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Abstract

In the past decade, di!erential privacy has seen remarkable success as a rigorous and prac-
tical formalization of data privacy. This privacy deÞnition and its divergence based relaxations,
however, have several acknowledged weaknesses, either in handling composition of private algo-
rithms or in analyzing important primitives like privacy ampliÞcation by subsampling. Inspired
by the hypothesis testing formulation of privacy, this paper proposes a new relaxation of dif-
ferential privacy, which we term Òf -di!erential privacyÓ ( f -DP). This notion of privacy has a
number of appealing properties and, in particular, avoids di"culties associated with divergence
based relaxations. First, f -DP faithfully preserves the hypothesis testing interpretation of dif-
ferential privacy, thereby making the privacy guarantees easily interpretable. In addition, f -DP
allows for lossless reasoning about composition in an algebraic fashion. Moreover, we provide
a powerful technique to import existing results proven for the original di!erential privacy deÞ-
nition to f -DP and, as an application of this technique, obtain a simple and easy-to-interpret
theorem of privacy ampliÞcation by subsampling forf -DP.

In addition to the above Þndings, we introduce a canonical single-parameter family of privacy
notions within the f -DP class that is referred to as ÒGaussian di!erential privacyÓ (GDP),
deÞned based on hypothesis testing of two shifted Gaussian distributions. GDP is the focal
privacy deÞnition among the family of f -DP guarantees due to a central limit theorem for
di!erential privacy that we prove. More precisely, the privacy guarantees of any hypothesis
testing based deÞnition of privacy (including the original di!erential privacy deÞnition) converges
to GDP in the limit under composition. We also prove a BerryÐEsseen style version of the central
limit theorem, which gives a computationally inexpensive tool for tractably analyzing the exact
composition of private algorithms.

Taken together, this collection of attractive properties render f -DP a mathematically co-
herent, analytically tractable, and versatile framework for private data analysis. Finally, we
demonstrate the use of the tools we develop by giving an improved analysis of the privacy
guarantees of noisy stochastic gradient descent.
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1 Introduction

Modern statistical analysis and machine learning are overwhelmingly applied to data concerning
people. Valuable datasets generated from personal devices and online behavior of billions of indi-
viduals contain data on location, web search histories, media consumption, physical activity, social
networks, and more. This is on top of continuing large-scale analysis of traditionally sensitive data
records, including those collected by hospitals, schools, and the Census. This reality requires the
development of tools to perform large-scale data analysis in a way that still protects theprivacy of
individuals represented in the data.

Unfortunately, the history of data privacy for many years consisted of ad-hoc attempts at
ÒanonymizingÓ personal information, followed by high proÞle de-anonymizations. This includes the
release of AOL search logs, de-anonymized by theNew York Times [BZ06], the Netßix Challenge
dataset, de-anonymized by Narayanan and Shmatikov [NS08], the realization that participants in
genome-wide association studies could be identiÞed from aggregate statistics such as minor allele
frequencies that were publicly released [HSR+ 08], and the reconstruction of individual-level census
records from aggregate statistical releases [Abo18].

Thus, we urgently needed a rigorous and principled privacy-preserving framework to prevent
breaches of personal information in data analysis. In this context,di!erential privacy has put
private data analysis on Þrm theoretical foundations [DMNS06, DKM+ 06]. This deÞnition has
become tremendously successful; in addition to an enormous and growing academic literature,
it has been adopted as a key privacy technology by Google [EPK14], Apple [App17], Microsoft
[DKY17], and the US Census Bureau [Abo18]. The deÞnition of this concept involves privacy
parameters ! ! 0 and 0" " " 1.

DeÞnition 1 ([DMNS06, DKM + 06]). A randomized algorithm M that takes as input a dataset
consisting of individuals is (!, " )-di!erentially private (DP) if for any pair of datasets S, S" that
di!er in the record of a single individual, and any event E ,

P [M (S) ! E ] " e"P
⇥
M (S") ! E

⇤
+ ". (1)

When " = 0 , the guarantee is simply called! -DP.

In this deÞnition, datasets areÞxed and the probabilities are taken only over the randomness
of the mechanism1. In particular, the event E can take any measurable set in the range ofM .
To achieve di!erential privacy, a mechanism is necessarily randomized. For example, consider
the problem of privately releasing the average cholesterol level of individuals in the datasetS =
(x1, . . . , xn), where xi corresponds to the cholesterol level of individuali . A privacy-preserving
mechanism may take the form

M (S) =
x1 + · · · + xn

n
+ noise.

The level of the noise has to be large enough to mask thecharacteristics of any individualÕs
cholesterol level, whilenot being too large to distort the population average for accuracy purposes.
Consequently, the probability distributions of M (S) and M (S") are close to each other for any
datasetsS, S" that di!er in only one individual record.

1A randomized algorithm M is often referred to as a mechanism in the di!erential privacy literature.
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Di!erential privacy is most naturally deÞned through a hypothesis testing problem from the
perspective of an attacker who aims to distinguishS from S" based on the output of the mechanism.
This statistical viewpoint was Þrst observed by [WZ10] and then further developed by [KOV17],
which is a direct inspiration for our work. In short, consider the hypothesis testing problem

H0 : the underlying dataset is S versus H1 : the underlying dataset is S" (2)

and call Alice the only individual that is in S but not S". As such, rejecting the null hypothesis
corresponds to the detection of absence of Alice, whereas accepting the null hypothesis means to
detect the presence of Alice in the dataset. Using the output of an (!, " )-DP mechanism, the power2

of any test at signiÞcance level 0< # < 1 has an upper bound3 of e"# + " . This bound is only
slightly larger than # provided that !, " are small and, therefore,any test is essentially powerless.
Put di!erently, di!erential privacy with small privacy parameters protects against any inferences
of the presence of Alice, or any other individual, in the dataset.

Despite its apparent success, there are good reasons to want to relax the original deÞnition of
di!erential privacy, which has led to a long line of proposals for such relaxations. The most impor-
tant shortcoming is that ( !, " )-DP does not tightly handle composition. Composition concerns how
privacy guarantees degrade under repetition of mechanisms applied to the same dataset, rendering
the design of di!erentially private algorithms modular. Without compositional properties, it would
be near impossible to develop complex di!erentially private data analysis methods. Although it
has been known since the original papers deÞning di!erential privacy [DMNS06, DKM+ 06] that the
composition of an (! 1, "1)-DP mechanism and an (! 2, "2)-DP mechanism yields an (! 1 + ! 2, "1 + "2)-
DP mechanism, the corresponding upper bound e"1+ "2# + "1 + "2 on the power of any test at sig-
niÞcance level# no longer tightly characterizes the trade-o! between signiÞcance level and power
for the testing between S and S". In [DRV10], Dwork, Rothblum, and Vadhan gave an improved
composition theorem, but it fails to capture the correct hypothesis testing trade-o!. This is for a
fundamental reason: (!, " )-DP is mis-parameterized in the sense that the guarantees of the com-
position of (! i, " i)-DP mechanisms cannot be characterized by any single pair of parameters (!, " ).
Even worse, given any" , Þnding the smallest parameter! for composition of a sequence of dif-
ferentially private algorithms is computationally hard [MV16], and so in practice, one must resort
to approximations. Given that composition and modularity are Þrst-order desiderata for a useful
privacy deÞnition, these are substantial drawbacks and often continue to push practical algorithms
with meaningful privacy guarantees out of reach.

In light of this, substantial recent e!ort has been devoted to developing relaxations of di!er-
ential privacy for which composition can be handled exactly. This line of work includes several
variants of Òconcentrated di!erential privacyÓ [DR16, BS16], ÒR«enyi di!erential privacyÓ [Mir17],
and Òtruncated concentrated di!erential privacyÓ [BDRS18]. These deÞnitions are tailored to be
able to exactly and easily track the Òprivacy costÓ of compositions of the most basic primitive in
di!erential privacy, which is the perturbation of a real valued statistic with Gaussian noise.

While this direction of privacy relaxation has been quite fruitful, there are still several places
one might wish for improvement. First, these notions of di!erential privacy no longer have hy-
pothesis testing interpretations, but are rather based on studying divergences that satisfy a certain
information processing inequality. There are good reasons to prefer deÞnitions based on hypothesis
testing. Most immediately, hypothesis testing based deÞnitions provide an easy way to interpret

2The power is equal to 1 minus the type II error.
3A more precise bound is given in Proposition 3.
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the guarantees of a privacy deÞnition. More fundamentally, a theorem due to Blackwell (see The-
orem 2) provides a formal sense in which a tight understanding of the trade-o! between type I
and type II errors for the hypothesis testing problem of distinguishing betweenM (S) and M (S")
contains only more information than any divergence between the distributionsM (S) and M (S")
(so long as the divergence satisÞes the information processing inequality).

Second, certain simple and fundamental primitives associated with di!erential privacyÑmost
notably, privacy ampliÞcation by subsampling[KLN + 11]Ñeither fail to apply to the existing relax-
ations of di!erential privacy, or require a substantially complex analysis [WBK18]. This is especially
problematic when analyzing privacy guarantees of stochastic gradient descentÑarguably the most
popular present-day optimization algorithmÑas subsampling is inherent to this algorithm. At best,
this di"culty arising from using these relaxations could be overcome by using complex technical
machinery. For example, it necessitated Abadi et al. [ACG+ 16] to develop the numericalmoments
accountant method to sidestep the issue.

1.1 Our Contributions

In this work, we introduce a new relaxation of di!erential privacy that avoids these issues and
has other attractive properties. Rather than giving a ÒdivergenceÓ based relaxation of di!erential
privacy, we start fresh from the hypothesis testing interpretation of di!erential privacy, and obtain
a new privacy deÞnition by allowing the full trade-o! between type I and type II errors in the
simple hypothesis testing problem (2) to be governed by some functionf . The functional privacy
parameter f is to this new deÞnition as (!, " ) is to the original deÞnition of di!erential privacy.
Notably, this deÞnition that we term f -di!erential privacy ( f -DP)Ñwhich captures ( !, " )-DP as a
special caseÑis accompanied by a powerful and elegant toolkit for reasoning about composition.
Here, we highlight some of our contributions:

An Algebra for Composition. We show that our privacy deÞnition is closed and tight under
composition, which means that the trade-o! between type I and type II errors that results from the
composition of an f 1-DP mechanism with an f 2-DP mechanism can always beexactly described
by a certain function f . This function can be expressed viaf 1 and f 2 in an algebraic fashion,
thereby allowing for losslessly reasoning about composition. In contrast, (!, " )-DP or any other
privacy deÞnition artiÞcially restricts itself to a small number of parameters. By allowing for
a function to keep track of the privacy guarantee of the mechanism, our new privacy deÞnition
avoids the pitfall of premature summarization4 in intermediate steps and, consequently, yields a
comprehensive delineation of the overall privacy guarantee. See more details in Section 3.

