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Review of Spectral Representation

Spectral representation of a stationary process {Xt} is

Xt =
∫ 1/2

−1/2
e2πı tλZ(dλ) , (1)

where Z represents a right-continuous, complex-valued random pro-
cess with orthogonal increments for which Var Z(dλ) = dF (λ). The
covariances are

γ(h) = E Xt+h Xt =
∫ 1/2

−1/2
e2πı hλdF (λ) . (2)

If F is absolutely continuous with derivative dF (λ)/dλ = f(λ), then

γ(h) =
∫ 1/2

−1/2
e2πı hλf(λ)dλ and f(λ) =

∞∑
h=−∞

γ(h)e−2πı λh (3)

For real-valued processes, f(λ) is symmetric about λ = 0.
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Anova interpretation Since the variance of {Xt} has the representation

Var(Xt) = γ(0) =
∫ 1/2

−1/2
f(λ)dλ ,

the spectral density represents a decomposition of variance into fre-
quency intervals. Just as a pdf measures probability in intervals, the
“power spectrum” f(λ) shows the distribution of variance over fre-
quency.

Review: Harmonic regression

Regression on sinusoids Regression models with sines and cosines are
the underlying statistical models used in frequency domain analysis
of time series. Consider a regression model that mimics the random
phase model,

Xt = µ+R cos(2πλt+ ϕ) + wt
= µ+R (cos(2πλt) cosϕ)− sin(2πλt) sinϕ) + wt
= µ+A cos 2πλt+B sin 2πλt+ wt

where A = R cosϕ and B = −R sinϕ; R2 = A2 + B2 is the squared
amplitude of the sinusoid at frequency λ. The period associated with
the frequency λ is 1/λ. (Alternatively, one can use angular frequencies,
being 2π times the usual frequency. I intend to reserve the symbol ω
for angular frequencies.)

Aliasing The frequency is restricted to the range −1/2 < λ ≤ 1/2. For
discrete data, frequencies outside of this range are aliased into this
range. For example, suppose that 1

2 < (λ = 1− δ) < 1, then

cos(2πλt) = cos(2π(1− δ)t)
= cos(2πt) cos(2πδt) + sin(2πt) sin(2πδt)
= cos 2πδt .

A sampled sinusoid with frequency higher than 1
2 appears as a sinusoid

with frequency in the interval [0, 1/2]. 1
2 is known as the folding fre-

quency; we have to see two samples to estimate the energy associated
with a sinusoid.
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Fourier frequencies and orthogonality The frequency −1
2 < λ ≤ 1

2 is
known as a Fourier frequency if the associated sinusoid completes an
integer number of cycles in the observed length of data. Since the
period is 1/λ, Fourier frequencies have the form (assuming n is even)

λj =
j

n
, j = 0, 1, 2, . . . , n/2, (4)

Because of aliasing, the set of j’s stop at n/2. The advantage of
considering the Fourier frequencies is that they generate an orthogonal
set of regressors. For sines/cosines, we have

n∑
t=1

cos2(2πλjt) =

{
n j = 0, n/2
n/2 j = 1, . . . , n/2− 1

n∑
t=1

sin2(2πλjt) =

{
0 j = 0, n/2
n/2 j = 1, . . . , n/2− 1

n∑
t=1

cos(2πλkt) sin(2πλjt) = 0

Harmonic regression If we use Fourier frequencies in our harmonic re-
gression, the regression coefficients are easily found since “X ′X” is
diagonal. Consider the coefficients in the harmonic regression (n even)

Xt = A0 +
n/2−1∑
j=0

Aj cos(2πλjt) +Bj sin(2πλjt) +An/2 (5)

where we define the coefficients (which are also the least squares esti-
mates)

A0 =
∑
t

Xt/n An/2 =
∑
t

Xt(−1)t/n

Aj =
2
n

∑
t

Xt cos 2πλjt Bj =
2
n

∑
t

Xt sin 2πλjt .

Note that B0 = Bn/2 = 0; there is no imaginary/sine component for
these terms. The sum of squares captured by a specific sine/cosine
pair at frequency λj (j 6= 0, n/2) is (recall in OLS regression that the
regression SS is β̂′X ′Xβ̂)

Regr SSj =
n

2
(A2

j +B2
j ) =

n

2
R2
j . (6)
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The amplitude of the fitted sinusoid Rj determines the variance ex-
plained by this term in a regression model.

