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Abstract

We consider in this paper the problem of noisy 1-bit matrix completion under a general non-uniform

sampling distribution using the max-norm as a convex relaxation for the rank. A max-norm con-

strained maximum likelihood estimate is introduced and studied. The rate of convergence for the

estimate is obtained. Information-theoretical methods are used to establish a minimax lower bound

under the general sampling model. The minimax upper and lower bounds together yield the op-

timal rate of convergence for the Frobenius norm loss. Computational algorithms and numerical

performance are also discussed.
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1. Introduction

Matrix completion, which aims to recover a low-rank matrix from a subset of its entries, has been

an active area of research in the last few years. It has a range of successful applications. In some

real-life situations, however, the observations are highly quantized, sometimes even to a single bit

and thus the standard matrix completion techniques do not apply. Take the Netflix problem as an

example, the observations are the ratings of movies, which are quantized to the set of integers from 1

to 5. In the more extreme case such as recommender systems, only a single bit of rating standing for

a “thumbs up” or “thumbs down” is recorded at each occurrence. Another example of applications

is targeted advertising, such as the relevance of advertisements on Hulu. Each user who is watching

TV shows on Hulu is required to answer yes/no to the question“Is this ad relevant to you?”. Noise

effect should be considered since there are users who just click no to all the advertisements. In

general, people would prefer to have advertisement catered to them, rather than to endure random

advertisement. Targeted marketing that uses customer needs tends to serve better than random,

scattershot advertisements. Similar idea has already been employed in mail system (Goldberg et al.,

1992). Other examples from recommender systems include rating music on Pandora and posts on

Reddit or MathOverflow, in which each observation consists of a single bit representing a positive
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or negative rating. Similar problem also arises in analyzing incomplete survey designs containing

simple agree/disagree questions in the analysis of survey data, and distance matrix recovery in

multidimensional scaling that incorperates binary responses with incomplete data (Green and Wind,

1973; Spence and Demoney, 1974). See Davenport et al. (2012) for more discussions on potential

applications.

Motivated by these applications, Davenport et al. (2012) considered the 1-bit matrix completion

problem of recovering an approximately low-rank matrix M∗ ∈ R
d1×d2 from a set of n noise cor-

rupted sign (1-bit) measurements. In particular, they proposed a trace-norm constrained maximum

likelihood estimator to estimate M∗, based on a small number of binary samples observed according

to a probability distribution determined by the entries of M∗. It was also shown that the trace-norm

constrained optimization method is minimax rate-optimal under the uniform sampling model. This

problem is closely connected to and in some respects more challenging than the 1-bit compressed

sensing, which was introduced and first studied in Boufounos and Baraniuk (2008). The 1-bit mea-

surements are meant to model quantization in the extreme case, and a surprising fact is that when the

signal-to-noise ratio is low, empirical evidence demonstrates that such extreme quantization can be

optimal when constrained to a fixed bit budget (Laska and Baraniuk, 2012). See Plan and Vershynin

(2013a) for the recent results and references on 1-bit compressed sensing.

To be more specific, consider an arbitrary unknown d1 ×d2 target matrix M∗ with rank at most

r. Suppose a subset S = {(i1, j1), ...,(in, jn)} of entries of a binary matrix Y is observed, where the

entries of Y depend on M∗ in the following way:

Yi, j =

{
+1, if M∗

i, j +Zi, j ≥ 0,

−1, if M∗
i, j +Zi, j < 0.

Here Z = (Zi j) ∈ R
d1×d2 is a general noise matrix. This latent variable matrix model can been

seen as a direct analogue to the usual 1-bit compressed sensing model, in which only the signs of

measurements are observed. It is known that an s-sparse signal can still be approximately recovered

from O(s log(d/s)) random linear measurements. See, for example, Jacques et al. (2011), Plan and

Vershynin (2013a), Plan and Vershynin (2013b) and Ai et al. (2013).

Contrary to the standard matrix completion model and many other statistical problems, random

noise turns out to be helpful and has a positive effect in the 1-bit case, since the problem is ill-

posed in the absence of noise as described in Davenport et al. (2012). In particular, when Z = 0

and M∗ = uvT for some vectors u ∈ R
d1 ,v ∈ R

d2 having no zero coordinates, then the radically

disparate matrix M̃ = sign(u)signT (v) will lead to the same observations Y . Thus M and M̃ are

indistinguishable. However, it has been surprisingly noticed that the problem may become well-

posed when there are some additional stochastic variations, that is, Z 6= 0 is an appropriate random

noise matrix. This phenomenon can be regarded as a “dithering” effect brought by random noise.

Although the trace-norm constrained optimization method has been shown to be minimax rate-

optimal under the uniform sampling model, it remains unclear that the trace-norm is the best convex

surrogate to the rank. A different convex relaxation for the rank, the matrix max-norm, has been duly

noted in machine learning literature since Srebro et al. (2005), and it was shown to be empirically

superior to the trace-norm for collaborative filtering problems. Regarding a real d1 × d2 matrix as

an operator that maps from R
d2 to R

d1 , its rank can be alternatively expressed as the smallest integer

k, such that it is possible to express M = UV T , where U ∈ R
d1×k and V ∈ R

d2×k. In terms of the

matrix factorization M = UV T , we would like U and V to have a small number of columns. The

number of columns of U and V can be relaxed in a different way from the usual trace-norm by the
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so-called max-norm (Linial et al., 2007), which is defined by

‖M‖max = min
M=UV T

{
‖U‖2,∞‖V‖2,∞

}
, (1)

where the infimum is over all factorizations M = UV T with ‖U‖2,∞ being the operator norm of

U : ℓk
2 → ℓd1

∞ and ‖V‖2,∞ the operator norm of V : ℓk
2 → ℓd2

∞ (or, equivalently, V T : ℓd2

1 → ℓk
2) and

k = 1, ...,min(d1,d2). It is not hard to check that ‖U‖2,∞ is equal to the largest ℓ2 norm of the rows

in U . Since ℓ2 is a Hilbert space, ‖·‖max indeed defines a norm on the space of operators between ℓd2

1

and ℓd1
∞ . Comparably, the trace-norm has a formulation similar to (1), as given below in Section 2.1.