A Central Limit Phenomenon. We deÞne a single-parameter family off -DP that uses the type
I and type II error trade-o! in distinguishing the standard normal distribution N (0, 1) from N (µ, 1)
for µ ! 0. This is referred to as Gaussian di!erential privacy (GDP). By relating to the hypothesis
testing interpretation of di!erential privacy (2), the GDP guarantee can be interpreted as saying
that determining whether or not Alice is in the dataset is at least as di"cult as telling apart
N (0, 1) and N (µ, 1) based on one draw. Moreover, we show that GDP is a ÒcanonicalÓ privacy
guarantee in a fundamental sense: for any privacy deÞnition that retains a hypothesis testing
interpretation, we prove that the privacy guarantee of composition with an appropriate scaling
converges to GDP in the limit. This central limit theorem type of result is remarkable not only
because of its profound theoretical implication, but also for providing a computationally tractable

4To quote Susan Holmes [Hol19], Òpremature summarization is the root of all evil in statistics.Ó
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tool for analytically approximating the privacy loss under composition. Figure 1 demonstrates that
this tool yields surprisingly accurate approximations to the exact trade-o! in testing the hypotheses
(2) or substantially improves on the existing privacy guarantee in terms of type I and type II errors.
See Section 2.2 and Section 3 for a thorough discussion.
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Figure 1: Left: Our central limit theorem based approximation (in blue) is very close to the
composition of just 10 mechanisms (in red). The tightest possible approximation via an (!, " )-DP
guarantee (in back) is substantially looser. See Figure 5 for parameter setup. Right: Privacy
analysis of stochastic gradient descent used to train a convolutional neural network on MNIST
[LC10]. The f -DP framework yields a privacy guarantee (in red) for this problem that is signiÞcantly
better than the optimal ( !, " )-DP guarantee (in black) that is derived from the moments accountant
(MA) method [ACG + 16]. Put simply, our analysis shows that stochastic gradient descent releases
less sensitive information than expected in the literature. See Section 5 for more plots and details.

A Primal-Dual Perspective. We show a general duality betweenf -DP and inÞnite collections
of (!, " )-DP guarantees. This duality is useful in two ways. First, it allows one to analyze an
algorithm in the framework of f -DP, and then convert back to an (!, " )-DP guarantee at the end,
if desired. More fundamentally, this duality provides an approach to import techniques developed
for (!, " )-DP to the framework of f -DP. As an important application, we use this duality to show
how to reason simply about privacy ampliÞcation by subsampling forf -DP, by leveraging existing
results for (!, " )-DP. This is in contrast to divergence based notions of privacy, in which reasoning
about ampliÞcation by subsampling is di"cult.

Taken together, this collection of attractive properties render f -DP a mathematically coher-
ent, computationally e"cient, and versatile framework for privacy-preserving data analysis. To
demonstrate the practical use of this hypothesis testing based framework, we give a substantially
sharper analysis of the privacy guarantees of noisy stochastic gradient descent, improving on previ-
ous special-purpose analyses that reasoned about divergences rather than directly about hypothesis
testing [ACG+ 16]. This application is presented in Section 5.
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2 f -Di!erential Privacy and Its Basic Properties

In Section 2.1, we give a formal deÞnition off -DP. Section 2.2 introduces Gaussian di!erential
privacy, a special case off -DP. In Section 2.3, we highlight some appealing properties of this new
privacy notation from an information-theoretic perspective. Next, Section 2.4 o!ers a profound
connection betweenf -DP and (!, " )-DP. Finally, we discuss the group privacy properties off -DP.

Before moving on, we Þrst establish several key pieces of notation from the di!erential privacy
literature.

• Dataset. A dataset S is a collection of n records, each corresponding to an individual.
Formally, we write the dataset as S = ( x1, . . . , xn), and an individual xi ! X for some
abstract spaceX . Two datasets S" = ( x"

1, . . . , x"
n) and S are said to be neighbors if they

di!er in exactly one record, that is, there exists an index j such that xi = x"
i for all i "= j and

xj "= x"
j .

• Mechanism. A mechanismM refers to a randomized algorithm that takes as input a dataset
S and releases some (randomized) statisticsM (S) of the dataset in some abstract spaceY .
For example, a mechanism can release the average salary of individuals in the dataset plus
some random noise.

2.1 Trade-o! Functions and f -DP

All variants of di!erential privacy informally require that it be hard to distinguish any pairs of
neighboring datasets based on the information released by a private a mechanismM . From an
attackerÕs perspective, it is natural to formalize this notion of ÒindistinguishabilityÓ as a hypothesis
testing problem for two neighboring datasetsS and S":

H0 : the underlying dataset is S versus H1 : the underlying dataset is S".

The output of the mechanism M serves as the basis for performing the hypothesis testing problem.
Denote by P and Q the probability distributions of the mechanism applied to the two datasets,
namely M (S) and M (S"), respectively. The fundamental di"culty in distinguishing the two hy-
potheses is best delineated by theoptimal trade-o! between the achievable type I and type II errors.
More precisely, consider a rejection rule 0" $ " 1 that takes as input the released results of the
mechanism, with its type I and type II errors deÞned as5

#� = EP [$], %� = 1 # EQ[$],

respectively. The two errors satisfy, for example, the well-known constraint#�+ %� ! 1# TV( P, Q),
where the total variation distance TV( P, Q) is the supremum of |P(A) # Q(A)| over all measurable
setsA. Instead of this rough constraint, we seek to characterize the Þne-grained trade-o! between
the two errors. Explicitly, Þxing the type I error at any level, we consider the minimal achievable
type II error. This motivates the following deÞnition.

DeÞnition 2 (trade-o! function) . For any two probability distributions P and Q on the same
space, deÞne the trade-o! functionT(P, Q) : [0, 1] $ [0, 1] as

T(P, Q)(#) = inf {%� : #� " #} ,

where the inÞmum is taken over all (measurable) rejection rules.
5If 0 < � < 1, we ßip a coin and reject the null hypothesis with probability �.
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The trade-o! function serves as a clear-cut boundary of the achievable and unachievable regions
of type I and type II errors, rendering itself the complete characterization of the fundamental
di"culty in testing between the two hypotheses. The greater this function is, the harder it is
to distinguish the two distributions. In particular, the greatest trade-o! function is the identity
trade-o! function Id( #) := 1 # #. Notably, 1 # f is the ROC curve for classifying the output as
being from the null or alternative hypothesis. For completeness, the minimal%� can be achieved
by the likelihood ratio testÑa fundamental result known as the NeymanÐPearson lemma, which is
stated in Appendix A for convenience.

A function is called a trade-o! function if it is equal to T(P, Q) for some distributions P and
Q. Below we give a necessary and su"cient condition forf to be a trade-o! function and relegate
its proof to Appendix A. This characterization reveals, for example, that max{f, g } is a trade-o!
function if both f and g are trade-o! functions.

Proposition 1. A function f : [0, 1] $ [0, 1] is a trade-o! function if and only if f is convex,
continuous6, non-increasing, and f (x) " 1 # x for x ! [0, 1].

Now, we propose a new generalization of di!erential privacy built on top of trade-o! functions.
Below, we write g ! f for two functions deÞned on [0, 1] if g(x) ! f (x) for all 0 " x " 1, and we
abuse notation by identifying M (S) and M (S") with their corresponding probability distributions.
Note that if T(P, Q) ! T( eP , eQ), then in a very strong sense,P and Q are harder to distinguish
than eP and eQ at any level of type I error.

DeÞnition 3 (f -di!erential privacy) . Let f be a trade-o! function. A mechanism M is said to be
f -di!erentially private if

T
�
M (S), M (S")

�
! f

for all neighboring datasetsS and S".

A graphical illustration of this deÞnition is shown in Figure 2. Letting P and Q be the dis-
tributions such that f = T(P, Q), this privacy deÞnition amounts to saying that a mechanism is
f -DP if distinguishing any two neighboring datasets based on the released information is at least
as di"cult as distinguishing P and Q based on a single draw. In contrast to existing deÞnitions of
di!erential privacy, our new deÞnition is parameterized by a function, as opposed to several real
valued parameters (e.g.! and " ). This functional perspective o!ers a complete characterization
of ÒprivacyÓ, thereby avoiding the pitfall of summarizing statistical information too early. This
fact is crucial to the development of a composition theorem forf -DP in Section 3. Although this
completeness comes at the cost of increased complexity, as we will see in Section 2.2, a simple
family of trade-o! functions can often closely capture privacy loss in many scenarios.

Naturally, the deÞnition of f -DP is symmetric in the same sense as the neighboring relationship,
which by deÞnition is symmetric. Observe that this privacy notion also requires

T
�
M (S"), M (S)

�
! f

for any neighboring pair S, S". Therefore, it is desirable to restrict our attention to ÒsymmetricÓ
trade-o! functions. Proposition 2 shows that this restriction does not lead to any loss of generality.

6Convexity itself implies continuity in (0 , 1) for f . In addition, f (↵) ! 0 and f (↵) " 1 ! ↵ implies continuity at
1. Hence, the continuity condition only matters at x = 0.
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Figure 2: Three di!erent examples of T
�
M (S), M (S")

�
. Only the dashed line corresponds to a

trade-o! function satisfying f -DP.

Proposition 2. Let a mechanismM be f -DP. Then, M is f S-DP with f S = max {f, f # 1}, where
the inverse function is deÞned as7

f # 1(#) := inf {t ! [0, 1] : f (t) " #} (3)

for # ! [0, 1].

We prove Proposition 2 in Appendix A. Writing f = T(P, Q), we can express the inverse as
f # 1 = T(Q, P), which therefore is also a trade-o! function. As a consequence of this,f S continues
to be a trade-o! function by making use of Proposition 1 and, moreover, issymmetric in the sense
that

f S = ( f S)# 1.

Importantly, this symmetrization gives a tighter bound in the privacy deÞnition since f S ! f . In
the remainder of the paper, therefore, trade-o! functions will always be assumed to be symmetric
unless otherwise speciÞed.

We conclude this subsection by showing thatf -DP is a generalization of (!, " )-DP. This fore-
shadows a deeper connection betweenf -DP and (!, " )-DP that will be discussed in Section 2.4.
Denote

f ",�(#) = max
�

0, 1 # " # e"#, e# "(1 # " # #)
 

(4)

for 0 " # " 1, which is a trade-o! function. Figure 3 shows the graph of this function and its
evident symmetry. The following result is adapted from [WZ10].

