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Spectral Estimation

Overview

1. Representation of the discrete Fourier transform

2. Periodogram

3. Leakage and tapering

4. Consistent estimators

5. Multi-taper estimators

Discrete Fourier transform

Spectral representation The representation for a stationary process (mean
zero) {Xt} is

Xt =
∫ 1/2

−1/2
e2πı ξtZ(dξ)

where the random measure Z has orthogonal increments such that
(assuming the spectral density f(λ) is well-defined)

EZ(dξ)Z(dλ) =

{
f(ξ) ξ = λ

0 ξ 6= λ

Fourier transform of the process gives for any frequency λ (with Jn,j =
Jn(λj) where the Fourier frequency λj = j/n):

Jxn(λ) =
1
n

n−1∑
t=0

Xte
−2πı λt

=
1
n

n−1∑
t=0

(∫ 1/2

−1/2
e2πı tξZ(dξ)

)
e−2πı λt

=
∫ (

1
n

n−1∑
t=0

e−2πı t(λ−ξ)

)
Z(dξ)

=
∫
e2πı (λ−ξ)

n
2Dn(λ− ξ)︸ ︷︷ ︸Z(dξ)
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=
∫ 1/2

−1/2
Qn(λ− ξ)Z(dξ) (1)

The function Qn is the Dirichlet kernel Dn with a complex multiplier.
The norm of Qn in (1) is |Qn(λ)| = Dn(λ). The observed transform is
a “blurred” version of the underlying random measure Z(λ).

Dn(λ) =
sin(nπλ)
n sin(πλ)

(2)

The maximum value of the Dirichlet kernel maxλDn(λ) = 1 at λ = 0,
and Dn(λj) = 0 at the associated Fourier frequencies λj = j/n which
clearly depend on n.

Periodogram

Definition The periodogram is (up to the choice of a constant scaling
factor) the norm of the discrete Fourier transform. In its “raw” state,
the periodogram is unbiased for the spectral density, but it is not
a consistent estimator of the spectral density. The periodogram is
defined as

In(λ) =
1
n

∣∣∣∣∣
n∑
t=1

Xte
−2πı tλ

∣∣∣∣∣
2

= n |Jn(λ)|2. (3)

All phase (relative location/time origin) information is lost. The pe-
riodogram would be the same if all of the data were circularly rotated
to a new time origin, as though the observed data series were per-
fectly periodic with period n. (Take a moment to think about the
consequence of this translation invariance.)

Expected value The orthogonal increments process Z(λ) defined in the
spectral representation introduced in the prior lecture implies

E In(λ) = n E |Jn(λ)|2

=
∫ 1/2

−1/2
n |Dn(λ− ξ)|2f(ξ)dξ

=
∫ 1/2

−1/2
Kn(λ− ξ)f(ξ)dξ , (4)
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assuming that dF (λ)/dλ = f(λ) so that the s.d.f. exists. The smooth-
ing kernel Kn in this expression is n times the square of the Dirichlet
kernel; it is known as Fejer’s kernel:

Kn(λ) = n|Dn(λ)|2 =
sin2(n π λ)
n sin2(π λ)

. (5)

Unlike the Dirichlet kernel, Fejer’s kernel has the delta-function prop-
erty in the sense that for suitable functions g,

lim
n

∫ π

−π
Kn(λ− ξ)g(ξ)dξ = g(λ) .

Here’s a plot of the Dirichlet kernel Dn (gray) and 1/n times Fejer’s
kernel 1

nKn (so both are scaled similarly; with n = 100).
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Hence, the periodogram In(λ) shown in equation (5) is asymptotically
unbiased. This is of little relevance in practice, however, due to the
problems of the size of its variance and the presence of leakage dis-
cussed next.