Orthogonal transformation Since the harmonic regression 5 includes all
1 + n

2 Fourier frequencies from zero to 1
2 , this regression fits n pa-

rameters to n observations X1, . . . , Xn. This is not estimation; it’s a
transformation. The model fits perfectly. Thus the variation in the
fitted values is exactly that of the original data, and we obtain the
following decomposition of the variance by adding up the regression
sum-of-squares (6) attributed to each frequency:

∑
t

X2
t = n(R2

0 +R2
n/2) +

n

2

n/2−1∑
j=1

R2
j , (7)

The weights on R0 and Rn/2 differ since there is no sine term at these
frequencies.

Hilbert space The data X = (X1, . . . , Xn)′ form a vector in n-dimensional
space. The usual basis for this space is the set of vectors

1j = (0 . . . 0 0 1j 0 0 . . . 0).

Thus we can write X =
∑

tXt1t. The harmonic model uses a differ-
ent orthogonal basis, namely the sines and cosines associated with the
Fourier frequencies. The “saturated” harmonic regression (5) repre-
sents X in this new basis. The coordinates of X in this basis are the
coefficients Aj and Bj . Since we are writing the same vector X in two
different coordinate systems (that are both orthogonal), the length of
the vector does not change. Thus we must have the equivalence of
lengths evident in (7), which is Parseval’s equality in the context of
harmonic regression.

Changing to complex variables leads to the discrete Fourier transform.

Discrete Fourier transform

Definition The discrete Fourier transform (DFT) of the real-valued n-
term sequence X0, . . . , Xn−1 is defined as (zero-based indexing on the
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data from 0 to n− 1 is more convenient with the DFT)

Jn,j =
1
n

n−1∑
t=0

Xte
−2πı λjt, j = 0, 1, 2, . . . , n− 1. (8)

The DFT is the set of harmonic regression coefficients, written using
complex variables. For j = 0, 1, . . . , n2 ,

Jn,j =
1
n

n−1∑
t=0

Xte
−2πı λjt

=
1
2

(
2
n

n−1∑
t=0

Xt cos(2πλjt)− iXt sin(2πλjt)

)
=

1
2

(Aj − iBj)

Caution: There are many conventions for the leading divisor. S&S
define the DFT with leading divisor 1/

√
n and R omits this factor

altogether. Always test your software (e.g., take the transform of the
sequence 1,1 and see if the leading term is 1,

√
2, or 2).

Matrix form As with harmonic regression, the DFT amounts to a change
of basis transformation. Define the n× n matrix Fn,jk = e2πı jk/n and
note F ∗nFn = n In (∗ denotes the conjugate of the transpose). We can
then express the transform as

Jn =
1
n
F ∗nY . (9)

Fast Fourier transform (FFT) is an algorithm for evaluating the matrix
multiplication (9) (which appears to be of order n2) in order n log n
operations by a clever recursion (which is basically Horner’s rule for
evaluating a polynomial). Here’s the idea.

The DFT of a sequence {x0, x1} of length n = 2 is easy: J2, 0 =
(x0 + x1)/2 and J2, 1 = (x1 − x2)/2. Now consider the DFT of the
sequence {x0, x1, x2, x3:

3∑
t=0

xte
−2πı jt/4 = (x0 + x2e

−2πı 2j/4) + (x1e
−2πı j/4 + x3e

−2πı 3j/4

= (x0 + x2e
−2πı j/2) + e−2πı j/4(x1 + x3e

−2πı j/2)
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You can see that the DFT of a sequence of 4 numbers can be written
in terms of two DFTs of length 2, applied to the even-indexed and
odd-indexed elements. This recursion works in general: the DFT of
a sequence of n can be written (for even n) as a sum of the DFT
of the even and odd-indexed elements. So what? Count the number
of operations: if n = 2N is a power of two, you require O(n log2 n)
operations rather than O(n2). Wavelets take this one step farther,
requiring order O(n) operations.

Properties of the DFT

Linearity Since it’s a linear transformation (matrix multiplication, a change
of basis), the DFT is a linear operator. e.g., the DFT of a sum is the
sum of the DFT’s:

Jx+yn,j =
1
n

∑
t

(xt + yt)e−2πı λjt = Jxn,j + Jyn,j .

Thus, once we understand how the DFT behaves for some simple series,
we can understand it for any others that are sums of these simple cases.

Real-valued data Since we begin with n real-valued observations Xt, but
obtain n complex values Jn,j , the DFT has a redundancy (symmetry):

Jn,n−j =
1
n

n−1∑
t=0

Xte
2πı λn−jt

=
1
n

n−1∑
t=0

Xte
−2πı λjt

= Jn,j .