Proposition 3 ([WZ10]). A mechanism M is (!, " )-DP if and only if M is f ",�-DP.

7 Equation (3) is the standard deÞnition of the left-continuous inverse of a decreasing function. When f is strictly
decreasing andf (0) = 1 and hence bijective as a mapping, (3) corresponds to the inverse function in the ordinary
sense, i.e.f (f " 1(x)) = f " 1(f (x)) = x. However, this is not true in general.
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Figure 3: Left: f ",� is a piecewise linear function and is symmetric with respect to the liney = x.
It has (nontrivial) slopes # e± " and intercepts 1# " . Right: Trade-o! functions of unit-variance
Gaussian distributions with di!erent means. The case ofµ = 0 .5 is reasonably private,µ = 1 is
borderline private, and µ = 3 is basically non-private: an adversary can control type I and type II
errors simultaneously at only 0.07. In the case ofµ = 6 (almost coincides with the axes), the two
errors both can be as small as 0.001.

2.2 Gaussian Di!erential Privacy

This subsection introduces a parametric family off -DP guarantees, wheref is the trade-o! function
of two normal distributions. We refer to this specialization as Gaussian di!erential privacy (GDP).
GDP enjoys many desirable properties that lead to its central role in this paper. Among others,
we can now precisely deÞne the trade-o! function with a single parameter. To deÞne this notion,
let

Gµ := T
�
N (0, 1), N (µ, 1)

�

for µ ! 0. An explicit expression for the trade-o! function Gµ reads

Gµ(#) = #
�
# # 1(1 # #) # µ

�
, (5)

where # denotes the standard normal CDF. For completeness, we provide a proof of (5) in Ap-
pendix A. This trade-o! function is decreasing in µ in the sense thatGµ " Gµ# if µ ! µ". We now
deÞne GDP:

DeÞnition 4. A mechanism M is said to satisfy µ-Gaussian Di!erential Privacy ( µ-GDP) if it is
Gµ-DP. That is,

T
�
M (S), M (S")

�
! Gµ

for all neighboring datasetsS and S".

GDP has several attractive properties. First, this privacy deÞnition is fully described by the
single mean parameter of a unit-variance Gaussian distribution, which makes it easy to describe
and interpret the privacy guarantees. For instance, one can see from the right panel of Figure 3
that µ " 0.5 guarantees a reasonable amount of privacy, whereas ifµ ! 6, almost nothing is
being promised. Second, loosely speaking, GDP occupies a role among all hypothesis testing based
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notions of privacy that is similar to the role that the Gaussian distribution has among general
probability distributions. We formalize this important point by proving central limit theorems for
f -DP in Section 3, which, roughly speaking, says thatf -DP converges to GDP under composition
in the limit. Lastly, as shown in the remainder of this subsection, GDP precisely characterizes the
Gaussian mechanism, one of the most fundamental building blocks of di!erential privacy.

Consider the problem of privately releasing a univariate statistic&(S) of the dataset S. DeÞne
the sensitivity of & as

sens(&) = sup
S,S#

|&(S) # &(S")|,

where the supremum is over all neighboring datasets. The Gaussian mechanism adds Gaussian
noise to the statistic & in order to obscure whether& is computed onS or S". The following result
shows that the Gaussian mechanism with noise properly scaled to the sensitivity of the statistic
satisÞes GDP.

Theorem 1. DeÞne the Gaussian mechanism that operates on a statistic& as M (S) = &(S) + ' ,
where ' % N(0, sens(&)2/µ 2). Then, M is µ-GDP.

Proof of Theorem 1. Recognizing thatM (S), M (S") are normally distributed with means &(S), &(S"),
respectively, and common variance( 2 = sens(&)2/µ 2, we get

T
�
M (S), M (S")

�
= T

�
N (&(S), ( 2), N (&(S"), ( 2)

�
= G|✓(S)# ✓(S#)|/�.

By the deÞnition of sensitivity, |&(S) # &(S")|/( " sens(&)/( = µ. Therefore, we get

T
�
M (S), M (S")

�
= G|✓(S)# ✓(S#)|/� ! Gµ.

This completes the proof.

As implied by the proof above, GDP o!ers the tightest possible privacy bound of the Gaussian
mechanism. More precisely, the Gaussian mechanism in Theorem 1 satisÞes

Gµ(#) = inf
neighboring S,S#

T
�
M (S), M (S")

�
(#), (6)

where the inÞmum is (asymptotically) achieved at the two neighboring datasets such that|&(S) #
&(S")| = sens(&) irrespective of the type I error #. As such, the characterization by GDP is precise
in the pointwise sense. In contrast, the right-hand side of (6) in general is not necessarily a convex
function of # and, in such case, is not a trade-o! function according to Proposition 1. This nice
property of Gaussian mechanism is related to the log-concavity of Gaussian distributions. See
Proposition 9 for a detailed treatment of log-concave distributions.

2.3 Post-Processing and the Informativeness of f -DP

Intuitively, a data analyst cannot make a statistical analysis more disclosive only by processing the
output of the mechanism M . This is called the post-processing property, a natural requirement
that any notion of privacy, including our deÞnition of f -DP, should satisfy.

To formalize this point for f -DP, denote by Proc : Y $ Z a (randomized) algorithm that maps
the input M (S) ! Y to some spaceZ , yielding a new mechanism that we denote by Proc&M . The
following result conÞrms the post-processing property off -DP.

9



Proposition 4. If a mechanism M is f -DP, then its post-processingProc &M is also f -DP.

Proposition 4 is a consequence of the following lemma. Let Proc(P) be the probability distri-
bution of Proc() ) with ) drawn from P. DeÞne Proc(Q) likewise.

lemma 1. For any two distributions P and Q, we haveT
�
Proc(P), Proc(Q)

�
! T(P, Q).

This lemma means that post-processed distributions can only become more di"cult to tell apart
than the original distributions from the perspective of trade-o! functions. While the same property
holds for many divergence based measures of indistinguishability such as the R«enyi divergences8

used by the concentrated di!erential privacy family of deÞnitions [DR16, BS16, Mir17, BDRS18], a
consequence of the following theorem is that trade-o! functions o!er the most informative measure
among all. This remarkable inverse of Lemma 1 is due to Blackwell (see also Theorem 2.5 in
[KOV17]).

Theorem 2 ([Bla50], Theorem 10). Let P, Q be probability distributions on Y and P", Q" be prob-
ability distributions on Z . The following two statements are equivalent:

(a) T(P, Q) " T(P", Q").

(b) There exists a randomized algorithmProc : Y $ Z such that Proc(P) = P", Proc(Q) = Q".

To appreciate the implication of this theorem, we begin by observing that post-processing
induces an order9 on pairs of distributions, which is called the Blackwell order (see, e.g., [Rag11]).
SpeciÞcally, if the above condition (b) holds, then we write (P, Q) ' Blackwell (P ", Q") and interpret
this as Ò(P, Q) is easier to distinguish than (P", Q") in the Blackwell senseÓ. Similarly, when
T(P, Q) " T(P", Q"), we write (P, Q) ' tradeo! (P ", Q") and interpret this as Ò(P, Q) is easier to
distinguish than (P", Q") in the testing senseÓ. In general, any privacy measure used in deÞning a
privacy notion induces an order' on pairs of distributions. Assuming the post-processing property
for the privacy notion, the induced order ' must be consistent with ' Blackwell . Concretely, we denote
by Ineq(' ) = {(P, Q; P", Q") : (P, Q) ' (P ", Q")} the set of all comparable pairs of the order' . As
is clear, a privacy notion satisÞes the post-processing property if and only if the induced order'
satisÞes Ineq(' ) ( Ineq(' Blackwell ).

Therefore, for any reasonable privacy notion, the set Ineq(' ) must be large enough to contain
Ineq(' Blackwell ). However, it is also desirable to have a not too large Ineq(' ). For example, consider
the privacy notion based on a trivial divergenceD0 with D0(P) Q) * 0 for any P, Q. Note that
Ineq(' D0) is the largest possible and, meanwhile, it is not informative at all in terms of measuring
the indistinguishability of two distributions.

The argument above suggests that going from the ÒminimalÓ order Ineq(' Blackwell ) to the Òmax-
imalÓ order Ineq(' D0) would lead to information loss. Remarkably, f -DP is the most informa-
tive di!erential privacy notion from this perspective because its induced order ' tradeo! satisÞes
Ineq(' tradeo! ) = Ineq( ' Blackwell ). In stark contrast, this is not true for the order induced by other
popular privacy notions such as R«enyi di!erential privacy and (!, " )-DP. We prove this claim in
Appendix B and further justify the informativeness of f -DP by providing general tools that can
losslessly convertf -DP guarantees into divergence based privacy guarantees.

8See Appendix B for its deÞnition and its relationship with trade-o! functions.
9This is in general not a partial order.
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2.4 A Primal-Dual Perspective

In this subsection, we show thatf -DP is equivalent to an inÞnite collection of (!, " )-DP guarantees
via the convex conjugate of the trade-o! function. As a consequence of this, we can viewf -DP
as the primal privacy representation and, accordingly, its dual representation is the collection of
(!, " )-DP guarantees. Taking this powerful viewpoint, many results from the large body of (!, " )-DP
work can be carried over tof -DP in a seamless fashion. In particular, this primal-dual perspective
is crucial to our analysis of Òprivacy ampliÞcation by subsamplingÓ in Section 4. All proofs are
deferred to Appendix A.

First, we present the result that converts a collection of (!, " )-DP guarantees into an f -DP
guarantee. This result is self-evidence and its proof is, therefore, omitted.

Proposition 5 (Dual to Primal) . Let I be an arbitrary index set such that eachi ! I is associated
with ! i ! [0, + ) and " i ! [0, 1]. A mechanism is (! i, " i)-DP for all i ! I if and only if it is f -DP
with

f = sup
i$ I

f "i ,�i .

This proposition follows easily from the equivalence of (!, " )-DP and f ",�-DP. We remark that
the function f constructed above remains a symmetric trade-o! function.

The more interesting direction is to convert f -DP into a collection of (!, " )-DP guarantees.
Recall that the convex conjugate of a functiong deÞned on (#+ , + ) is deÞned as

g! (y) = sup
#% <x<%

yx # g(x). (7)

To deÞne the conjugate of a trade-o! function f , we extend its domain by setting f (x) = + for
x < 0 and x > 1. With this adjustment, the supremum is e!ectively taken over 0 " x " 1.