Variance Although asymptotically unbiased, In is not a consistent esti-
mator of its mean since its variance does not go to zero as n → ∞.
Using the results from harmonic regression (j 6= 0, n2 ), we know that

Regr SS(λj) =
n

2
(A2

j +B2
j ) = 2In(λj).

with expected value f(λj) where

Jn,j = 1
2 (Aj − ıBj)⇒ n|Jj |2 = n

4 (A2
j +B2

j ) (6)
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The squares of the Jj get divided by an extra 2 since there are twice as
many of these (the redundancy in the complex values). In the white
noise case, it is clear that the coefficients Aj , Bj are independent and
asymptotically normal with variance Var(Aj) = Var(Bj) = σ2 2/n(j 6=
0, n/2). Hence, for j = 1, . . . , n/2,

In(λj) =
n

4σ2
(A2

j +B2
j ) ∼ χ2

2

2
f(λj) = f(λj)× Exponential r.v. .

For j = 0 or n/2, the r.v. is χ2
1 with no factor of 1/2. Hence, for

white noise, the periodogram coordinates are independent with equal
variance. The same is asymptotically true in general for stationary
processes.

Covariances of the Fourier transform The spectral representation yields
the covariances of the terms in the Fourier transform:

nE Jn,jJn,k =
∫ 1/2

−1/2
nQn(λj − ξ)Qn(λk − ξ)f(ξ)dξ

So long as the spectral density f(ξ) is smooth, the product of the
kernels Qn at the distinct Fourier frequencies is approximately zero.
In fact, the integral is exactly zero if the spectral density is constant.
To see that, use the definition of Qn as a sum of complex exponentials:

n

∫ 1/2

−1/2
Qn(λj − ξ)Qn(λk − ξ)dξ =

1
n

∑
t,s

e2πı (λjt−λks)

∫
e2πı ξ(t−s)dξ

=
1
n

∑
t

e2πı (λj−λk)t

=

{
1 if j = k

0 otherwise.

As long as f changes slowly relative to the oscillations of the Dirichlet
kernel function, the covariances between the Fourier transform at the
Fourier frequencies are approximately zero. Here’s a picture of the
product of two Dirichlet kernels nDn(λ) and nDn(λ − 2

n) (with n =
100):
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Hence, under normality, the lack of correlation among the Jn,js means
that these are asymptotically independent (i.e., the covariance in the
asymptotic distribution is zero).The exponential multiplier, combined
with the fact that adjacent values of the periodogram are uncorrelated,
explains why the periodogram shows so much irregular fluctuations

Harmonic regression The connection to harmonic regression shows that
the asymptotic distribution of the periodogram at Fourier frequencies
In(λj) is a multiple of a χ2

2 random variable — an exponential random
variable (except at the extremes λ = 0, 1

2).

Summary: Distribution of periodogram The periodogram ordinates are
thus roughly distributed as chi-squared with 2 degrees of freedom, in-
dependently of each other, times the spectral density:

I(λj) ∼ f(λj)
(

1
2χ

2
2

)
j 6= 0, n/2.

Alternative derivation The S&S text takes a different approach to get-
ting the properties of the periodogram. You need not rely upon the
spectral representation to obtain the expected value of In. You can
work directly from the properties of the covariances. This approach
also has the advantage of reminding you that the covariances and
spectral density (either in a sample or the population) form a Fourier
transform pair. Proceeding directly,

E In(λ) = E
1
n

∣∣∣∣∣
n∑
t=1

Xte
2πı λt

∣∣∣∣∣
2

=
1
n

∑
t,s

(EXtXs) e2πı λ(t−s)
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=
1
n

∑
t,s

γt−se
2πı λ(t−s)

=
∑
|r|<n

(
1− |r|

n

)
γre

2πı λr.

If the covariances are absolutely summable
∑
|γ(j)| < ∞, this last

expression has the same limit as
∑
|r|<n γre

2πı λr as n → ∞, which
means that E In(λj)→ f(λj).

Consistency The periodogram is thus not a consistent estimator of the
spectral density function. Some averaging must take place in order for
one to obtain consistency. As n increases, we observe estimates that
are more tightly spaced in frequency, but nonethess roughly indepen-
dent.