You can see this result in the harmonic regression as well. Whereas
frequencies in the harmonic regression (5) goes from 0 to 1/2, frequen-
cies in the DFT span 0 to (n− 1)/n. For frequencies above λn/2 = 1

2 ,
Jn,j = Aj + ı Bj (j > n/2). One can exploit this symmetry to obtain
the transform of two real-valued series at once from one application of
the FFT.
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Inversion We can recover the data from the DFT by inverting the trans-
form, ∑

j

Jn,je
2πı λjt =

1
n

∑
j,s

Xse
2πı (λjt−λjs)

=
1
n

∑
s

Xs

∑
j

e2πı λj(t−s)

= Xt (10)

where the last step follows from the orthogonality at the Fourier fre-
quences,

∑
j e

2πı λj(t−s) = 0 for s 6= t, and otherwise is n. The relation-
ship (10) is the DFT version (or discrete-time version) of the spectral
representation (1). Using the matrix form, multiplying both sides of
(9) by Fn gives Y = FnJn immediately.

Variance decomposition As in harmonic regression, we can associate a
variance with Jn,j . In particular,∑

t

X2
t =

∑
t

|Xt|2 =
∑
t

|
∑
j

Jn,je
2πı λjt|2

=
∑
j,k

Jn,jJn,k
∑
t

e2πı (λj−λk)t

= n
∑
j

Jn,jJn,j = n

n−1∑
j=0

|Jn,j |2,

which is a much “neater” formula than that offered in the real-valued
harmonic regression model in (6). In matrix form, this is easier still:∑

t

X2
t = Y ∗Y = (FnJn)∗(FnJn) = J∗n(F ∗nFn)Jn = n

∑
j

|Jn,j |2

Convolutions If the input data are a product, xt = ytzt, the DFT has
again a very special form. Using the inverse transform we find that
the transform of the product is the convolution of the transforms,

Jxn,j =
1
n

∑
t

ytzte
−2πı λjt

=
1
n

∑
t

yt

(∑
k

Jz,ke
2πı λkt

)
e−2πı λjt



Statistics 910, #18 8

=
∑
k

Jz,k

(
1
n

∑
t

yte
−2πı λj−kt

)

=
n−1∑
k=0

Jzn,k J
y
n,j−k

Recall the comparable property of r.v.’s: the MGF of a sum of two
ind. r.v.’s is the product of the MGF’s and the distribution of the sum
is the convolution.

Special Cases of the DFT

Constant. If the series Xt = k for all t, then

Jn,j =
1
n

∑
t

Xte
−2πı λjt =

k

n

∑
t

e−2πı λjt

which is zero unless j = 0, in which case J0 = k. Hence a constant
input generates a single “spike” in the output at frequency zero.

Spike. If the input is zero except for a single non-zero value k at index s,
then Jn,j = k

ne
−2πı λjs. The amplitude of the DFT is constant, with

the phase a linear function of the location of the single spike.

Sinusoid. If Xt = ke2πı λt, then we obtain a multiple of the Dirichlet kernel,

Jn,j =
1
n

∑
t

e2πı (λ−λj)t = e2πı (λ−λj)
(n−1)

2 Dn(λ− λj) ,

If λ = λk is a Fourier frequency, only Jn,k is non-zero. The version
of the Dirichlet kernel used here is (set up for frequencies rather than
angular frequencies)

Dn(λ) =
sin(nπλ)
n sin(πλ)

≈ sin(nπλ)
n πλ

if λ ≈ 0. (11)

The Dirichlet kernel arises as a sum of complex exponentials. In par-
ticular

Dn(λ) = 1
n

(n−1)/2∑
j=−(n−1)/2

e2πı λj =
e−2πı λ(n−1)/2

n

n−1∑
j=0

e2πı λj (12)
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Some definitions of this kernel omit the leading factor 1/n so that
Dn(0) = n and

∫
Dn(λ)dλ = 1.

Here’s a plot of the Dirichlet kernel. Notice that Dn(λj) = 0; it’s zeros
are at the Fourier frequencies (n = 100, so these are multiples of 0.01).
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Note that Dn(λ) does not have the “delta function” property.

Boxcar. If the input is the step function (or “boxcar”),

Xt = 1, t = 0, 1, ...,m− 1, Xt = 0, t = m,m+ 1, ..., n− 1,

then |Jn,j | = m
nDm(λj) .