Proposition 6 (Primal to Dual) . For a symmetric trade-o! function f , a mechanism isf -DP if
and only if it is

�
!, " (! )

�
-DP for all ! ! 0 with " (! ) = 1 + f ! (# e").

For example, taking f = Gµ, the following corollary provides a lossless conversion from GDP
to a collection of (!, " )-DP guarantees. This conversion is exact and, therefore, any other (!, " )-DP
guarantee derived for the Gaussian mechanism is implied by this corollary. See Figure 4 for an
illustration of this result.

Corollary 1. A mechanism is µ-GDP if and only if it is
�
!, " (! )

�
-DP for all ! ! 0, where

" (! ) = #
⇣

#
!
µ

+
µ
2

⌘
# e"#

⇣
#

!
µ

#
µ
2

⌘
.

This corollary has appeared earlier in [BW18]. Along this direction, [BBG18] further proposed
Òprivacy proÞleÓ, which in essence corresponds to an inÞnite collection of (!, " ). The notion of
privacy proÞle mainly serves as an analytical tool in [BBG18].

The primal-dual perspective provides a useful tool through which we can bridge the two privacy
deÞnitions. In some cases, it is easier to work withf -DP by leveraging the interpretation and
informativeness of trade-o! functions, as seen from the development of composition theorems for
f -DP in Section 3. Meanwhile, (!, " )-DP is more convenient to work with in the cases where
the lower complexity of two parameters !, " is helpful, for example, in the proof of the privacy
ampliÞcation by subsampling theorem forf -DP. In short, our approach in Section 4 is to Þrst work
in the dual world and use existing subsampling theorems for (!, " )-DP, and then convert the results
back to f -DP using a slightly more advanced version of Proposition 6.
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Figure 4: Each (!, " (! ))-DP guarantee corresponds to two supporting linear functions (symmetric
to each other) to the trade-o! function describing the complete f -DP guarantee. In general, char-
acterizing a privacy guarantee using only a subset of (!, " )-DP guarantees (for example, only those
with small " ) would result in information loss.

2.5 Group Privacy

The notion of f -DP can be extended to address privacy of agroup of individuals, and a question
of interest is to quantify how privacy degrades as the group size grows. To set up the notation,
we say that two datasetsS, S" are k-neighbors (wherek ! 2 is an integer) if there exist datasets
S = S0, S1, . . . , Sk = S" such that Si and Si+1 are neighboring or identical for all i = 0 , . . . , k # 1.
Equivalently, S, S" are k-neighbors if they di!er by at most k individuals. Accordingly, a mechanism
M is said to bef -DP for groups of sizek if

T
�
M (S), M (S")

�
! f

for all k-neighborsS and S".
In the following theorem, we useh&k to denote the k-fold iterative composition of a function h.

For example, h&1 = h and h&2(x) = h(h(x)).

Theorem 3. If a mechanism is f -DP, then it is
⇥
1 # (1 # f )&k

⇤
-DP for groups of size k. In

particular, if a mechanism is µ-GDP, then it is kµ-GDP for groups of sizek.

For completeness, 1# (1 # f )&k is a trade-o! function and, moreover, remains symmetric if
f is symmetric. These two facts and Theorem 3 are proved in Appendix A. As revealed in the
proof, the privacy bound 1 # (1 # f )&k in general cannot be improved, thereby showing that the
group operation in the f -DP framework is closed and tight. In addition, it is easy to see that
1# (1 # f )&k " 1# (1 # f )&(k# 1) by recognizing that the trade-o! function f satisÞes 1# f (x) ! x.
This is consistent with the intuition that detecting changes in groups of k individuals becomes
easier as the group size increases.
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As an interesting consequence of Theorem 3, the group privacy of! -DP in the limit corresponds
to the trade-o! function of two Laplace distributions. Recall that the density of Lap( µ, b) is
1
2be#| x# µ|/b.

Proposition 7. Fix µ ! 0 and set ! = µ/k . As k $ + , we have

1 # (1 # f ",0)&k $ T
�
Lap(0, 1), Lap(µ, 1)

�
.

The convergence is uniform over[0, 1].

Two remarks are in order. First, T
�
Lap(0, 1), Lap(µ, 1)

�
is not equal to f ",� for any !, " and,

therefore, (!, " )-DP is not expressive enough to measure privacy under the group operation. Second,
the approximation in this theorem is very accurate even for smallk. For example, for µ = 1 , k = 4,
the function 1 # (1 # f ",0)&k is within 0.005 of T

�
Lap(0, 1), Lap(µ, 1)

�
uniformly over [0, 1]. The

proof of Proposition 7 is deferred to Appendix A.

3 Composition and Limit Theorems

Imagine that an analyst performs a sequence of analyses on a private dataset, in which each analysis
is informed by prior analyses on the same dataset. Provided that every analysis alone is private,
the question is whether all analyses collectively are private, and if so, how the privacy degrades as
the number of analyses increases, namely under composition. It is essential for a notion of privacy
to gracefully handle composition, without which the privacy analysis of complex algorithms would
be almost impossible.

Now, we describe the composition of two mechanisms. For simplicity, this section writesX
for the space of datasets and abuse notation by usingn to refer to the number of mechanisms in
composition10. Let M 1 : X $ Y1 be the Þrst mechanism andM 2 : X , Y1 $ Y2 be the second
mechanism. In brief, M 2 takes as input the output of the Þrst mechanismM 1 in addition to the
dataset. With the two mechanisms in place, the joint mechanismM : X $ Y1 , Y2 is deÞned as

M (S) = ( y1, M 2(S, y1)) , (8)

wherey1 = M 1(S).11 Roughly speaking, the distribution of M (S) is constructed from the marginal
distribution of M 1(S) on Y1 and the conditional distribution of M 2(S, y1) on Y2 given M 1(S) = y1.
The composition of more than two mechanisms follows recursively. In general, given a sequence of
mechanismsM i : X , Y1 , · · · , Yi# 1 $ Yi for i = 1 , 2, . . . , n, we can recursively deÞne the joint
mechanism as their composition:

M : X $ Y1 , · · · , Yn.

Put di!erently, M (S) can be interpreted as the trajectory of a Markov chain whose initial distri-
bution is given by M 1(S) and the transition kernel M i(S, · · · ) at each step.

Using the language above, the goal of this section is to relate the privacy loss ofM to that of
the n mechanismsM 1, . . . , M n in the f -DP framework. In short, Section 3.1 develops a general

10As will be clear later, the use of n is consistent with the literature on central limit theorems.
11Alternatively, we can write M (S) = ( M1(S), M2(S, M1(S))), in which case it is necessary to specify that M1

should be run only once in this expression.
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composition theorem for f -DP. In Sections 3.2, we identify a central limit theorem phenomenon of
composition in the f -DP framework, which can be used as an approximation tool, just like we use
the central limit theorem for random variables. This approximation is extended to and improved
for (!, " )-DP in Section 3.3.

3.1 A General Composition Theorem

The main thrust of this subsection is to demonstrate that the composition of private mechanisms
is closed and tight12 in the f -DP framework. This result is formally stated in Theorem 4, which
shows that the composed mechanism remainsf -DP with the trade-o! function taking the form of
a certain product. To deÞne the product, consider two trade-o! functions f and g that are given
as f = T(P, Q) and g = T(P", Q") for some probability distributions P, P", Q, Q".

DeÞnition 5. The tensor product of two trade-o! functions f = T(P, Q) and g = T(P", Q") is
deÞned as

f - g := T(P , P", Q , Q").

Throughout the paper, write f - g(#) for ( f - g)(#), and denote by f ' n the n-fold tensor
product of f . The well-deÞnedness off ' n rests on the associativity of the tensor product, which
we will soon illustrate.

By deÞnition, f - g is also a trade-o! function. Nevertheless, it remains to be shown that the
tensor product is well-deÞned: that is, the deÞnition is independent of the choice of distributions
used to represent a trade-o! function. More precisely, assumingf = T(P, Q) = T( ÷P, ÷Q) for some
distributions ÷P, ÷Q, we need to ensure that

T(P , P", Q , Q") = T( ÷P , P", ÷Q , Q").

We defer the proof of this intuitive fact to Appendix C. Below we list some other useful properties13

of the tensor product of trade-o! functions, whose proofs are placed in Appendix D.

1. The product - is commutative and associative.

2. If g1 ! g2, then f - g1 ! f - g2.

3. f - Id = Id - f = f , where the identity trade-o! function Id( x) = 1 # x for 0 " x " 1.

4. (f - g)# 1 = f # 1 - g# 1. See the deÞnition of inverse in (3).

Note that Id is the trade-o! function of two identical distributions. Property 4 implies that when
f, g are symmetric trade-o! functions, their tensor product f - g is also symmetric.

Now we state the main theorem of this subsection. Its proof is given in Appendix C.

Theorem 4. Let M i(·, y1, · · · , yi# 1) be f i-DP for all y1 ! Y1, . . . , yi# 1 ! Yi# 1. Then the n-fold
composed mechanismM : X $ Y1 , · · · , Yn is f 1 - · · · - f n-DP.

12Section 2.5 shows that f -DP is Òclosed and tightÓ in a similar sense, in terms of the guarantees of group privacy.
13These properties make the class of trade-o! functions a commutative monoid. Informally, a monoid is a group

without the inverse operator.
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This theorem shows that the composition of mechanisms remainsf -DP or, put di!erently,
composition is closed in thef -DP framework. Moreover, the privacy bound f 1 - · · · - f n in
Theorem 4 is tight in the sense that it cannot be improved in general. To see this point, consider
the case where the second mechanism completely ignores the output of the Þrst mechanism. In
that case, the composition obeys

T
�
M (S), M (S")

�
= T

�
M 1(S) , M 2(S), M 1(S") , M 2(S")

�

= T
�
M 1(S), M 1(S")

�
- T

�
M 2(S), M 2(S")

�
.

Next, taking neighboring datasets such that T
�
M 1(S), M 1(S")

�
= f 1 and T

�
M 2(S), M 2(S")

�
=

f 2, one concludes thatf 1 - f 2 is the tightest possible bound on the two-fold composition. For
comparison, the advanced composition theorem for (!, " )-DP does not admit a single pair of optimal
parameters !, " [DRV10]. In particular, no pair of !, " can exactly capture the privacy of the
composition of (!, " )-DP mechanisms. See Section 3.3 and Figure 5 for more elaboration.

In the case of GDP, composition enjoys a simple and convenient formulation due to the identity

Gµ1 - Gµ2 - · · · - Gµn = Gµ,

where µ =
p

µ2
1 + · · · + µ2

n. This formula is due to the rotational invariance of Gaussian distri-
butions with identity covariance. We provide the proof in Appendix D. The following corollary
formally summarizes this Þnding.