Foygel and Srebro (2011) first used the max-norm for matrix completion under the uniform

sampling distribution. Their results are direct consequences of a recent bound on the excess risk for

a smooth loss function, such as the quadratic loss, with a bounded second derivative (Srebro et al.,

2010). Matrix completion under a non-degenerate random sampling model was studied in Cai and

Zhou (2013), where it was shown that the max-norm constrained minimization method is rate-

optimal and it yields a more stable approximate recovery guarantee, with respect to the sampling

distributions, than trace-norm based approaches.

Davenport et al. (2012) analyzed 1-bit matrix completion under the uniform sampling model,

where observed entries are assumed to be sampled randomly and uniformly. In such a setting, the

trace-norm constrained approach has been shown to achieve minimax rate of convergence. However,

in certain application such as collaborative filtering, the uniform sampling model is over idealized.

In the Netflix problem, for instance, the uniform sampling model is equivalent to assuming all users

are equally likely to rate every movie and all movies are equally likely to be rated by any user.

In practice, inevitably some users are more active than others and some movies are more popular

and thus rated more frequently. Therefore, the sampling distribution is in fact non-uniform. In

this scenario, Salakhutdinov and Srebro (2010) showed that the standard trace-norm relaxation can

behave very poorly, and suggested to use a weighted variant of the trace-norm, which takes the

sampling distribution into account. Since the true sampling distribution is most likely unknown

and can only be estimated based on the locations of those entries that are revealed in the sample,

what commonly used in practice is the empirically-weighted trace norm. Foygel et al. (2011) pro-

vided rigorous recovery guarantees for learning with the standard weighted, smoothed weighted and

smoothed empirically-weighted trace-norms. In particular, they gave upper bounds on excess error,

which show that there is no theoretical disadvantage of learning with smoothed empirical marginals

as compared to learning with smoothed true marginals.

In this paper, we study matrix completion based on noisy 1-bit observations under a general

(non-degenerate) sampling model using the max-norm as a convex relaxation for the rank. The

rate of convergence for the max-norm constrained maximum likelihood estimate is obtained. A

matching minimax lower bound is established under the general non-uniform sampling model using

information-theoretical methods. The minimax upper and lower bounds together yield the optimal

rate of convergence for the Frobenius norm loss. As a comparison with the max-norm constrained

optimization approach, we also analyze the recovery guarantee of the weighted trace-norm con-

strained method in the setting of non-uniform sampling distributions. Our result includes an addi-

tional logarithmic factor, which might be an artifact of the proof technique. The numerical results in

Section 5 show that, even when the sampling distribution is uniform, the max-norm based regular-

ization might slightly outperform the corresponding trace-norm method. To sum up, the max-norm

regularized approach indeed provides a unified and stable approximate recovery guarantee with re-
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spect to the sampling distributions, while previously used approaches are based on different variants

of the trace-norm which may sometimes seem artificial to practitioners.

When the noise distribution is Gaussian or more generally log-concave, the negative

log-likelihood function for M, given the measurements, is convex, hence computing the max-norm

constrained maximum likelihood estimate is a convex optimization problem. The computational

effectiveness of this method is also studied, based on a first-order algorithm developed in Lee et al.

(2010) for solving convex programs involving a max-norm constraint, which outperforms the semi-

definite programming method used in Srebro et al. (2005). It will be shown in Section 4 that the

convex optimization problem can be implemented in polynomial time as a function of the sample

size and the matrix dimensions.

The rest of the paper is organized as follows. Section 2 begins with the basic notation and def-

initions, and then states a collection of useful results on the matrix norms, Rademacher complexity

and distances between matrices that will be needed throughout the paper. Section 3 introduces the

1-bit matrix completion model and the estimation procedure and investigates the theoretical proper-

ties of the estimator. Both minimax upper and lower bounds are established. The results show that

the max-norm constraint maximum likelihood estimator is rate-optimal over the parameter space.

Section 3 also gives a comparison of our results with previous work. Computational algorithms

are discussed in Section 4, and numerical performance of the proposed algorithm is presented in

Section 5. The paper is concluded with a brief discussion in Section 6, and the proofs of the main

results are given in Section 7.

2. Notations and Preliminaries

In this section, we introduce basic notation and definitions that will be used throughout the paper,

and state some known results on the max-norm, trace-norm and Rademacher complexity that will

be used repeatedly later.

2.1 Notation

For any positive integer d, we use [d] to denote the set of integers {1,2, ...,d}. For any pair of real

numbers a and b, set a∨b := max(a,b) and a∧b := min(a,b). For a vector u ∈ R
d and 0 < p < ∞,

denote its ℓp-norm by ‖u‖p = (∑d
i=1 |ui|p)1/p. In particular, ‖u‖∞ = maxi=1,...,d |ui| is the ℓ∞-norm.

For a matrix M = (Mk,l) ∈ R
d1×d2 , let ‖M‖F =

√
∑

d1

k=1 ∑
d2

l=1 M2
k,l be the Frobenius norm and let

‖M‖∞ = maxk,l |Mk,l| denote the elementwise ℓ∞-norm. Given two norms ℓp and ℓq on R
d1 and

R
d2 respectively, the corresponding operator norm ‖ · ‖p,q of a matrix M ∈ R

d1×d2 is defined by

‖M‖p,q = sup‖x‖p=1 ‖Mx‖q. It is easy to verify that ‖M‖p,q = ‖MT‖q∗,p∗ , where (p, p∗) and (q,q∗)

are conjugate pairs, that is, 1
p
+ 1

p∗ = 1 and 1
q
+ 1

q∗ = 1. In particular, ‖M‖ = ‖M‖2,2 is the spectral

norm and ‖M‖2,∞ = maxk=1,...,d1

√
∑

d2

l=1 M2
k,l is the maximum row norm of M.
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2.2 Max-Norm and Trace-Norm

For any matrix M ∈R
d1×d2 , its trace-norm is defined to be the sum of the singular values of M (that

is, the roots of the eigenvalues of MMT ), and can also equivalently written as

‖M‖∗ = inf

{
∑

j

|σ j| : M = ∑
j

σ ju jv
T
j , u j ∈ R

d1 ,v j ∈ R
d2 satisfying ‖u j‖2 = ‖v j‖2 = 1

}
.

