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Testing for Unit Roots

Overview

1. Ideas.

2. Estimators.

3. Essential asymptotic properties.

Unit roots: two questions

First question Is that a random walk or a trend? Simulation results
show that the distribution of the usual t-statistic is very fat tailed:
i.e., we’ll often reject H0 : β1 = 0 for a linear model when there’s
a unit root. This histogram shows the distribution of t-statistics for
testing the slope in a linear model EXt = β0 + β1 t in which Xt is in
fact a Gaussian random walk.

t−stats of linear fit, n=100
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The shape is Gaussian, but the scale is way off. Almost 90% of the
t-stats are larger than 2 in absolute value. This situation is a special
case of what’s known as spurious regression.

Second question Is |φ| < 1 in an AR(1) model?
Stick with the simple case of a AR(1) model with mean zero,

Xt = φXt−1 + wt, wt ∼WN(0, σ2) (1)

Variations on these results apply when there’s a constant term or a
time trend.
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Problem arises in this case as φ approaches 1. The distribution of the
OLS estimator of φ (let Xt = 0 if t < 1)

φ̂ =
∑n

1 XtXt−1∑n
1 X

2
t−1

(2)

is “non-standard” when φ = 1. Rather than approach the asymptotic
normal distribution, the distribution of the sampling estiamates re-
sembles this other distribution for φ near 1. (Note: YW estimator or
the estimator obtained from the periodogram would not be suitable
for this problem since φ̂ < 1 by construction.)

Simulation results These histograms compare the distribution of φ̂ for
φ = 0.95, 0.99, 1.0 with n = 100 and gaussian white noise.

AR(1) Estimates, phi= 0.9
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AR(1) Estimates, phi= 0.95
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AR(1) Estimates, phi= 0.99

phi

D
en

si
ty

−0.15 −0.10 −0.05 0.00 0.05

0
5

10
15

20
25

30

AR(1) Estimates, phi= 1
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Dickey Fuller tests

Literature goes back to work of Dickey and Fuller (1979 JASA, 1981
Econometrica) and classical methods that show that

√
n(φ̂− φ) ∼ N(0, 1− φ2), |φ| < 1

whereas n(φ̂ − 1) has an asymptotic distribution if |φ| = 1 (i.e., the
standard error of φ̂ is proportional to 1/n rather than 1/

√
n.

Model comes in various flavors, but the most interesting combines possible
non-stationarity with a time trend. Consider the model

Xt = β0 + β1(t− t) + φXt−1 +Wt (3)

We’d like to test things such as whether β1 = 0 when φ = 1
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Dickey-Fuller test Authors contribution was to find the asymptotic dis-
tribution for n(φ̂ − 1) when φ = 1 and table it. They also propose
that one test H0 : φ = 1 rather than assume the process is stationary.
They show that the likelihood ratio tests of the various parameters are
functions of the “usual” t-statistic (or F-tests). Their tests work as
follows. Rather than fit the regression specified in (3), subtract Xt−1

from both sides of the quation and fit

(1−B)Xt = β0 + β1(t− t) + (φ− 1)Xt−1 +Wt

Estimate φ−1 via OLS and test whether this estimate is different from
0. You test this using the standard t-statistics, but don’t find the p-
value from the t-distribution. Instead, you have to use their tables of
the sampling distributions of the test statistics.)

Augmented Dickey-Fuller test The augmented test allows dependent
(but stationary) noise in (3). The model is

Xt = β0 + β1(t− t) + φXt−1 + Zt, Zt =
p∑

j=1

ρjZt−j + wt

Under H0 that the process is a simple random walk rather than a time
trend plus stationary noise (β0 = β1 = 0, φ = 1), Zt = Xt − Xt−1 =
∆Xt), this expression is equivalent to the following:

Xt = Xt−1 +
p∑

j=1

ρj∆Xt−j + wt (4)

As in the regular Dickey-Fuller test, you estimate the coefficient of
Xt−1 and t − t in the equation (subtract Xt−1 from both sides of (4)
with coefficient φ)

(1−B)Xt = β0 + β1(t− t) + (φ− 1)Xt−1 +
∑

j

ρj∆Xt−j + wt

by least squares, then compare the “usual” t-statistics of the estimates
to a tabled distribution.

Issues Do these tests have much power? If the tests have low power, you’re
left with a non-stationary process.
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What’s the right number of lags p to use in (4)? Should you pick these,
for example, by using AIC? (Some answers include the tests of Newey
and West that allow a more nonparametric estimate, needing only the
variance of the errors.)

Examples

Null models used in testing are

∆Xt = β0 + β1(t− t) + (φ− 1)Xt−1 +
∑

j

ρj∆Xt−j + wt (5)

∆Xt = β0 + (φ− 1)Xt−1 +
∑

j

ρj∆Xt−j + wt (6)

∆Xt = (φ− 1)Xt−1 +
∑

j

ρj∆Xt−j + wt (7)

Software package urca (The author B Pfaff has a book on the topic,
Analysis of Integrated and Co-integrated Times Series in R. The pack-
age includes several tests that one does sequentially.

ur.df(y, type=c(‘‘none’’, ‘‘drift’’, ‘‘trend’’), lags=1,

selectlags=c(‘‘Fixed’’, ‘‘AIC’’, ‘‘BIC’’))

Set type to

• “trend” to test H0 : β0 = β1 = φ− 1 = 0 in (5), to

• “drift” to test the H0 : β0 = φ− 1 = 0 in (6), and to

• “none” to test H0 : φ = 1 in the pure random walk (7).

The tests are typically done in this order. If you reject, for example,
the first test, then it appears that you have stationary data.

The option lags sets p in these equations; you can set p manually
(selectlags = “Fixed”) or use an automatic criterion to choose these
for you.

Examples are included in the file 19.R.