Corollary 2. The n-fold composition of µi-GDP mechanisms is
p

µ2
1 + · · · + µ2

n-GDP.

On a related note, the pioneering work [KOV17] is the Þrst to take the hypothesis testing
viewpoint in the study of privacy composition and to use BlackwellÕs theorem as an analytic tool
therein. In particular, the authors o!ered a composition theorem for (!, " )-DP that improves on
the advanced composition theorem [DRV10]. Following this work, [MV16] provided a self-contained
proof by essentially proving the Ò(!, " ) special caseÓ of BlackwellÕs theorem. In contrast, our novel
proof of Theorem 4 only makes use of the NeymanÐPearson lemma, thereby circumventing the
heavy machinery of BlackwellÕs theorem. This simple proof better illuminates the essence of the
composition theorem.

3.2 Central Limit Theorems for Composition

In this subsection, we identify a central limit theorem type phenomenon of composition in thef -DP
framework. Our main results (Theorem 5 and Theorem 6), roughly speaking, show that trade-o!
functions corresponding to small privacy leakage accumulate toGµ for someµ under composition.
Equivalently, the privacy of the composition of many Òvery privateÓ mechanisms is best measured
by GDP in the limit. This identiÞes GDP as the focal privacy deÞnition among the family of f -DP
privacy guarantees, including (!, " )-DP. More precisely, all privacy deÞnitions that are based on a
hypothesis testing formulation of ÒindistinguishabilityÓ converge to the guarantees of GDP in the
limit of composition. We remark that [SMM18] proved a conceptually related central limit theorem
for random variables corresponding to the privacy loss. This theorem is used to reason about the
non-adaptive composition for (!, " )-DP. In contrast, our central limit theorem is concerned with the
optimal hypothesis testing trade-o! functions for the composition theorem. Moreover, our theorem
is applicable in the setting of composition, where each mechanism is informed by prior interactions
with the same database.
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From a computational viewpoint, these limit theorems yield an e"cient method of approximat-
ing the composition of generalf -DP mechanisms. This is very appealing for analyzing the privacy
properties of algorithms that are comprised of many building blocks in a sequence. For compari-
son, the exact computation of privacy guarantees under composition can be computationally hard
[MV16] and, thus, tractable approximations are important. Using our central limit theorems, the
computation of the exact overall privacy guaranteef 1 - · · · - f n in Theorem 4 can be reduced to the
evaluation of a single mean parameterµ in a GDP guarantee. We give an exemplary application
of this powerful technique in Section 5.

Explicitly, the mean parameter µ in the approximation depends on certain functionals of the
trade-o! functions 14:

kl( f ) := #
Z 1

0
log |f "(x)| dx, * 2(f ) :=

Z 1

0
log2 |f "(x)| dx

* 3(f ) :=
Z 1

0

�� log |f "(x)|
��3 dx, ø* 3(f ) :=

Z 1

0

�� log |f "(x)| + kl( f )
��3 dx.

All of these functionals take values in [0, + + ], and the last is deÞned forf such that kl( f ) < + .
In essence, these functionals are calculating moments of the log-likelihood ratio ofP and Q such
that f = T(P, Q). In particular, all of these functionals are 0 if f (x) = Id( x) = 1 # x, which
corresponds to zero privacy leakage. As its name suggests, kl(f ) is the KullbackÐLeibler (KL)
divergence ofP and Q and, therefore, kl(f ) ! 0. Detailed elaboration on these functionals is
deferred to Appendix D.

In the following theorem, kl denotes the vector
�
kl( f 1), . . . , kl( f n)

�
and ! 2, ! 3, ø! 3 are deÞned

similarly; in addition, ) · ) 1 and ) · ) 2 are the +1 and +2 norms, respectively. Its proof can be found
in Appendix D

Theorem 5. Let f 1, . . . , f n be symmetric trade-o! functions such that* 3(f i) < + for all 1 " i " n.
Denote

µ :=
2) kl ) 1p

) ! 2) 1 # ) kl ) 2
2

and , :=
0.56) ø! 3) 1

�
) ! 2) 1 # ) kl ) 2

2

�3/2

and assume, < 1
2. Then, for all # ! [,, 1 # , ], we have15

Gµ(# + , ) # , " f 1 - f 2 - · · · - f n(#) " Gµ(# # , ) + ,. (9)

From a technical viewpoint, Theorem 5 can be thought of as a BerryÐEsseen type central limit
theorem. Loosely speaking, the lower bound in (9) shows that the composition off i-DP mechanisms
for i = 1 , . . . , n is approximately µ-GDP and, in addition, the upper bound demonstrates that the
tightness of this approximation is speciÞed by, . In the case where all f i are equal to some
f "= Id, the theorem reveals that the composition becomes blatantly non-private asn $ + because
µ .

/
n $ + . More interesting applications of the theorem, however, are cases where eachf i

is close to the Òperfect privacyÓ trade-o! function Id such that collectivelyµ is convergent and,
vanishes asn $ + (see the example in Section 5). For completeness, the condition* 3(f i) < +
(which implies that the other three functionals are also Þnite) for the use of this theorem excludes

14Although the trade-o! function satisÞes f#(x) " 0 almost everywhere on [0, 1], we prefer to use |f#(x)| rather
than ! f#(x) for aesthetic reasons.

15We can extend Gµ to be 1 in (!" , 0) and 0 in (1, + " ) so that the assumption that ↵ # [�, 1! �] can be removed.

16



the case wheref i(0) < 1, in particular, f ",� in ( !, " )-DP with " > 0. We introduce an easy and
general technique in Section 3.3 to deal with this issue.

Next, we present an asymptotic version of Theorem 5 for composition off -DP mechanisms.
In analog to classical central limit theorems, below we consider a triangular array of mechanisms
{M n1, . . . , M nn}%

n=1 , whereM ni is f ni-DP for 1 " i " n. As with Theorem 5, the proof of Theorem 6
is relegated to Appendix D.

Theorem 6. Let {f ni : 1 " i " n}%
n=1 be a triangular array of symmetric trade-o! functions and

assume the following limits for some constantsK ! 0 and s > 0 as n $ + :

1.
Pn

i=1 kl( f ni) $ K ;

2. max1" i" n kl( f ni) $ 0;

3.
Pn

i=1 * 2(f ni) $ s2;

4.
Pn

i=1 * 3(f ni) $ 0.

Then, we have
lim

n(%
f n1 - f n2 - · · · - f nn(#) = G2K/s(#)

uniformly for all # ! [0, 1].

Taken together, this theorem and Theorem 4 amount to saying that the compositionM n1- . . .-
M nn is asymptotically 2K/s -GDP. In fact, this asymptotic version is a consequence of Theorem 5
as one can showµ $ 2K/s and , $ 0 for the triangular array of symmetric trade-o! functions.
This central limit theorem implies that GDP is the only parameterized family of trade-o! functions
that can faithfully represent the e!ects of composition. In contrast, neither ! - nor (!, " )-DP can
losslessly be tracked under compositionÑthe parameterized family of functionsf ",� cannot represent
the trade-o! function that results from the limit under composition.

The conditions for use of this theorem are reminiscent of LindebergÕs condition in the central
limit theorem for independent random variables. The proper scaling of the trade-o! functions
is that both kl( f ni) and * 2(f ni) are of order O(1/n ) for most 1 " i " n. As a consequence,
the cumulative e!ects of the moment functionals are bounded. Furthermore, as with LindebergÕs
condition, the second condition in Theorem 6 requires that no single mechanism has a signiÞcant
contribution to the composition in the limit.

In passing, we remark that K and s satisfy the relationship s =
/

2K in all examples of
the application of Theorem 6 in this paper, including Theorem 7 and Theorem 11 as well as
their corollaries. As such, the composition is asymptoticallys-GDP. A proof of this interesting
observation or the construction of a counterexample is left for future work.

3.3 Composition of (", �)-DP: Beating BerryÐEsseen

Now, we extend central limit theorems to (!, " )-DP. As shown by Proposition 3, (!, " )-DP is equiv-
alent to f ",�-DP and, therefore, it su"ces to approximate the trade-o! function f "1,�1 - · · · - f "n ,�n

by making use of the composition theorem forf -DP mechanisms. As pointed out in Section 3.2,
however, the moment conditions required in the two central limit theorems (Theorems 5 and 6)
exclude the case where" i > 0.
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To overcome the di"culty caused by a nonzero " , we start by observing the useful fact that

f ",� = f ",0 - f 0,�. (10)

This decomposition, along with the commutative and associative properties of the tensor product,
shows

f "1,�1 - · · · - f "n ,�n =
�
f "1,0 - · · · - f "n ,0

�
-
�
f 0,�1 - · · · - f 0,�n

�
.

This identity allows us to work on the ! part and " part separately. In short, the ! part f "1,0 -
· · · - f "n ,0 now can be approximated byG/

"21+ ááá+ "2n
by invoking Theorem 6. For the " part, we

can iteratively apply the rule
f 0,�1 - f 0,�2 = f 0,1# (1# �1)(1# �2) (11)

to obtain f 0,�1 - · · · - f 0,�n = f 0,1# (1# �1)(1# �2)ááá(1# �n ) . This rule is best seen via the interesting fact
that f 0,� is the trade-o! function of shifted uniform distributions T

�
U[0, 1], U[", 1 + " ]

�
.

Now, a central limit theorem for ( !, " )-DP is just a stoneÕs throw away. In what follows, the
privacy parameters ! and " are arranged in a triangular array {(! ni, "ni) : 1 " i " n}%

n=1 .

Theorem 7. Assume
nX

i=1

! 2
ni $ µ2, max

1" i" n
! ni $ 0,

nX

i=1

"ni $ ", max
1" i" n

"ni $ 0

for some nonnegative constantsµ, " as n $ + . Then, we have

f "n 1,�n 1 - · · · - f "nn ,�nn $ Gµ - f 0,1# e" !

uniformly over [0, 1] as n $ + .

The proof of this theorem is provided in Appendix D. The assumptions concerning{"ni} give
rise to 1# (1 # "n1)(1 # "n2) · · · (1 # "nn) $ 1# e# �. In general, tensoring with f 0,� is equivalent to
scaling the graph of the trade-o! function f toward the origin by a factor of 1 # " . This property
is speciÞed by the following formula, and we leave its proof to Appendix D:

f - f 0,�(#) =
⇢

(1 # " ) · f ( ↵
1# � ), 0 " # " 1 # "

0, 1 # " " # " 1.
(12)

In particular, f - f 0,� is symmetric if f is symmetric. Note that (10) and (11) can be deduced by
the formula above.