To obtain a consistent estimator of the spectral density, we begin with
n observations and convert them into n values Jj (noting Jn,j = Jn,n−j
for real data), obtaining n/2 + 1 variance components (for n even),
one at each Fourier frequency. As data are added, the number of
estimates increases (the spacing 1/n between Fourier frequences di-
minishes). Since the estimates are approximately uncorrelated, the
periodogram looks very “rough.”

Logs and plots Since In is a random multiple of the spectral density, its
variance depends on f(λ). By taking logs, one breaks this tie of level
and variance. Plots of logs of spectral estimates have roughly constant
variance regardless of the level of the spectral density f(λ). Hence, by
default, R graphs spectral estimates on a log scale (some prefer the
decibel scale, which is 10 log10).

Leakage and Tapering

Heuristic Think of the observed data Xt as a segment of an infinitely long
stochastic process denoted X̃t,

Xt =

{
X̃t, t = 1, 2, . . . , n
0 otherwise .
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We can also write this as using a “data window” Wt times the complete
series,

Xt = Wt X̃t where Wt =

{
1 t = 1, 2, . . . , n
0 otherwise .

(7)

The previous lecture shows that a spike and a constant form a Fourier
transform pair. Spikes on the time/frequency scale become flat fea-
tures on the frequency/time scale. The default data window Wt — the
“boxcar” — have sudden transitions, such as the jump from 0 at t = 1
to 1 at t = n. These sudden changes produce the Dirichlet kernel in
J(λ) which has a very slow decay — a relatively flat function. When
convolved with the underlying spectrum, the sidelobes of the Dirichlet
kernel allow power to “leak” from other frequencies.

To obtain a more rapid decay, and thus less leakage, the data weights
need to rise more slowly. One example is the cosine bell in which
the weights are proportional (essentially) to the values of the cosine
function on −π/2 to π/2. (This is the default R taper; see the software
documentation. Note: an analogous heuristic argument suggests how
one passes from continuous to discrete time using a device called a
“Dirichlet comb.”)

Data windows and tapers In general, spectral analysis works with the
product Yt = WtXt with a data window Wt = W (t/n). The function
W defined on [0, 1] and zero elsewhere is known as a data window or
taper. Typically, W (t) is normalized so that ‖2‖W =

∫ 1
0 W (t)2dt = 1

to keep things properly scaled. The boxcar function is the simplest
data window: so simple that we often forget about it.

Leakage The observed transform Jn(λ) =
∫
Qn(λ − ξ)Z(dξ) is a convo-

lution of Qn with the unobserved random measure Z. Since Qn(λ)
is large for λ away from 0, variance from other frequencies affects the
value of J(λ). This undesired property is known as leakage. For an ex-
ample of leakage, refer back to the R code for the previous lecture. The
FT of a sinusoid at a Fourier frequency λj produces a single spike at in-
dex j in the transform. For frequency λ 6= λj , however, the transform
of the sinusiod is non-zero at numerous frequencies near λ. Leakage
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does not occur with a sinusoid in the data at a Fourier frequency since
the zeros of the associated Dirichlet kernel are located at just the right
locations to cancel out. The cosine/sine terms at Fourier frequencies
are uncorrelated; if the harmonic component in the data lies at some
other frequency, it has correlation with many of the sinusoids at the
Fourier frequencies.

Reducing leakage Because Yt = wtXt is a product, we can treat the
Fourier transform as the convolution of the data window with the
FT of the process,

Jyn(λ) =
∫ 1/2

−1/2
Hn(λ− ξ)dZ(ξ) (8)

where the new kernel Hn is the transform of the weights,

Hn(λ) =
1
n

∑
t

wte
−itλ . (9)

Hence, Wt is chosen so as to produce smaller sidelobes than the Dirich-
let kernel in (1), though typically one must get more broad peaks
(lower resolution) due to the Heisenberg uncertainty principle.