Recall the definition (1) of the max-norm, the trace-norm can be analogously defined in terms of

matrix factorization as

‖M‖∗ = min
M=UV T

{
‖U‖F‖V‖F

}
=

1

2
min

U,V :M=UV T

(
‖U‖2

F +‖V‖2
F

)
.

Since the ℓ1-norm of a vector is bounded by the product of its ℓ2-norm and the number of non-zero

coordinates, we have the following relationship between the trace-norm and Frobenius norm

‖M‖F ≤ ‖M‖∗ ≤
√

rank(M) · ‖M‖F .

By the elementary inequality ‖Mm×n‖F ≤√
m‖Mm×n‖2,∞, we see that

‖M‖∗√
d1d2

≤ ‖M‖max. (2)

Furthermore, as was noticed in Lee et al. (2010), the max-norm, which is defined in (1), is compa-

rable with a trace-norm more precisely in the following sense (Jameson, 1987):

‖M‖max (3)

≈ inf

{
∑

j

|σ j| : M = ∑
j

σ ju jv
T
j , u j ∈ R

d1 ,v j ∈ R
d2 satisfying ‖u j‖∞ = ‖v j‖∞ = 1

}
,

where the factor of equivalence is KG ∈ (1.67,1.79), denoting the Grothendieck’s constant. What

may be more surprising is the following bounds for the max-norm, in connection with element-wise

ℓ∞-norm (Linial et al., 2007):

‖M‖∞ ≤ ‖M‖max ≤
√

rank(M) · ‖M‖1,∞ ≤
√

rank(M) · ‖M‖∞. (4)

2.3 Rademacher Complexity

Considering matrices as functions from index pairs to entry values, a technical tool used in our proof

involves data-dependent estimates of the Rademacher complexity of the classes that consist of low

trace-norm and low max-norm matrices. We refer to Bartlett and Mendelson (2002) for a detailed

introduction of this concept.

Definition 1 Let P be a probability distribution on a set X . Suppose that X1, ...,Xn are independent

samples drawn from X according to P , and set S = {X1, ...,Xn}. For a class F of functions mapping

from X to R, its empirical Rademacher complexity over the sample S is defined by

R̂S(F ) =
2

|S|Eε

[
sup
f∈F

∣∣∣
n

∑
i=1

εi f (Xi)
∣∣∣
]
,
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where ε = (ε1, ...,εn) is a Rademacher sequence. The Rademacher complexity with respect to the

distribution P is the expectation, over a sample S of |S| points drawn i.i.d. according to P , denoted

by

R|S|(F ) = ES∼P [R̂S(F )].

The following properties regarding R̂S(F ) are useful.

Proposition 2 We have

1. If F ⊆ G , R̂S(F )≤ R̂S(G).

2. R̂S(F ) = R̂S(conv(F )) = R̂S(absconv(F )), where conv(F ) is the class of convex combina-

tions of functions from F , and absconv(F ) denotes the absolutely convex hull of F , that is,

the class of convex combinations of functions from F and −F .

3. For every c ∈ R, R̂S(cF ) = |c|R̂S(F ), where cF ≡ {c f : f ∈ F }.

In particular, we are interested in calculating the Rademacher complexities of the trace-norm

and max-norm balls. To this end, define for any radius R > 0 that

B∗(R) :=
{

M ∈ R
d1×d2 : ‖M‖∗ ≤ R

}
and

Bmax(R) :=
{

M ∈ R
d1×d2 : ‖M‖max ≤ R

}
.

First, recall that any matrix with unit trace-norm is a convex combination of unit-norm rank-one

matrices, and thus

B∗(1) = conv(M1), where M1 :=
{

uvT : u ∈ R
d1 ,v ∈ R

d2 ,‖u‖2 = ‖v‖2 = 1
}
. (5)

Then R̂S(B∗(1)) = R̂S(M1). A sharp bound on the worst-case Rademacher complexity, defined

as the supremum of R̂S(·) over all sample sets S with size |S| = n, is 2√
n

(See, expression (4) on

page 551, Srebro and Shraibman, 2005). This bound, unfortunately, is barely useful in developing

generalization error bounds. However, when the index pairs of a sample S are drawn uniformly at

random from [d1]× [d2] (with replacement), Srebro and Shraibman (2005) showed that the expected

Rademacher complexity is low, and Foygel and Srebro (2011) have improved this result by reducing

the logarithmic factor. In particular, they proved that for a sample size n ≥ d = d1 +d2,

E
S∼unif,|S|=n

[
R̂S(B∗(1))

]
≤ K√

d1d2

√
d log(d)

n
,

where K > 0 denotes a universal constant.

The unit max-norm ball, on the other hand, can be approximately characterized as a convex hull.

Due to the Grothendieck’s inequality, it was shown in Srebro and Shraibman (2005) that

conv(M±)⊂ Bmax(1)⊂ KG · conv(M±),

where M± := {M ∈ {±1}d1×d2 : rank(M) = 1} is the class of rank-one sign matrices, and KG ∈
(1.67,1.79) is the Grothendieck’s constant. It is easy to see that M± is a finite class with cardinality
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|M±|= 2d−1, d = d1 +d2. For any d1,d2 > 2 and any sample of size 2 < |S| ≤ d1d2, the empirical

Rademacher complexity of the unit max-norm ball is bounded by

R̂S

(
Bmax(1)

)
≤ 12

√
d

|S| . (6)

In other words, supS:|S|=n R̂S(Bmax(1))≤ 12

√
d
n
.