This theorem interprets the privacy level of the composition using Gaussian and uniform dis-
tributions. Explicitly, the theorem demonstrates that, based on the released information of the
composed mechanism, distinguishing between any neighboring datasets is at least as hard as dis-
tinguishing between the following two bivariate distributions:

N (0, 1) , U[0, 1] versusN (µ, 1) , U[1 # e# �, 2 # e# �].

We note that for small " , e# � 0 1 # " . So U[1 # e# �, 2 # e# �] 0 U[", 1 + " ].
This approximation of the tensor product f "n 1,�n 1 - · · · - f "nn ,�nn using simple distributions is

important from the viewpoint of computational complexity. Murtagh and Vadhan [MV16] showed
that, given a collection of {(! i, " i)}n

i=1 , Þnding the smallest! such that f ",� " f "1,�1 - · · · - f "n ,�n is
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#P-hard 16 for any " . From the dual perspective (see Section 2.4), this negative result is equivalent
to the #P-hardness of evaluating the convex conjugate

�
f "1,�1 - · · · - f "n ,�n

�! at any point. For
completeness, we remark that [MV16] provided an FPTAS17 to approximately Þnd the smallest
! in O(n3) time for a single " . In comparison, Theorem 7 o!ers a global approximation of the
tensor product in O(n) time using a closed-form expression, subsequently enabling an analytical
approximation of the smallest ! for each " .
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10 Composition
GDP from CLT
Optimal DP bound

Figure 5: Left: Tensoring with f 0,� scales the graph towards the origin by a factor of 1# " .
Right: 10-fold composition of (1/

/
10, 0)-DP mechanisms, that is, f ' n

",0 with n = 10, ! = 1 /
/

n.
The dashed curve corresponds to! = 2 .89, " = 0 .001. These values are obtained by Þrst setting
" = 0 .001 and Þnding the smallest! such that the composition is (!, " )-DP. Note that the central
limit theorem approximation to the true trade-o! curve is almost perfect, whereas the tightest
possible approximation via (!, " )-DP is substantially looser.

That being said, Theorem 7 remains silent on the approximation error in applications with
a moderately large number of (!, " )-DP mechanisms. Alternatively, we can apply Theorem 5 to
obtain a non-asymptotic normal approximation to f "1,0 - · · · - f "n ,0 and use , to specify the
approximation error. It can be shown that , = O(1/

/
n) under mild conditions (Corollary 9).

This bound, however, is not sharp enough for tight privacy guarantees ifn is not too large (note
that 1/

/
n 0 0.14 if n = 50, for which exact computation is already challenging, if possible at all).

Surprisingly, the following theorem establishes aO(1/n ) bound, thereby ÒbeatingÓ the classical
BerryÐEsseen bound. The proof is given in Appendix D.

Theorem 8. Fix µ > 0 and let ! = µ/
/

n. There is a constant c > 0 that only depends onµ
satisfying

Gµ
�
# + c

n

�
# c

n " f ' n
",0 (#) " Gµ

�
# # c

n

�
+ c

n

for all n ! 1 and c/n " # " 1 # c/n .

As with Theorem 7, this theorem can be extended to approximate DP (" "= 0) by making use
of the decomposition (10). Our simulation studies suggest thatc 0 0.1 for µ = 1, which is best

16#P is a complexity class that is Òeven harder thanÓ NP (i.e. a polynomial time algorithm for any #P-hard
problem would imply P=NP). See, e.g., Ch. 9. of [AB09].

17An approximation algorithm is called a fully polynomial-time approximation scheme (FPTAS) if its running time
is polynomial in both the input size and the inverse of the relative approximation error. See, e.g., Ch. 8. of [Vaz13].
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illustrated in the right panel of Figure 5. Despite a fairly small n = 10, the di!erence between
G1 and its target f ' n

",0 is less than 0.013 in the pointwise sense. For completeness, it is worthwhile
mentioning that a better approximation can be obtained by using the Edgeworth expansion in
place of the central limit theorem [ZDLS20]. Interestingly, our numerical evidence suggests the
same O(1/n ) rate under inhomogeneous composition, provided that! 1, . . . , ! n are roughly the
same size. A formal proof, or even a quantitative statement of this observation, constitutes an
interesting problem for future investigation.

In closing this section, we highlight some novelties in the proof of Theorem 8. Denotingp" =
1

1+e " and q" = e"

1+e " , [KOV17] presented a very useful expression (rephrased in our framework):

f ' n
",0 = T

�
B (n, p"), B (n, q")

�
,

where B (n, p) denotes the binomial distribution with n trials and success probabilityp. However,
directly approximating f ' n

",0 through these two binomial distributions is unlikely to yield an O(1/n )
bound because the BerryÐEsseen bound is rate-optimal for binomial distributions. Our analysis,
instead, rests crucially on a certain smoothing e!ect that comes for free in testing between the two
distributions. It is analogous to the continuity correction for normal approximations to binomial
probabilities. See the technical details in Appendix D.

4 Amplifying Privacy by Subsampling

Subsampling is often used prior to a private mechanismM as a way toamplify privacy guarantees.
SpeciÞcally, we can construct a smaller dataset÷S by ßipping a fair coin for each individual in the
original dataset S to decide whether the individual is included in ÷S. This subsampling scheme
roughly shrinks the dataset by half and, therefore, we would expect that the induced mechanism
applied to ÷S is about twice as private as the original mechanismM . Intuitively speaking, this
privacy ampliÞcation is due to the fact that every individual enjoys perfect privacy if the individual
is not included in the resulting dataset ÷S, which happens with probability 50%.

The claim above was Þrst formalized in [KLN+ 11] for (!, " )-DP. Such a privacy ampliÞcation
property is, unfortunately, no longer true for the most natural previous relaxations of di!erential
privacy aimed at recovering precise compositions (like concentrated di!erential privacy (CDP)
[DR16, BS16]). Further modiÞcations such as truncated CDP [BDRS18] have been introduced
primarily to remedy this deÞciency of CDPÑbut at the cost of extra complexity in the deÞnition.
Other relaxations like R«enyi di!erential privacy [Mir17] can be shown to satisfy a form of privacy
ampliÞcation by subsampling, but both the analysis and the statement are complex [WBK18].

In this section, we show that these obstacles can be overcome by our hypothesis testing based re-
laxation of di!erential privacy. Explicitly, our main result is a simple, general, and easy-to-interpret
subsampling theorem forf -DP. Somewhat surprisingly, our theorem signiÞcantly improves on the
classical subsampling theorem for privacy ampliÞcation in the (!, " )-DP framework [Ull17]. Note
that this classical theorem continues to use (!, " )-DP to characterize the subsampled mechanism.
However, (!, " )-DP is simply not expressive enough to capture the ampliÞcation of privacy.

4.1 A Subsampling Theorem

Given an integer 1" m " n and a datasetS of n individuals, let Samplem(S) be a subset ofS that
is chosen uniformly at random among all them-sized subsets ofS. For a mechanismM deÞned on
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X m, we call M
�
Samplem(S)

�
the subsampled mechanism, which takes as input ann-sized dataset.

Formally, we useM &Samplem to denote this subsampled mechanism. To clear up any confusion,
note that intermediate result Samplem(S) is not released and, in particular, this is di!erent from
the composition in Section 3.

In brief, our main theorem shows that the privacy bound of the subsampled mechanism in the
f -DP framework is given by an operator acting on trade-o! functions. To introduce this operator,
write the convex combination f p := pf + (1 # p)Id for 0 " p " 1, where Id(x) = 1 # x. Note that
the trade-o! function f p is asymmetric in general.

DeÞnition 6. For any 0 " p " 1, deÞne the operatorCp acting on trade-o! functions as

Cp(f ) := min {f p, f # 1
p }!! .

We call Cp the p-sampling operator.

Above, the inversef # 1
p is deÞned in (3). The biconjugate min{f p, f # 1

p }!! is derived by applying
the conjugate as deÞned in (7) twice to min{f p, f # 1

p }. For the moment, take for granted the fact
that Cp(f ) is a symmetric trade-o! function.

Now, we present the main theorem of this section. Section 4.2 is devoted to proving this result.

Theorem 9. If M is f -DP on X m, then the subsampled mechanismM &Samplem is Cp(f )-DP
on X n, where the sampling ratiop = m

n .

Appreciating this theorem calls for a better understanding of the operator Cp. In e!ect, Cp

performs a two-step transformation: symmetrization (taking the minimum of f p and its inversef # 1
p )

and convexiÞcation (taking the largest convex lower envelope of min{f p, f # 1
p }). The convexiÞcation

step is seen from convex analysis that the biconjugateh!! of any function h is the greatest convex
lower bound of h. As such, Cp(f ) is convex and, with a bit more analysis, Proposition 1 ensures
that Cp(f ) is indeed a trade-o! function. As an aside, Cp(f ) " min{f p, f # 1

p } " f p. See Figure 6
for a graphical illustration.

Next, the following facts concerning thep-sampling operator qualitatively illustrate this privacy
ampliÞcation phenomenon.

1. If 0 " p " q " 1 andf is symmetric, we havef = C1(f ) " Cq(f ) " Cp(f ) " C0(f ) = Id. That
is, as the sampling ratio declines from 1 to 0, the privacy guarantee interpolates monotonically
between the original f and the perfect privacy guarantee Id. This monotonicity follows from
the fact that g ! h is equivalent to g# 1 ! h# 1 for any trade-o! functions g and h.

2. If two trade-o! functions f and g satisfy f ! g, then Cp(f ) ! Cp(g). This means that if a
mechanism is more private than the other, using the same sampling ratio, the subsampled
mechanism of the former remains more private than that of the latter, at least in terms of
lower bounds.

3. For any 0 " p " 1, Cp(Id) = Id. That is, perfect privacy remains perfect privacy with
subsampling.

Explicitly, we provide a formula to calculate Cp(f ) for a symmetric trade-o! function f . Letting
x! be the unique Þxed point off , that is f (x! ) = x! , we have

Cp(f )(x) =

8
<

:

f p(x), x ! [0, x! ]
x! + f p(x! ) # x, x ! [x! , f p(x! )]
f # 1

p (x), x ! [f p(x! ), 1].
(13)
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This expression is almost self-evident from the left panel of Figure 6. Nevertheless, a proof of
this formula is given in Appendix E. This formula, together with Theorem 9, allows us to get a
closed-form characterization of the privacy ampliÞcation for (!, " )-DP.

