negative function)

�

j,k

ajakγ(j − k) =
� 1/2

−1/2
|
�

j

aje
2πı jλ|2dF (λ) ≥ 0 .
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⇒ The converse follows by construction. Start with an obvious guess,
the partial sum fN (λ) =

�n
r,s=1 e

2πı λr
γ(j)e−2πı λs

/N . (The eigenval-
ues of the covariance matrix are interesting at this point.) Since γ(j)
is n.n.d., a quadratic form assures us its positive and the result follows
by a passage to the limit. The “trick” is to use the Toeplitz structure
to reduce the quadratic form to a single sum,

0 ≤ fN (λ) =
�N

r,s=1 e
2πı (r−s)λ

γ(r − s)
N

=

�
|m|<N (N − |m|)e−2πı mλ

γ(m)
N

.

Define the absolutely continuous distribution FN (λ) =
�
(−1

2 ,λ]
fN (ω)dω.

Note that FN has the needed properties, such as monotonicity. Using
FN in place of F gives

� 1/2

−1/2
e
2πı hλ

dFN (λ) =
�

fN (λ)e2πı hλ
dλ

=
�

m

(1− |h|/N)γ(h)
�

e
2πı (h−m)λ

dλ/(2π)

= (1− |h|/N)γ(h), |h| < N.

and is zero otherwise. It now follows from the theory of weak con-
vergence or the Helly selection theorem that since FN (π) = γ(0) is
bounded ∀N , we can choose a subsequence FNk such that (6) holds in
the limit.

Absolute summability of the covariance function implies that the spec-
tral density function exists. From the proof of Herglotz’s theorem,

0 ≤ fN (λ) =
�

|h|<N

(1− |h|/N)eihλ
γ(h).

This sum is dominated by
�

|γ(h)| and so dominated convergence
allows us to interchange limits.

Appendix: Orthogonal increments processes

Orthogonal increments process Defined as a continuous time process
Z(λ),−π ≤ λ ≤ π, for which

1. Mean zero: E Z(λ) = 0, or using inner products �Z(λ), 1� = 0.
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2. Finite variance: Var Z(λ) = �Z(λ), Z(λ)� < ∞.

3. Orthogonal: Cov(Z(λ4)−Z(λ3), Z(λ2)−Z(λ1)) = �Z(λ4)− Z(λ3), Z(λ2)− Z(λ1))� =
0 if (λ1, λ2] ∩ (λ3, λ4] = ∅.

4. Right continuous: limδ↓0 �Z(λ + δ)− Z(λ)� = 0.

Note that the inner product requires conjugating the second term.

Examples of such processes are

1. Brownian motion B(λ) on [−1/2, 1/2], for which F (λ) = λ + 1
2 .

2. Starting from the Poisson process N(λ) with arrival rate µ, let
Z(λ) = N(λ)− µ(λ + 1

2).

In both cases, the variance of the process grows as a linear function of
λ.

Distribution function. Define the function

F (λ) = �Z(λ)− Z(−1/2)�2.

From the right-continuity of Z, it follows that F is right-continuous
as well:

F (−1/2) = 0 and lim
δ↓0

F (λ + δ) = F (λ) .

From the orthogonality of Z, F is monotone:

F (λ) = �Z(λ)− Z(ω) + Z(ω)− Z(−π)�2 ≥ F (ω), λ > ω.

Hence F behaves like a multiple of the CDF of a random variable
defined on [−1/2, 1/2]. However, F only characterizes second-order
moments, not probabilities. For both Brownian motion and the nor-
malized Poisson processes, F is linear in λ.

Appendix: Stochastic integrals

Define a stochastic integral by starting with step functions, then extend to
other functions as in Lebesgue integration. (This is not the stochastic
integral as defined by Ito.)
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Stochastic integral for step functions Define the stochastic integral of
a step function

f(λ) =
n�

j=0

fjI(λj ,λj+1](λ)

for the partition −1/2 = λ0 < λ2 < · · · < λn+1 = 1/2 as

I(f) :=
�

(−π,π]
f(λ)Z(dλ) :=

n�

j=0

fj (Z(λj+1)− Z(λj)) (7)

Properties of this integral that maps a step function to a random variable
include:

1. The resulting random variables have finite variance if the step
function is L

2[−1/2, 1/2] w.r.t. F :

Var(I(f)) =
�

j

f
2
j (F (λj+1)− F (λj))

2. We obtain an inner product for the resulting r.v.’s from the defi-
nition. Assuming both use a common partition,

�I(f), I(g)� = Cov(I(f), I(g))

=
� 1/2

−1/2
fgdF (λ)

=
�

j

fjgj (F (λj+1)− F (λj))

3. It’s linear, and from the first property, bounded.

BLT theorem. Let T be a linear transformation from a normed linear
space V1 into a complete normed space V2. Then T can be uniquely
extended to a bounded linear transformation T̃ (with the same bound)
from the completion of V1 into V2.

The theorem gives a means for attacking hard problems. First define
a linear operator on a dense subset. Then use the BLT theorem to
show that the operator may be extended to the whole space. It is often
useful to note the following equivalence: If T is a linear transformation
between normed linear spaces, the following are equivalent:
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1. T is continuous at a point (in particular, zero).

2. T is continuous everywhere.

3. T is bounded.

Extension. Our definition of the stochastic integral I(f) maps the L
2(dF )

integrable step functions to L
2 random variables. The step functions

are dense in L
2, and both spaces meet the conditions of the BLT

theorem. Consequently, there is an extension of I(f) to all of L
2(dF ).

Also, the results above imply that the integral I(f) is continuous in f .

Spectral representation of a process is thus defined (noting that the
functions g(x) = e

2πı tx are integrable w.r.t. F ) as

Xt = I(g) =
� 1/2

−1/2
e
2πı tλ

dZ(λ) .