2.4 Discrepancy

In order to get both upper and lower prediction error bounds on the weighted squared Frobenius

norm between the proposed estimator, given by (13) below, and the target matrix described via

model (9), we will need the following two concepts of discrepancies between matrices as well as

their connections. In particular, we will focus on element-wise notion of discrepancy between two

d1 ×d2 matrices P and Q.

First, for two matrices P, Q : [d1]× [d2]→ [0,1]d1×d2 , their Hellinger distance is given by

d2
H(P;Q) =

1

d1d2
∑
(k,l)

d2
H(Pk,l;Qk,l),

where d2
H(p;q) = (

√
p−√

q)2 +(
√

1− p−√
1−q)2 for p,q ∈ [0,1]. Next, the Kullback-Leibler

divergence between two matrices P, Q : [d1]× [d2]→ [0,1]d1×d2 is defined by

K(P‖Q) =
1

d1d2
∑
(k,l)

K(Pk,l‖Qk,l),

where K(p‖q) = p log( p
q
)+ (1− p) log( 1−p

1−q
), for p,q ∈ [0,1]. Note that K(P‖Q) is not a distance;

it is sufficient to observe that it is not symmetric.

The relationship between the two “distances” is as follows. For any two scalars p,q ∈ [0,1], we

have

d2
H(p;q)≤ K(p‖q), (7)

which in turn implies that, for any two matrices P, Q : [d1]× [d2]→ [0,1]d1×d2 ,

d2
H(P;Q)≤K(P‖Q). (8)

The proof of (7) is based on the Jensen’s inequality and an elementary inequality that 1−x≤− logx

for any x > 0.

3. Max-Norm Constrained Maximum Likelihood Estimate

In this section, we introduce the max-norm constrained maximum likelihood estimation procedure

for 1-bit matrix completion and investigates the theoretical properties of the estimator. The results

are also compared with other results in the literature.

3625



CAI AND ZHOU

3.1 Observation Model

We consider 1-bit matrix completion under a general random sampling model. The unknown low-

rank matrix M∗ ∈ R
d1×d2 is the object of interest. Instead of observing noisy entries M∗

i, j + Zi, j

directly in unquantized matrix completion, now we only observe with error the sign of a random

subset of the entries of M∗. More specifically, assume that a random sample

S =
{
(i1, j1),(i2, j2), ...,(in, jn)

}
⊆
(
[d1]× [d2]

)n

of the index set is drawn i.i.d. with replacement according to a general sampling distribution Π =
{πkl} on [d1]× [d2]. That is, P{(it , jt) = (k, l)} = πkl , for all t and (k, l). Suppose that a (random)

subset S of size |S| = n of entries of a sign matrix Y is observed. The dependence of Y on the

underlying matrix M∗ is as follows:

Yi, j =

{
+1, if M∗

i, j +Zi, j ≥ 0,

−1, if M∗
i, j +Zi, j < 0,

(9)

where Z = (Zi, j) ∈R
d1×d2 is a matrix consisting of i.i.d. noise variables. Let F(·) be the cumulative

distribution function of −Z1,1, then the above model can be recast as

Yi, j =

{
+1, with probability F(M∗

i, j),

−1, with probability 1−F(M∗
i, j),

(10)

and we observe noisy entries {Yit , jt}n
t=1 indexed by S. More generally, we consider the model

(10) with an arbitrary differentiable function F : R → [0,1]. Particular assumptions on F will be

discussed below.

Instead of assuming the uniform sampling distribution as in Davenport et al. (2012), here we al-

low a general sampling distribution Π = {πkl}, satisfying ∑(k,l)∈[d1]×[d2] πkl = 1, according to which

we make n independent random choices of entries. The drawback of the setting is that, with fairly

high probability, some entries will be sampled multiple times. Intuitively it would be more practical

to assume that entries are sampled without replacement, or equivalently, to sample n of the d1d2 bi-

nary entries observed with noise without replacing. Due to the requirement that the drawn entries be

distinct, the n samples are not independent. This dependence structure turns out to impede the tech-

nical analysis of the learning guarantees. To avoid this complication, we will use the i.i.d. approach

as a proxy for sampling without replacement throughout this paper. As has been noted in Gross and

Nesme (2010) and Foygel and Srebro (2011), between sampling with and without replacement both

in a uniform sense, that is, making n independent uniform choices of entries versus choosing a set

S of entries uniformly at random over all subsets that consist of exactly n entries, the latter can be

theoretically as good as the former. See Section 7.4 below for more details.

Next we list three natural choices for F , or equivalently, for the distribution of {Zi, j}.

3.1.1 EXAMPLES

1. (Logistic regression/Logistic noise): The logistic regression model is described by (10) with

F(x) =
ex

1+ ex
,

and equivalently by (9) with Zi, j i.i.d. following the standard logistic distribution.
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2. (Probit regression/Gaussian noise): The probit regression model is described by (10) with

F(x) = Φ
( x

σ

)
,

where Φ denotes the cumulative distribution function of N(0,1), and equivalently by (9) with

Zi, j i.i.d. following N(0,σ2).

3. (Laplacian noise): Another interesting case is that the noise Zi, j are i.i.d. drawn from a

Laplacian distribution Laplace(0,b), with

F(x) =

{
1
2

exp(x/b), if x < 0,

1− 1
2

exp(−x/b), if x ≥ 0,

where b > 0 is the scale parameter.

Davenport et al. (2012) have focused on approximately low-rank matrices recovery by consid-

ering the following class of matrices

K∗(α,r) =
{

M ∈ R
d1×d2 : ‖M‖∞ ≤ α,

‖M‖∗√
d1d2

≤ α
√

r
}
, (11)

where 1 ≤ r ≤ min(d1,d2) and α > 0 is a free parameter to be determined. Clearly, any matrix M

with rank at most r satisfying ‖M‖∞ ≤ α belongs to K∗(α,r). Alternatively, using max-norm as

a convex relaxation for the rank, we consider recovery of matrices with ℓ∞-norm and max-norm

constraints defined by

Kmax(α,R) :=
{

M ∈ R
d1×d2 : ‖M‖∞ ≤ α, ‖M‖max ≤ R

}
. (12)

Here both α > 0 and R > 0 are free parameters to be determined. If M∗ is of rank at most r and

‖M∗‖∞ ≤ α, then by (2) and (4) we have M∗ ∈ Bmax(α
√

r) and hence

M∗ ∈ Kmax(α,α
√

r)⊂ K∗(α,r).