Corollary 3. If M is (!, " )-DP on X m, then the subsampled mechanismM &Samplem is Cp(f ",�)-
DP on X n, where

Cp(f ",�)(#) = max
⇢

f "#,�#(#), 1 # p" # p
e" # 1
e" + 1

# #
�

. (14)

Above, ! " = log(1 # p + pe"), " " = p", and p = m
n .

0 x� fp(x�) 1
0

x�

fp(x�)

1
f

fp

f�1
p

Cp(f)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
f�,�

f��,��

Cp(f�,�)

Figure 6: The action of Cp. Left panel: f = G1.8, p = 0 .35. Right panel: ! = 3 , " = 0 .1, p = 0 .2.
The subsampling theorem 9 results in a signiÞcantly tighter trade-o! function compared to the
classical theorem for (!, " )-DP.

For comparison, we now present the existing bound on the privacy ampliÞcation by subsampling
for (!, " )-DP. To be self-contained, Appendix E gives a proof of this result, which primarily follows
[Ull17] .

lemma 2 ([Ull17]) . If M is (!, " )-DP, then M &Samplem is (! ", " ")-DP with ! " and " " deÞned in
Corollary 3.

Using the language of thef -DP framework, Lemma 2 states that M &Samplem is f "#,�#-DP.
Corollary 3 improves on Lemma 2 because, as is clear from (14),Cp(f ",�) ! f "#,�#. The right
panel of Figure 6 illustrates Lemma 2 and our Corollary 3 for ! = 3 , " = 0 .1, and p = 0 .2. In
e!ect, the improvement is captured by the shaded triangle enclosed byCp(f ",�) and f "#,�#, revealing
that the minimal sum of type I and type II errors in distinguishing two neighboring datasets with
subsampling can be signiÞcantly lower than the prediction of Lemma 2. This gain is only made
possible by the ßexibility of trade-o! functions in the sense that Cp(f ",�) cannot be expressed within
the (!, " )-DP framework. The unavoidable loss in the (!, " )-DP representation of the subsampled
mechanism is compounded when analyzing the composition of many private mechanisms.

In the next subsection, we prove Theorem 9 by making use of Lemma 2. Its proof implies that
Theorem 9 holds for any subsampling scheme for which Lemma 2 is true. In particular, it holds for
the subsampling scheme described at the beginning of this section, that is, independent coin ßips
for every data item.
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4.2 Proof of the Subsampling Theorem

The proof strategy is as follows. First, we convert thef -DP guarantee into an inÞnite collection
of (!, " )-DP guarantees by taking a dual perspective that is enabled by Proposition 6. Next, by
applying the classical subsampling theorem (that is, Lemma 2) to these (!, " )-DP guarantees, we
conclude that the subsampled mechanism satisÞes a new inÞnite collection of (!, " )-DP guaran-
tees. Finally, Proposition 5 allows us to convert these new privacy guarantees back into an÷f -DP
guarantee, where ÷f can be shown to coincide withCp(f ).

Proof of Theorem 9. Provided that M is f -DP, from Proposition 6 it follows that M is
�
!, " (! )

�
-

DP with " (! ) = 1 + f ! (# e") for all ! ! 0. Making use of Lemma 2, the subsampled mechanism
M &Samplem satisÞes the following collection of (! ", " ")-DP guarantees for all ! ! 0:

! " = log(1 # p + pe"), " " = p
�
1 + f ! (# e")

�
.

Eliminating the variable ! from the two parametric equations above, we can relate! " to " " using

" " = 1 + f !
p (# e"#

), (15)

which is proved in Appendix E. The remainder of the proof is devoted to showing that (! ", " ")-DP
guarantees for all ! " ! 0 is equivalent to the Cp(f )-DP guarantee.

At Þrst glance, (15) seems to enable the use of Proposition 6. Unfortunately, that would be
invalid becausef p is asymmetric. To this end, we need to extend Proposition 6 to general trade-
o! functions. To avoid conßicting notation, let g be a generic trade-o! function, not necessarily
symmetric. Denote by øx be the smallest point such that g"(x) = # 1, that is, øx = inf {x ! [0, 1] :
g"(x) = # 1}.18 As a special instance of Proposition 17 in the appendix, the following result serves
our purpose.

Proposition 8. If g(øx) ! øx and a mechanismM is (!, 1 + g! (# e")) -DP for all ! ! 0, then M is
min{g, g# 1}!! -DP.

The proof of the present theorem would be complete if Proposition 8 can be applied to the
collection of privacy guarantees in (15)forf p. To use Proposition 8, it su"ces to verify the condition
f p(øx) ! øx where øx is the smallest point such that f "

p(x) = # 1. Let x! be the (unique) Þxed point
of f . To this end, we collect a few simple facts:

• First, f "(x! ) = # 1. This is because the graph off is symmetric with respect to the 45& line
passing through the origin.

• Second, øx " x! . This is becausef "
p(x! ) = pf "(x! ) + (1 # p)Id "(x! ) = # 1 and, by deÞnition, øx

can only be smaller.

With these facts in place, we get

f p(øx) ! f p(x! ) ! f (x! ) = x! ! øx

by recognizing that f p is decreasing andf p ! f . Hence, the proof is complete.

18For simplicity, the proof assumes di!erentiable trade-o! functions. If g is not di!erentiable, use the deÞnition
øx = inf { x # [0, 1] : ! 1 # @g(x)} instead. This adjustment applies to other parts of the proof.
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5 Application: Privacy Analysis of Stochastic Gradient Descent

One of the most important algorithms in machine learning and optimization is stochastic gradient
descent (SGD). This is an iterative optimization method used to train a wide variety of models, for
example, deep neural networks. SGD has also served as an important benchmark in the development
of private optimization: as an iterative algorithm, the tightness of its privacy analysis crucially
depends on the tightness with which composition can be accounted for. The analysis also crucially
requires a privacy ampliÞcation by subsampling argument.

The Þrst asymptotically optimal analysis of di!erentially private SGD was given by [BST14].
Because of the inherent limits of (!, " )-DP, however, this analysis stops short of giving meaningful
privacy bounds for realistically sized datasets. This is in part what motivated the development
of divergence based relaxations of di!erential privacy. Unfortunately, these relaxations cannot be
directly applied to the analysis of SGD due to the lack of a privacy ampliÞcation by subsampling
theorem. In response, Abadi et al. [ACG+ 16] circumvented this challenge by developing the mo-
ments accountantÑa numeric technique tailored speciÞcally to repeated application of subsampling,
followed by a Gaussian mechanismÑto give privacy bounds for SGD that are strong enough to give
non-trivial guarantees when training deep neural networks on real datasets. But this analysis is
ad-hoc in the sense that it uses a tool designed speciÞcally for the analysis of SGD.

In this section, we use the general tools we have developed so far to give a simple and improved
analysis of the privacy of SGD. In particular, the analysis rests crucially on the compositional and
subsampling properties off -DP.

5.1 Stochastic Gradient Descent and Its Privacy Analysis

Letting S = ( x1, . . . , xn) denote the dataset, consider minimizing the empirical risk

1
n

nX

i=1

L (&, xi)

over the parameter &, where L(&, xi) denotes a loss function. At iteration t, a set I t of sizem is
selected uniformly at random from {1, 2, . . . , n}. Taking learning rate - t, SGD seeks to minimize
the empirical risk by running

&t+1 = &t # - t · 1
m

X

i$ It

1 ✓L(&t, xi)

from an initial point &0.
A private variant of this optimization algorithm is described in Algorithm 1. We refer to

this private algorithm as NoisySGD, which can be viewed as a repeated composition of Gaussian
mechanisms operating on subsampled datasets. To analyze the privacy ofNoisySGD, we start by
building up the privacy properties from the inner loop. Let V be the vector space where parameter
& lives in and M : X m , V $ V be the mechanism that executes lines 4-7 in Algorithm 1. Herem
denotes the batch size. In e!ect, whatM does in iteration t can be expressed as

M (SIt , &t) = &t+1 ,

where SIt is the subset of the datasetS indexed by I t. Next, we turn to the analysis of the
subsampling step (line 3) and usefM to denote its composition with M , that is, fM = M &Samplem.
Taken together, fM executes lines 3-7 and maps fromX n , V to V .

24



Algorithm 1 NoisySGD

1: Input: Dataset S = ( x1, . . . , xn), loss function L(&, x).
Parameters: initial state &0, learning rate - t, batch sizem, time horizon T,

noise scale( , gradient norm bound C.
2: for t = 1 , . . . , T do
3: Subsampling:

Take a uniformly random subsampleI t 2 { 1, . . . , n} of sizem . Samplem in Section 4
4: for i ! I t do
5: Compute gradient:

v(i)
t 3 1 ✓L(&t, xi)

6: Clip gradient:
øv(i)
t 3 v(i)

t / max
�

1, ) v(i)
t ) 2/C

 

7: Average, perturb, and descend:
&t+1 3 &t # - t

⇣
1
m

P
i$ It

øv(i)
t + N (0, 4�2C2

m2 I )
⌘

. I is an identity matrix

8: Output &T

The mechanism we are ultimately interested in

NoisySGD: X n $ V , V , · · · , V

S 4$ (&1, &2, . . . , &T )

is simply the composition ofT copies offM . To see this fact, note that the trajectory (&1, &2, . . . , &T )
is obtained by iteratively running

&j+1 = fM (S, &j)

for j = 0 , . . . , T # 1. Let M be f -DP. Straightforwardly, fM is Cm/n(f )-DP by Theorem 9. Then,
from the composition theorem (Theorem 4), we can readily prove thatNoisySGDis Cm/n(f )' T -DP.

Hence, it su"ces to give a bound on the privacy ofM . For simplicity, we now focus on a single
step and drop the subscript t. Recognizing that changing one of them data points only a!ects
one v(i) , the sensitivity of 1

m

P
i øv(i)

t is at most 2C
m due to the clipping operation. Making use of

Theorem 1, adding Gaussian noiseN (0, ( 2 · 4C2

m2 I ) to the average gradient renders this step1
� -GDP.

Since that the gradient update following the gradient averaging step is deterministic, we conclude
that M satisÞes1

� -GDP.
In summary, the discussion above has proved the following theorem:

Theorem 10. Algorithm 1 is Cm/n(G�" 1)' T -DP.

To clear up any confusion, we remark that thisCm/n(G�" 1)' T -DP mechanism does not release
the subsampled indices.

