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Homework #4

Chapter 6, Shumway and Stoffer

These are outlines of the solutions. If you would like to fill in other details, please come see me

during office hours.

6.1 State-space representation of AR(1) plus noise

(a) The equations are almost in state-space form as given; you just have to watch the time lag

in the state equation. As noted in class, there are many ways to represent the process as a

state-space model. This form is probably the simplest:(
xt

xt−1

)
=

(
0 −0.9

1 0

)(
xt−1

xt−2

)
+

(
wt

0

)
.

The observation equation is then yt = (1, 0)xt + vt. (That is, H ′ = (1, 0).)

(b) Since the elements of the state vector are observations of the AR(2) process, set σ2
0 = σ2

1 =

Var(xt). Since the process is stationary with just one coefficient, we can solve this one as in

an AR(1) model, obtaining Var(xt) = σ2
w/(1− 0.92).

(c) and (d) The simulation is as done in the class notes for the Kalman filter: generate the

specified AR(2) model and add independent noise. The PACF shows much less of the cut-off

characteristic “AR(2) signature” when hidden in more noise. The higher noise level obscures

the dependence when most of the variance is associated with the white noise errors.

6.2 Innovations in AR(1) plus noise

The innovations are uncorrelated; these are the “residuals” of projecting Yt on the prior obser-

vations Yt−1, Yt−2, . . .. Notice that for any random variables X and Y that

E (X(Y − E (Y |X))) = E xE y|x(Y − E (Y |X)) = E xXE (Y − E (Y |X)) = 0

Hence, for any s < t, with Y = Yt and X = (Y1, . . . , Yt−1) and εt = yt − E (yt|y1, . . . , yt−1) that

E (εsεt) = 0. If s = t, then the variance of the innovations is the term seen in expressions for the

gain:

Var(εt) = Var(Hx̃t + vt) = HPt|t−1H
′ + σ2

v = Pt|t−1 + σ2
v

since H = 1 in that example.

6.3 Simulation of AR(1) plus noise, with error bands

This is a nice style for plots that show a sequence of estimates of the unknown state.

6.5 Projection theorem derivation of Kalman smoother
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The exercise uses Ht for what we called the gain Kt. I will use the notation from class in this

answer, and call their H by A. The space Lk = sp{y1, . . . , yk} = sp{ỹ1, . . . , ỹk} where ỹt are the

innovations. I’ve used the following expressions for the state and observation equations, as in the

class notes (Lecture 15):

State: xt = F xt−1 + vt (1)

Observation: yt = H xt + wt (2)

I’ll also drop the t subscripts from F and H.

(a) The matrix Ak+1 is the regression coefficient of xk on the innovation ỹk+1 = yk+1 − ŷk+1|k,

Ak+1 = Cov(xk, ỹk+1) Var(ỹk+1)−1

= Cov(xk, wk+1 +Hxk+1 −Hx̂k+1|k) Var(ỹk+1)−1

= Cov(xk, H(Fxk + vk+1)−HFx̂k|k) Var(ỹk+1)−1

= Cov(x̃k + x̂k|k, H(Fxk + vk+1)−HFx̂k|k) Var(ỹk+1)−1

= Pk|kF
′H ′(HPk+1|kH

′ +R)−1

where x̃k = xk − x̂k|k which is hence orthogonal to the innovations ỹj , j = k, k − 1, . . .

(b) Equating the two expressions given in the exercise means that we must show that Ak+1 =

JKk+1. Postmultipling both by Var(ỹk+1) leaves the expression Pk|kF ′H ′ = JPk+1|kH
′. For

this to hold for all H implies that

J = Pk|kF
′P−1

k+1|k .

(c) As in part (a) we again need a regression coefficient. Solving for Ak+2 follows the same script

as in (a); Ak+2 is the regression coefficient of xk on the innovation yk+2− ŷk+2|k+1. It is useful

to recognize that the gain Kt times the innovation gives the update to the estimate of the

state,

Kt(yt − ŷt|t−1) = x̂t|t − x̂t|t−1

Patiently back-substiting from the definition of the filter and innovations gives

Ak+2 = Cov(xk, ỹk+2) Var(ỹk+2)−1

= Cov(xk, wk+2 +H(xk+2 − x̂k+2|k+1) Var(ỹk+2)−1

= Cov(xk, Fxk+1 + vk+2 − Fx̂k+1|k+1)H ′Var(ỹk+2)−1

= Cov(xk, xk+1 − x̂k+1|k −Kk+1ỹk+1)F ′H ′Var(ỹk+2)−1

= Cov(xk, xk+1 − x̂k+1|k −Kk+1(wk+1 +H(xk+1 − x̂k+1|k))F ′H ′Var(ỹk+2)−1

= Cov(xk, (I −Kk+1H)(xk+1 − x̂k+1|k))F ′H ′Var(ỹk+2)−1

= Cov(xk, vk+1 + F (xk − x̂k|k))(I −KH)′F ′H ′Var(ỹk+2)−1
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= Cov(x̃k|k, x̃k|k)F ′(I −KH)′F ′H ′Var(ỹk+2)−1

= Pk|kF
′(I −KH)′F ′H ′Var(ỹk+2)−1

The two expressions in the exercise are the same if

J(x̂k+1|k+2 − x̂k+1|k)− J(x̂k+1|k+1 − x̂k+1|k) = J(x̂k+1|k+2 − x̂k+1|k+1) = Ak+2ỹk+2

This must hold for all innovations ỹk+2, implying that

JPk+1|k+1F
′H ′Var(ỹk+2)−1 = Ak+2

and hence that

JPk+1|k+1F
′H ′ = Pk|kF

′(I −KH)′F ′H ′

Again arguing that this must hold for all H and F we get

JPk+1|k+1 = Pk|kF
′(I −KH)′ .