3.2 Max-norm Constrained Maximum Likelihood Estimate

Now, given a collection of observations YS = {Yit , jt}n
t=1 from the observation model (10), the nega-

tive log-likelihood function can be written as

ℓS(M;Y ) =
n

∑
t=1

[
1{Yit , jt =1} log

( 1

F(Mit , jt )

)
+1{Yit , jt =−1} log

( 1

1−F(Mit , jt )

)]
.

Then we consider estimating the unknown M∗ ∈ Kmax(α,R) by maximizing the empirical likelihood

function subject to a max-norm constraint:

M̂max = argmin
M∈Kmax(α,R)

ℓS(M;Y ). (13)

The optimization procedure requires that all the entries of M0 are bounded in absolute value by a

pre-defined constant α. This condition is reasonable while also critical in approximate low-rank

3627



CAI AND ZHOU

matrix recovery problems by controlling the spikiness of the solution. Indeed, the measure of the

“spikiness” of matrices is much less restrictive than the incoherence conditions imposed in exact

low-rank matrix recovery. See, for example, Koltchinskii et al. (2011), Negahban and Wainwright

(2012), Klopp (2012) and Cai and Zhou (2013).

As has been noted in Srebro et al. (2005), a large gap between the max-complexity (related to

max-norm) and the dimensional-complexity (related to rank) is possible only when the underlying

low-rank matrix has entries of vastly varying magnitudes. Also, in view of (3), the max-norm

promotes low-rank decomposition with factors in ℓ∞ (ℓ2 for the trace-norm). Motivated by these

features, max-norm regularization is expected to be reasonably effective for uniformly bounded

data.

When the noise distribution is log-concave so that the log-likelihood is a concave function, the

max-norm constrained minimization problem (13) is a convex program and we recommend a fast

and efficient algorithm developed in Lee et al. (2010) for solving large-scale optimization problems

that incorporate the max-norm. We will show in Section 4 that the convex optimization problem

(13) can indeed be implemented in polynomial time as a function of the sample size n and the matrix

dimensions d1 and d2.

3.3 Upper Bounds

To establish an upper bound on the prediction error of estimator M̂max given by (13), we need the

following assumption on the unknown matrix M∗ as well as the regularity conditions on the function

F in (10).

3.3.1 CONDITION U

Assume that there exist positive constants R and α such that

(U1) M∗ ∈ Kmax(α,R);

(U2) F and F ′ are non-zero in [−α,α], and

(U3) both

Lα := sup
|x|≤α

|F ′(x)|
F(x)(1−F(x))

, and βα := sup
|x|≤α

F(x)(1−F(x))

(F ′(x))2
(14)

are finite.

In particular, under condition (U2), the quantity

Uα := sup
|x|≤α

log

(
1

F(x)(1−F(x))

)
,

is well-defined. As prototypical examples, we specify below the quantities Lα, βα and Uα in the

cases of Logistic, Gaussian and Laplacian noise:

1. (Logistic regression/Logistic noise): For F(x) = ex/(1+ ex), we have

Lα ≡ 1, βα =
(1+ eα)2

eα
and Uα = 2log(eα/2 + e−α/2).
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2. (Probit regression/Gaussian noise): For F(x) = Φ(x/σ), straightforward calculations show

that

Lα ≤ 4

σ

(α

σ
+1

)
, βα ≤ πσ2 exp{α2/(2σ2)} and Uα ≤

(α

σ
+1

)2

. (15)

3. (Laplacian noise): For a Laplace(0,b) distribution function, we have

Lα =
2

b
, βα = b

(
2exp(α/b)−1

)
and Uα ≤ 2

(α

b
+ log2

)
.

Now we are ready to state our main results concerning the recovery of an approximately low-

rank matrix M∗ using the max-norm constrained maximum likelihood estimate. We write hereafter

d = d1 +d2 for brevity.

Theorem 3 Suppose that Condition U holds and assume that the training set S follows a general

weighted sampling model according to the distribution Π. Then there exists an absolute constant C

such that, for a sample size 2 < n ≤ d1d2 and for any δ > 0, the minimizer M̂max of the optimization

program (13) satisfies

‖M̂max −M∗‖2
Π =

d1

∑
k=1

d2

∑
l=1

πkl{M̂max −M∗}2
k,l ≤Cβα

{
LαR

√
d

n
+Uα

√
log(4/δ)

n

}
, (16)

with probability at least 1− δ. Here and below ‖ · ‖Π denotes the weighted Frobenius norm with

respect to Π, that is,

‖M‖Π =

√√√√ d1

∑
k=1

d2

∑
l=1

πklM
2
k,l for all M ∈ R

d1×d2 .

Remark 4 (i) While using the trace-norm to study this general weighted sampling model, it is

common to assume that each row and column is sampled with positive probability (Klopp,

2012; Negahban and Wainwright, 2012), though in some applications this assumption does

not seem realistic. More precisely, assume that there exists a positive constant µ ≥ 1 such that

πkl ≥
1

µd1d2

, for all (k, l) ∈ [d1]× [d2]. (17)

Then, under condition (17) and the conditions of Theorem 3,

1

d1d2

‖M̂max −M∗‖2
F ≤Cµβα

{
LαR

√
d

n
+Uα

√
log(d)

n

}
(18)

holds with probability at least 1−4/d, where C > 0 denotes an absolute constant.