The use of Theorem 10 relies on an e"cient evaluation ofCm/n(G�" 1)' T . Our central limit
theorems provide an analytical approach to approximating this tensor product and the approxima-
tion is accurate for large T. The next two subsections present two such results, corresponding to
our two central limit theorems (Theorem 5 and Theorem 6), respectively. An asymptotic privacy
analysis of NoisySGDis given in Section 5.2 by developing a general limit theorem for composition
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Figure 7: Comparison of the GDP bounds derived from our method, and the (!, " )-DP bounds
derived using the moments accountant [ACG+ 16], which is essentially based on R«enyi di!eren-
tial privacy [Mir17]. All three experiments run Algorithm 1 on the entire MNIST dataset with
n = 60, 000 data points, batch sizem = 256, learning rates - t set to 0.25, 0.15, and 0.25, re-
spectively, and clipping thresholdsC set to 1.5, 1.0, 1.5, respectively. The red lines are obtained
via Corollary 4, while the blue dashed lines are produced by the tensorßow/privacy library. See
https://github.com/tensorflow/privacy for the details of the setting and more experiments in
follow-up work [BDLS19].

of subsampled mechanisms, and an illustration of this result is shown in Figure 7. A BerryÐ
Esseen type analysis is developed in Section 5.3. The implementation of our privacy analysis of
NoisySGDis available in the TensorFlow privacy package (https://github.com/tensorflow/
privacy ); see details inhttps://github.com/tensorflow/privacy/blob/master/tensorflow_
privacy/privacy/analysis/gdp_accountant.py .

5.2 Asymptotic Privacy Analysis

In this subsection, we Þrst consider the limit ofCp(f )' T for a general trade-o! function f , then
plug in f = G�" 1 for the analysis of NoisySGD. The more general approach is useful for analyzing
other iterative algorithms.

Recall from Section 4 that ap-subsampledf -DP mechanism isCp(f )-DP, where Cp(f ) is deÞned
as

Cp(f )(x) =

8
<

:

f p(x), x ! [0, x! ]
x! + f p(x! ) # x, x ! [x! , f p(x! )]
f # 1

p (x), x ! [f p(x! ), 1],

wherex! is the unique Þxed point off . We will let the sampling fraction p tend to 0 asT approaches
inÞnity. In the following theorem, a2

+ is a short-hand for (max{a,0})2.

Theorem 11. Supposef is a symmetric trade-o! function such that f (0) = 1 and
R 1

0 (f "(x) +
1)4 dx < + + . Furthermore, assume p

/
T $ p0 as T $ + for some constantp0 > 0. Then we

have the uniform convergence
Cp(f )' T $ Gp0

/
2�2

+(f )
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as T $ + , where

/ 2
+ (f ) =

Z 1

0

�
|f "(x)| # 1

�2
+ dx.

The proof is deferred to Appendix F. This theorem has implications for the design of iterative
private mechanisms involving subsampling as a subroutine. One way to bound the privacy of such
a mechanism is to let the sampling ratio p go to zero as the total number of iterations T goes
to inÞnity. The theorem says that the correct scaling between the two values isp % 1/

/
T and,

furthermore, gives an explicit form of the limit.
In order to analyze NoisySGD, we need to compute the quantity / 2

+ (Gµ). This can be done by
directly working with its deÞnition. In Appendix F, we provide a di!erent approach by relating
/ 2

+ (f ) to / 2-divergence.

lemma 3. We have
/ 2

+ (Gµ) = e µ2 · #(3 µ/ 2) + 3#( # µ/ 2) # 2.

When using SGD to train large models, we typically perform a very large number of iterations,
so it is reasonable to consider the parameter regime in whichn $ + , T $ + . The batch size can
also vary with these quantities. The following result is a direct consequence of Theorems 10 and 11
and Lemma 3.

Corollary 4. If m
/

T /n $ c for a constant c > 0, then NoisySGDis asymptotically µ-GDP with

µ =
/

2c ·
q

e�" 2 · #(1 .5( # 1) + 3#( # 0.5( # 1) # 2.

The condition required in this theorem is more general than that required in the analysis
of private SGD by [BST14], which assumesm = 1 and T = O(n2). Moreover, we note that
m
n ·

/
T in deep learning research is generally quite small. The convention in this literature is to

reparameterize the number of gradient stepsT by the number of ÒepochsÓE, which is the number
of sweeps of the entire dataset. The relationship between these parameters is thatE = T m/n . In
this reparameterization, our assumption is that Em/n $ c2. Concretely, the AlexNet [KSH12] sets
the parameters asm = 128, E 0 90 on the ILSVRC-2010 dataset with n 0 1.2 , 106, leading to
Em/n < 0.01. Many other prominent implementations19 also lead to a small value ofEm/n .

5.3 A BerryÐEsseen Privacy Bound

Now, we apply the BerryÐEsseen style central limit theorem (Theorem 5) to the privacy analysis of
NoisySGD, highlighting the advantage of giving sharp privacy guarantees. However, the shortcoming
is that the expressions that it yields are more unwieldy: they are computer evaluable, so usable in
implementations, but do not admit simple closed forms.

The individual components in Theorem 5 have the formCp(Gµ) with p = m/n, µ = ( # 1. It
su"ces to evaluate the moment functionals on Cp(Gµ). This is done in the following lemma, with
its proof given in Appendix F.

19See the webpage of the Gluon CV Toolkit [HZZ +18, ZHZ+19] for a collection of such hyperparameters in computer
vision tasks.
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lemma 4. Let Z (x) = log( p ·eµx# µ2/2 +1 # p) and 0(x) = 1)
2⇡

e# x2/2 be the density of the standard
normal distribution. Then

kl
�
Cp(Gµ)

�
= p

Z + %

µ/2
Z (x) ·

�
0(x # µ) # 0(x)

�
dx

* 2
�
Cp(Gµ)

�
=
Z + %

µ/2
Z 2(x) ·

�
p0(x # µ) + (2 # p)0(x)

�
dx

ø* 3
�
Cp(Gµ)

�
=
Z + %

µ/2

��Z (x) # kl
�
Cp(Gµ)

���3 · (p0(x # µ) + (1 # p)0(x)) dx

+
Z + %

µ/2

��Z (x) + kl
�
Cp(Gµ)

���3 · 0(x) dx.

By plugging these expressions into Theorem 5, we get

Corollary 5. Let p = m/n, µ = ( # 1 and

÷µ =
2
/

T · kl
�
Cp(Gµ)

�
q

* 2
�
Cp(Gµ)

�
# kl2

�
Cp(Gµ)

� , , =
0.56
/

T
·

ø* 3
�
Cp(Gµ)

�

�
* 2
�
Cp(Gµ)

�
# kl2

�
Cp(Gµ)

�� 3
2

.

Then, NoisySGDis f -DP with f (#) = max {G÷µ(# + , ) # ,, 0}.

We remark that G÷µ can be set to 0 in (1, + + ) so that f is well-deÞned for# > 1 # , .

6 Discussion

In this paper, we have introduced a new framework for private data analysis that we refer to
as f -di!erential privacy, which generalizes (!, " )-DP and has a number of attractive properties
that escape the di"culties of prior work. This new privacy deÞnition uses trade-o! functions of
hypothesis testing as a measure of indistinguishability of two neighboring datasets rather than
a few parameters as in prior di!erential privacy relaxations. Our f -DP retains an interpretable
hypothesis testing semantics and is expressive enough to losslessly reason about composition, post-
processing, and group privacy by virtue of the informativeness of trade-o! functions. Moreover,
f -DP admits a central limit theorem that identiÞes a simple and single-parameter family of privacy
deÞnitions as focal: Gaussian di!erential privacy. Precisely, all hypothesis testing based deÞnitions
of privacy converge to Gaussian di!erential privacy in the limit under composition, which implies
that Gaussian di!erential privacy is the unique such deÞnition that can tightly handle composition.
The central limit theorem and its BerryÐEsseen variant give a tractable analytical approach to
tightly analyzing the privacy cost of iterative methods such as SGD. Notably, f -DP is dual to
(!, " )-DP in a constructive sense, which gives the ability to import results proven for (!, " )-DP.
This powerful perspective allows us to obtain an easy-to-use privacy ampliÞcation by subsampling
theorem for f -DP, which in particular signiÞcantly improves on the state-of-the-art counterpart in
the (!, " )-DP setting.

We see several promising directions for future work using and extending thef -DP framework.
First, Theorem 8 can possibly be extended to the inhomogeneous case where trade-o! functions
are di!erent from each other in the composition. Such an extension would allow us to apply the
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central limit theorem for privacy approximation with strong Þnite-sample guarantees to a broader
range of problems. Second, it would be of interest to investigate whether the privacy guarantee of
the subsampled mechanism in Theorem 9 can be improved for some trade-o! functions. Notably,
we have shown in Appendix E that this bound is tight if the trade-o! function f = 0, that is,
the original mechanism is blatantly non-private. Third, the notion of f -DP naturally has a local
realization where the obfuscation of the sensitive information is applied at the individual record
level. In this setting, what are the fundamental limits of estimation with local f -DP guarantees
[DJW18]? In light of [DR18], what is the correct complexity measure in local f -DP estimation?
If it is not the Fisher information, can we identify an alternative to the Fisher information for
some class of trade-o! functions? Moreover, we recognize that an adversary in di!erentially private
learning may set di!erent pairs of target type I and type II errors. For example, an adversary that
attempts to control type I and II errors at 10% and 10%, respectively, can behave very di!erently
from one who aims to control the two errors at 0.1% and 99%, respectively. An important question
is to address the trade-o!s between resources such as privacy and statistical e"ciency and target
type I and type II errors in the framework of f -DP.

Finally, we wish to remark that f -DP can possibly o!er a mathematically tractable and ßexible
framework for minimax estimation under privacy constraints (see, for example, [CWZ19, BUV18,
DSS+ 15]). Concretely, given a candidate estimator satisfying (!, " )-DP appearing in the upper
bound and a possibly loose lower bound under the (!, " )-DP constraint, we can replace the (!, " )-
DP constraint by the f -DP constraint where f is the tightest trade-o! function characterizing
the estimation procedure. As is clear, thef -DP constraint is more stringent than the ( !, " )-DP
constraint by recognizing the primal-dual conversion (see Proposition 6). While the upper bound
remains the same as the estimator continues to satisfy the new privacy constraint, the lower bound
can be possibly improved due to a more stringent constraint. It would be of great interest to
investigate to what extent this f -DP based approach can reduce the gap between upper and lower
bounds minimax estimation under privacy constraints.

Ultimately, the test of a privacy deÞnition lies not just in its power and semantics, but also in
its ability to usefully analyze diverse algorithms. In this paper, we have given convincing evidence
that f -DP is up to the task. We leave the practical evaluation of this new privacy deÞnition to
future work.
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