Now substitute for J from part (b), and we need to show that

Pk|kF
′(Pk+1|k)−1Pk+1|k+1 = Pk|kF

′(I −KH)′

Multiply by P−1
k|k and again drop the common F gives

(Pk+1|k)−1Pk+1|k+1 = (I −KH)′

Now multipy by Pk+1|k to obtain

Pk+1|k+1 = Pk+1|k(I −KH)′

Since the covariance matrices are symmetric, it holds that

Pk+1|k+1 = (I −KH)Pk+1|k

This is the update equation for Pk|k.

(d) To prove the claim by induction, the initial “n = 1” statement is shown in part (a). The

induction step requires that one mimic the argument used above. That is, given that

x̂k|k+m = x̂k|k + Jk(x̂k+1|k+m − x̂k+1|k)

then show that

x̂k|k+m+1 = x̂k|k + Jk(x̂k+1|k+m+1 − x̂k+1|k)

Part (c) shows this in the special case with m = 1. The general case works similarly. Just

keep careful track of the indices.
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6.6 Random walk plus noise fit to glacial varve

(a) To show that yt is IMA(1,1), show that the differences zt = yt − yt−1 have the covariances

of a first order moving average. Direct substitution shows that zt = wt + (vt − vt−1) so that

γz(0) = Varzt = σ2
w + 2σ2

v , γz(1) = −σ2
v , and γz(h) = 0 for h = 2, 3, . . . . The resulting first

correlation is

ρ(1) = −σ2
v/(σ

2
w + 2σ2

v) < 1
2 .

(b) Compared to the results in Example 3.31 (or 3.32 in 3rd ed), you can fit an IMA using the

ARIMA estimation routine. To use the Kalman filter for the estimation, follow a script like

those we used in the examples with R in class. Roughly the estimates should be similar to

σw ≈ 0.11 and σ̂v ≈ 0.425. Together these give ρ̂(1) ≈ −0.48 and θ̂ ≈ −0.77. Here’s some R

code you can use...

y <- log(varve)

n <- length(y)

mu0 <- y[1]; sigma0 <- var(y[1:10]) # rough starting values

# function to pass to optimizer

like <- function(para){

cQ <- para[1]; cR <- para[2];

kf <- Kfilter0(n, y, 1, mu0, sigma0, 1, cQ, cR)

kf$like }

init.par <- c(.1,.1)

est <- optim(init.par, like, NULL, method=’’BFGS’’, hessian=TRUE,

control=list(trace=1,REPORT=1)))

se <- sqrt(diag(solve(est$hessian)))

# Summary of estimation

c(sig.w=est$par[1], sig.v=est$par[2])

6.13 Missing data

The role of the observation equation in this example is solely to handle the missing data. The

example also requires that the observation matrix H and variance matrix R have time subscripts

(Ht, Rt). (It’s a little odd discussing xn
0 since we set x0 = 0, but it does show you how the smoothing

filter reverses the data. It would have made more sense I think to set A1 = 0 and go from there as

if the first observation were missing.)

Perhaps the “easiest” way to answer this question is to argue that the KF is just a way to

compute estimates E (xt|yt) from processes with a given covariance formula, in this case AR(1).
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From this point of view, the best prediction of x0 uses the reverse regression, obtaining φx1 = φy1

with error variance σ2
w. For the interpolation problem, the Markovian nature of the process gives

E (xm|y1, . . . , ym−1) = φym−1

and

E (xm|ym+1, . . . , yn) = φym+1

Since the spaces are not orthogonal, however, we cannot partition the expected value E (xm|yt6=m)

as the sum of these. So, we have to do the projection simultaneously,

E (xm|yt6=m) = E (xm|ym−1, ym+1)

This is regression with coefficients (see the regression summary in 6.4)(
γ0 γ2

γ2 γ0

)−1(
γ1

γ1

)
=

(
1 φ2

φ2 1

)−1(
φ

φ

)
=

(
φ/(1 + φ2)

φ/(1 + φ2)

)
.

You need to remember how to invert a 2x2 matrix for this!

To get the variance, use the regression expression for the conditional variance of one normal

r.v. given another. Some remarkable cancellation happens:

Var(Y |X) = Var(Y )− β′Cov(X,Y )

= σ2
w

(
1

1− φ2
− φ

1 + φ2

2φ
1− φ2

)
=

σ2
w

1 + φ2
.