(ii) Klopp (2012) studied the problem of standard matrix completion with noise, also in the case

of general sampling distribution, using the trace-norm penalized approach. However, the

Assumption 1 therein requires that the distribution πkl over entries is bounded from above,

which is quite restrictive especially in the Netflix problem. It is worth noticing that this upper

bound condition on sampling distribution is not required in both results (16) and (18).
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It is noteworthy that above results are directly comparable to those obtained in the case of ap-

proximately low-rank recovery from unquantized measurements, also using max-norm regularized

approach (Cai and Zhou, 2013). Let Z = (Zi, j) be a noise matrix consisting of i.i.d. N(0,σ2) entries

for some σ > 0, and assume we have observations on a (random) subset S = {(i1, j1), ...,(in, jn)} of

entries of Ỹ = M∗+Z. Cai and Zhou (2013) studied the unquantized problem under a general sam-

pling model using max-norm as a convex relaxation for the rank. In particular, for the max-norm

constrained least squares estimator

M̃max = argmin
M∈Kmax(α,R)

1

n

n

∑
t=1

(Ỹit , jt −M∗
it , jt )

2,

for Kmax(α,R) as in (12), it was shown that for any δ ∈ (0,1) and a sample size 2 < n ≤ d1d2,

‖M̃max −M∗‖2
Π ≤C′

{
(α∨σ)R

√
d

n
+

α2 log(2/δ)

n

}
(19)

holds with probability greater than 1− exp(−d)−δ, where C′ > 0 is a universal constant.

In 1-bit observations case when Zi, j
i.i.d.∼ N(0,σ2), it is equivalent that the function F in model

(10) is given by F(·) = Φ(·/σ). According to (15), we have

‖M̂max −M∗‖2
Π ≤C exp

( α2

2σ2

){
(α+σ)R

√
d

n
+(α+σ)2

√
log(4/δ)

n

}
(20)

holds with probability at least 1−δ.

Comparing the upper bounds in (19) and (20) and note that α∨σ ≤ α+σ ≤ 2(α∨σ), we see

that there is no essential loss of recovery accuracy by discretizing to binary measurements as long

as α
σ is bounded by a constant (Davenport et al., 2012). On the other hand, as the signal-to-noise

ratio α
σ ≥ 1 increases, the error bounds deteriorate significantly. In fact, the case α ≫ σ essentially

amounts to the noiseless setting, in which it is impossible to recover M∗ based on any subset of the

signs of its entries.

3.4 Information-Theoretic Lower Bounds

We now establish minimax lower bounds by using information-theoretic techniques. The lower

bounds given in Theorem 5 below show that the rate attained by the max-norm constrained maxi-

mum likelihood estimator is optimal up to constant factors.

Theorem 5 Assume that F ′(x) is decreasing and
F(x)(1−F(x))

(F ′(x))2 is increasing for x > 0, and let S be

any subset of [d1]× [d2] with cardinality n. Then, as long as the parameters (R,α) satisfy

max

(
2,

4

(d1 ∨d2)1/2

)
≤ R

α
≤ (d1 ∧d2)

1/2

2
,

the minimax risk for estimating M over the parameter space Kmax(α,R) satisfies

inf
M̂

max
M∈Kmax(α,R)

{
1

d1d2

E‖M̂−M‖2
F

}
≥ 1

512
min

{
α2,

√
βα/2

2
R

√
d

n

}
. (21)
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Remark 6 In fact, the lower bound (21) is a special case of the following general result, which will

be proved in Sect. 7.2. Let γ∗ > 0 be the solution of the following equation

γ∗ = min

{
1

2
,

R1/2

α

(
β(1−γ∗)α

32
· d1 ∨d2

n

)1/4}
(22)

and assume that

max

(
2,

4

(d1 ∨d2)1/2

)
≤ R

α
≤ (d1 ∧d2)

1/2γ∗. (23)

Then the minimax risk for estimating M over the parameter space Kmax(α,R) satisfies

inf
M̂

max
M∈Kmax(α,R)

{
1

d1d2

E‖M̂−M‖2
F

}
≥ 1

512
min

{
α2,

√
β(1−γ∗)α

2
R

√
d

n

}
. (24)

To see the existence of γ∗ defined above, setting

h(γ) = γ and g(γ) = min

{
1

2
,

R1/2

α

(
β(1−γ)α

32
· d1 ∨d2

n

)1/4}
,

then it is easy to see that h(γ) is strictly increasing and g(γ) is decreasing for γ ∈ (0,1) with h(0) = 0

and g(0)> 0. Therefore, equation (22) has a unique solution γ∗ ∈ (0, 1
2
] so that h(γ∗) = g(γ∗).

Assume that µ and α are bounded above by universal constants and let the function F be fixed,

so that both Lα and βα in (14) are bounded. Also notice that β(1−γ∗)α ≥ βα/2 since γ∗ ≤ 1/2.

Then comparing the lower bound (24) with the upper bound (18) shows that if the sample size

n ≥ R2βα/2

4α4 (d1 +d2), the optimal rate of convergence is R

√
d1+d2

n
:

inf
M̂

sup
M∈Kmax(α,R)

1

d1d2

E‖M̂−M‖2
F ≍ R

√
d1 +d2

n
,

and the max-norm constrained maximum likelihood estimate (13) is rate-optimal. If the target

matrix M∗ is known to have rank at most r, we can take R = α
√

r, such that the requirement here on

the sample size n≥ βα/2

4α2 r(d1+d2) is weak and the optimal rate of convergence becomes α

√
r(d1+d2)

n
.

3.5 Comparison to Prior Work

In this paper, we study a matrix completion model proposed in Davenport et al. (2012), in which

it is assumed that a binary matrix is observed at random from a distribution parameterized by an

unknown matrix which is (approximately) low-rank. It is noteworthy that some earlier papers on

collaborative filtering or matrix completion, including Srebro et al. (2005) and references therein,

also dealt with binary observations that are assumed to be noisy versions of the underlying matrix,

in Logistic or Bernoulli conditional model. The goal there is to predict directly the quantized values,

or equivalently, to reconstruct the sign matrix, instead of the underlying real values, therefore the

non-identifiability issue could be avoided.