Periodic function. Suppose that the input data Xt is composed of K
repetitions of the sequence of H points xt (n = KH). Then the DFT
of Xt is (write t = h+ kH)

JXn,j =
1
n

∑
t

Xte
−2πı λjt

=
1

KH

K−1∑
k=0

H−1∑
h=0

xhe
−2πı j(h+kH)/(KH)

=

(
1
K

∑
k

e−2πı jk
K

)
1
H

∑
h

xhe
−2πı jh

KH

= DK(j/K)
1
H

∑
h

xhe
−2πı jh

KH

=

{
0 for j 6= 0,K, 2K, . . . , (H − 1)K.
Jx` for j = `K.
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The transform of the y’s is zero except at multiples of K/n, which is
known as the fundamental frequency.

Periodogram

Definition The periodogram In is the decomposition of variation associ-
ated with the harmonic regression and DFT,

In(λj) = nJjJ j
= n|Jj |2

=
1
n
|
∑
t

xte
−2πı λjt|2 (13)

The DFT sum-of-squares at the Fourier frequency λj is (see 6):

nJjJ j =

{
n
4 (A2

j +B2
j ) j 6= 0, n/2

nA2
j j = 0, n/2

At frequencies λj 6= 0, 1
2 , the DFT splits the variation assigned by the

harmonic regression in keeping with the symmetry of the DFT around
λ = 1

2 .

Statistical properties The relationship In(λj) = n|Jn,j |2 = n
4 (A2

j + B2
j )

suggests that the asymptotic distribution of In(λj) is a multiple of a
χ2 random variable with two degrees of freedom when the data are
white noise,

In(λj) ∝ χ2
2 .

At j = 0 or n/2, the r.v. is χ2
1. It is easy to see that the In(λj) are

uncorrelated when Xt is white noise; the transform is an orthogonal
rotation of the data. The key property of the transformation is that the
ordinates are uncorrelated even if the input data are not uncorrelated.
We’ll see why in the next class.

Hilbert space perspective

Motivation Remove most of the superficial complexity associated with
the DFT by a change of notation and point of view.
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Define The relevant Hilbert space is Cn with the usual inner product

〈x, y〉 =
∑
i

xiyi

Define the orthonormal vectors (you might add an n to remind you
that these vectors lie in Cn)

ek =
(

1, e2πı λk , e2πı 2λk , e2πı 3λk , . . . , e2πı (n−1)λk

)
/
√
n (14)

The vectors ek, k = 0, 1, . . . , n− 1 form a basis for Cn.

DFT To obtain the DFT of a vector x ∈ Cn, observe that

√
n Jn,j =

1√
n

∑
t

e−2πı λjtxt = 〈x, ej〉

(With the {ek} defined to be orthonormal, we obtain the normalization
of the DFT as defined in the S&S textbook.) Hence, you can see that
the DFT of x is the collection of inner products of x with this basis.
Since {ek} are orthonormal, we can write

x =
∑
j

〈x, ej〉ej .

Basis matrix It also follows that ‖x‖2 =
∑

j 〈x, ej〉
2. Other inner-product

operations also follow, such as moving between points in the time
domain and those in the frequency domain. Define the linear op-
erator T (x) = (〈x, e0〉, 〈x, e1〉, . . . , 〈x, en−1〉) (the matrix with rows
e0, e1, . . . , en−1). This operator is symmetric with T ∗T = I. Hence,
Tx is the DFT and inner products are perserved,

〈x, y〉 = 〈x, T ∗Ty〉 = 〈Tx, Ty〉

Convolutions? Convolution is not a “natural” property of a Hilbert space
because convolution requires the notion of a product. Hilbert spaces
don’t. For products, we need to move from Hilbert spaces to objects
known as algebras.

Define the product x · y in Cn element-wise. Under this definition,
we start to see some special properties of the basis {ek}. (Up to
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now, you can do everything with another orthonomal basis.) Notice
that ek · ej = ek+j mod n: the collection {ek} form a group. The neat
properties of the DFT when applied to stationary processes come from
(a) the algebraic properties of this group and (b) the fact that {ek}
are very nearly eigenvectors of all Toeplitz matrices.

Examples in R

Variable star data. This integer time series is reported to be the magni-
tude of a variable star observed on 600 successive nights (Whittaker
and Robinson, 1924). Bloomfield (1976) shows that this data is essen-
tially the sum of two sinusoids plus round-off error! The variable star
data is in the file varstar.dat.

Raw periodogram suggests a much richer structure with power at many
frequencies. The problem is leakage from the peaks. Unless the fre-
quencies in the data occur exactly at Fourier frequencies, there will be
leakage of power to nearby frequencies.