Consistent estimators

Local averaging An early type of spectral estimators smoothes the pe-
riodogram by local averaging. (Aside: Smoothing methods so com-
mon in regression modeling originated from the analogous methods in
smoothing spectra density estimates.) Known as Daniell estimators,
these are defined as

f̂(λk) =
d∑

j=−d

In(λk−d)
2d+ 1

.

(The endpoints are clearly a problem.) One obtains this estimator
in R by setting the option spans in spec.pgram to the length of the
moving average, 2d+ 1.
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Properties of Daniell estimators Smoothing trades bias for variance.
Unless the spectral density f is constant or linear over the inter-
val [λk−d, λk+d] (which has length 4 d/n), smoothing produces some
bias. On the other hand, smoothing reduces variance. Since the peri-
odogram ordinates are approximately independent,

Varf̂(λk) ≈ Var

 d∑
j=−d

χ2
2

2
f(λk−j)

 ≈ f(λk)2

2d+ 1
,

if we pretend that f is constant over the relevant interval. Thus as
long as the window width d grows with the sample size n (though at a
slower rate), one gets a consistent estimator. (For example, let d grow
at the same rate as n so that a fixed proportion of the data fall in the
interval.) Also note that smoothing introduces correlation into the
spectral estimator. Thus, the estimator is smoother but peaks become
more blurred.

Multi-taper estimates These more recent estimates

1. Focus most of variance in a narrow band and avoid leakage.

2. Avoid smoothing periodograms (smoothing using a moving aver-
age is “slow” compared to the Fourier transform).

The averaging is done in a different way using prolate spheroidal func-
tions rather than cosine bell data tapers. One of the first applica-
tions (in climate) is D.J. Thompson (1990), “Time series analysis of
Holocene climate data,” Phil. Trans. Royal Soc. London A 330, 601-
616, or the text of Percival and Walden (1993), Spectral Analysis for
Physical Applications.

Prolate spheroidal functions How do we get the least amount of leak-
age under the constraint that the sum of squared weights is 1 (to avoid
the trivial case of all weights zero)? Let H denote the transform of
the weights wt. The goal is to maximize the concentration of variance
coming from frequencies near zero, say the interval [−δ, δ]. Specifically,
maximize the ratio

R(δ) =

∫ δ
−δ |H(λ)|2dλ∫
|H(λ)|2dλ
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over choices of H. The functions that maximize this ratio are known
as the prolate spheroids.

Eigenvectors With the chosen definitions, the denominator of the ratio
R(δ) reduces to our initial constraint on the weights,∫ 1/2

−1/2
|H(λ)|2dλ =

∫ 1/2

−1/2

∣∣∣∣∣ 1n∑
t

wte
−2πı tλ

∣∣∣∣∣
2

dλ

= n−2
∑
s,t

wtws

∫
e−2πı (t−s)λdλ

= n−2
∑
t

w2
t =

1
n2

,

and the numerator becomes the quadratic form∫ δ

−δ
|H(λ)|2dλ = n−2

∫ δ

−δ
|
∑
t

wte
−2πı tλ|2dλ

= n−2
∑
s,t

wtws

∫ δ

−δ
e−2πı (t−s)λdλ

= n−2
∑
s,t

wtws

∫ δ

−δ
cos 2πλ(t− s) + i sin 2πλ(t− s)dλ

= n−2
∑
s,t

wtws
2 sin δ(t− s)

t− s
= n−2w′Mw ,

where M is the matrix with elements 2 sin d(t− s)/(t− s) in position
(t, s). Thus maximizing R is equivalent to

maxw′M w w′w = 1 .

This is the classical eigenvector problem. Using the resulting data
weights gives the least leakage possible under this constraint.

Averaging Rather than smooth the periodogram, compute the transforms
using the second, third, etc eigenvectors of the matrix M . Since these
vectors are orthogonal, one can average the differently tapered esti-
mates to obtain consistency rather than by smoothing the periodogram
directly. One obtains very high resolution without sacrificing leakage
protection or consistency.