We next turn to a detailed comparison of our results for 1-bit matrix completion to those obtained

in Davenport et al. (2012), also for approximately low-rank matrices. Using the trace-norm as
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a proxy to rank, Davenport et al. (2012) have studied 1-bit matrix completion under the uniform

sampling distribution over the parameter space K∗(α,r) as given in (11), for some α > 0 and r ≤
min{d1,d2} is a positive integer. To recover the unknown M∗ ∈ K∗(α,r), given a collection of

observations YS where S follows a Bernoulli model, that is, every entry (k, l)∈ [d1]× [d2] is observed

independently with equal probability n
d1d2

, they propose the following trace-norm constrained MLE

M̂tr = argmin
M∈K∗(α,r)

ℓS(M;Y )

and prove that for a sample size n ≥ d log(d), d = d1 +d2, with high probability,

1

d1d2

‖M̂tr −M∗‖2
F . βαLαα

√
rd

n
. (25)

Comparing to (18) with R = α
√

r, it is easy to see that under the uniform sampling model, the

error bounds in (rescaled) Frobenius norm for the two estimates M̂max and M̂tr are of the same

order. Moreover, Theorem 3 in Davenport et al. (2012) and Theorem 5, respectively, provide lower

bounds showing that both M̂tr and M̂max achieve the minimax rate of convergence for recovering

approximately low-rank matrices over the parameter spaces K∗(α,r) and Kmax(α,R) respectively.

As mentioned in the introduction, the uniform sampling distribution assumption is restrictive

and not valid in many applications including the well-known Netflix problem. When the sampling

distribution is non-uniform, it was shown in Salakhutdinov and Srebro (2010) that the standard

trace-norm regularized method might fail, specifically in the setting where the row and column

marginal distributions are such that certain rows or columns are sampled with very high probabil-

ities. Moreover, it was proposed to use a weighted variant of the trace-norm, which incorporates

the knowledge of the true sampling distribution in its construction, and showed experimentally that

this variant indeed leads to superior performance. Using this weighted trace-norm, Negahban and

Wainwright (2012) provided theoretical guarantees on approximate low-rank matrix completion in

general sampling case while assuming that each row and column is sampled with positive probabil-

ity (see condition (17)). In addition, requiring that the probabilities to observe an element from any

row or column are of order O((d1 ∧ d2)
−1), Klopp (2012) analyzed the performance of the trace-

norm penalized estimators, and provided near-optimal (up to a logarithmic factor) bounds which are

similar to the bounds in this paper.

Next we provide an analysis of the performance of the weighted trace-norm in 1-bit matrix

completion. Given the knowledge of the true sampling distribution, we establish an upper bound on

the error in recovering M∗, which comparing to (25), includes an additional log1/2(d) factor. We do

not rule out the possibility that this logarithmic factor might be an artifact of the technical tools used

in proof described below. The proof in Davenport et al. (2012) for the trace-norm regularization in

uniform sampling case may also be extended to the weighted trace-norm method under the general

sampling model, by using the matrix Bernstein inequality instead of Seginer’s theorem. The extra

logarithmic factor, however, is still inevitable based on this argument. We will not pursue the details

in this paper.

Given a sampling distribution Π = {πkl} on [d1]× [d2], define its row- and column-marginals as

πk· =
d2

∑
l=1

πkl and π·l =
d1

∑
k=1

πkl ,
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respectively. Under the condition (17), we have

πk· ≥
1

µd1

, π·l ≥
1

µd2

, for all (k, l) ∈ [d1]× [d2]. (26)

As in Salakhutdinov and Srebro (2010), consider the following weighted trace-norm with respect to

the distribution Π:

‖M‖w,∗ := ‖Mw‖∗ =
∥∥diag(

√
π1·, ...,

√
πd1·) ·M ·diag(

√
π·1, ...,

√
π·d2

)
∥∥
∗, (27)

where (Mw)k,l :=
√

πk·π·lMk,l . Notice that if M has rank at most r and ‖M‖∞ ≤ α, then

‖M‖w,∗ ≤
√

r‖M‖F =
√

r

( d1

∑
k=1

d2

∑
l=1

πk·π·lM
2
k,l

)1/2

≤ α
√

r.

Analogously to the previous studied class K∗(α,r), as given in (11), containing the low trace-norm

matrices, define

KΠ,∗ ≡ KΠ,∗(r,α) =
{

M ∈ R
d1×d2 : ‖M‖w,∗ ≤ α

√
r,‖M‖∞ ≤ α

}

and consider estimating the unknown M∗ ∈ KΠ,∗ by solving the following optimization problem:

M̂w,tr = argmin
M∈KΠ,∗

ℓS(M;Y ). (28)

The following theorem states that the weighted trace-norm regularized approach can be nearly as

good as the max-norm regularized estimator (up to logarithmic and constant factors), under a general

sampling distribution that is not too far from uniform. The theoretical performance of the weighted

trace-norm is first studied by Foygel et al. (2011) in the standard matrix completion problems under

arbitrary sampling distributions.

Theorem 7 Suppose that Condition U holds but with M∗ ∈ KΠ,∗, and assume that the training set

S follows a general weighted sampling model according to the distribution Π satisfying (17). Then

there exists an absolute constant C > 0 such that, for a sample size n ≥ µmin{d1,d2} log(d) and

any δ > 0, the minimizer M̂w,tr of the optimization program (28) satisfies

‖M̂w,tr −M∗‖2
Π ≤Cβα

{
Lαα

√
µrd log(d)

n
+Uα

√
log(4/δ)

n

}
, (29)

with probability at least 1−δ.

Since the construction of weighted trace-norm ‖ · ‖w,∗ highly depends on the underlying sam-

pling distribution which is typically unknown in practice, the constraint M∗ ∈ KΠ,∗ seems to be

artificial. The max-norm constrained approach, on the contrary, does not require the knowledge of

the exact sampling distribution and the error bound in weighted Frobenius norm, as shown in (16),
holds even without prior assumption on Π, for example, condition (17). Moreover, to ensure that

the weighted trace-norm regularized method performs well, it is necessary that the marginals are

not too small or equivalently that

µ = max

{
1

d1πk·
∨ 1

d2π·l
: k, l ∈ [d1]× [d2]

}
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is not too large. Otherwise, both the error bounds in (29) and the sample complexity

µmin{d1,d2} log(d) would grow larger with µ when the marginals were far from uniform. We

conjecture that the factor µ would also appear in the results that are extended from those in Daven-

port et al. (2012). As evident in Theorem 3, using the max-norm based regularization does not lead

to a deterioration in either the error bounds or the sample complexity when the sampling distribution

was far from uniform.

To clarify the major difference between the principles behind (25) and (29), we remark that

one of the key technical tools used in Davenport et al. (2012) is a bound of Seginer (2000) on

the spectral norm of a random matrix with i.i.d. zero mean entries (corresponding to the uniform

sampling distribution), that is, for any h ≤ 2log(max{d1,d2}),

E[‖A‖h]≤ Kh
(
E

[
max

k=1,...,d1

‖ak·‖h
2

]
+E

[
max

j=1,...,d2

‖a·l‖h
2

])
,

where ak· (resp. a·l) denote the rows (resp. columns) of A and K is a universal constant. Under

the non-uniform sampling model, we will deal with a matrix with independent entries that are

not necessarily identically distributed, to which case an alternative result of Latala (2005) can be

applied, that is,

E[‖A‖]≤ K′
(

max
k=1,...,d1

E‖ak·‖2 + max
j=1,...,d2

E‖a·l‖2 +
(
∑
k,l

Ea4
kl

)1/4])
,

or instead, resorting to the matrix Bernstein inequality. Using either inequality would thus bring an

additional logarithmic factor, appeared in (29).
It is also worth noticing that though the sampling distribution is not known exactly in practice,

its empirical analogues are expected to be stable enough as an alternative. According to Foygel et al.

(2011), given a random sample S = {(it , jt)}n
t=1, consider the empirical marginals

π̂r(i) =
#{t : it = i}

n
, π̂c( j) =

#{t : jt = j}
n

and π̂i j = π̂r(i)π̂c( j),

as well as the smoothed empirical marginals

π̌r(i) =
1

2
(π̂r(i)+1/d1), π̂c( j) =

1

2
(π̂c( j)+1/d2) and π̌i j = π̌r(i)π̌c( j).

The smoothed empirically-weighted trace-norm ‖ · ‖w̌,∗ can be defined in the same spirit as in the

definition (27) of weighted trace-norm, only with {πi j} replaced by {π̌i j}. Then the unknown

matrix can be estimated via regularization on the π̌-weighted trace-norm, that is,

M̌w̌,tr = argmin
{
ℓS(M;Y ) : ‖M‖∞ ≤ α, ‖M‖w̌,∗ ≤ α

√
r
}
.

Adopting Theorem 4 in Foygel et al. (2011) to the current 1-bit problem will lead to a learning

guarantee similar to (29).

4. Computational Algorithm

Problems of the form (13) can now be solved using a variety of algorithms, including interior

point method (Srebro et al., 2005), Frank-Wolfe-type algorithm (Jaggi, 2013) and projected gradient
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method (Lee et al., 2010). The first two are convex methods with guaranteed convergence rates to

the global optimum, though can be slow in practice and might not scale to matrices with hundreds

of rows or columns. We describe in this section a simple first order method due to Lee et al. (2010),

which is a special case of a projected gradient algorithm for solving large-scale convex programs

involving the max-norm. This method is non-convex, but as long as the size of the problem is

large enough, it is guaranteed that each local minimum is also a global optimum, due to Burer and

Monteiro (2003).

We start from rewriting the original problem as an optimization over factorizations of a matrix

M ∈R
d1×d2 into two terms M =UV T , where U ∈R

d1×k and V ∈R
d2×k for some 1≤ k ≤ d = d1+d2.

More specifically, for any 1 ≤ k ≤ d fixed, define

Mk(R) :=
{

UV T : U ∈ R
d1×k,V ∈ R

d2×k,max{‖U‖2
2,∞,‖V‖2

2,∞} ≤ R
}
.

Then the global optimum of (13) is equal to that of

minimize ℓ(M;Y )

subject to M ∈ Mk(R), ‖M‖∞ ≤ α. (30)

Here we write ℓ(M;Y ) = 1
|S|ℓS(M;Y ) for brevity. This problem is non-convex, come with no guaran-

teed convergence rates to the global optimum. A surprising fact is that when k ≥ 1 is large enough,

this problem has no local minimum (Burer and Monteiro, 2003). Notice that ℓ(·;Y ) is differentiable

with respect to the first argument, then (30) can be solved iteratively via the following updates:

[
U(τ)
V (τ)

]
=

[
U t − τ√

t
·∇ f (U t(V t)T ;Y )V t

V t − τ√
t
·∇ f (U t(V t)T ;Y )TU t

]
,

where τ > 0 is a stepsize parameter and t = 0,1,2, .... Next, we project (U(τ),V (τ)) onto Mk(R)
according to [

Ũ t+1

Ṽ t+1

]
= PR

([
U(τ)
V (τ)

])
.

This orthogonal projection can be computed by re-scaling the rows of the current iterate whose ℓ2-

norms exceed R so that their norms become exactly R, while rows with norms already less than R

remain unchanged. If ‖Ũ t+1(Ṽ t+1)T‖∞ > α, we replace

[
Ũ t+1

Ṽ t+1

]
with

√
α

‖Ũ t+1(Ṽ t+1)T‖1/2
∞

[
Ũ t+1

Ṽ t+1

]
,

otherwise we keep it still. The resulting update is then denoted by (U t+1,V t+1).
It is important to note that the choice of k must be large enough, at least as big as the rank of M∗.

Suppose that, before solving (13), we know that the target matrix M∗ has rank at most r∗. Then it

is best to solve (30) for k = r∗+1 in the sense that, if we choose k ≤ r∗, then (30) is not equivalent

to (13), and if we take k > r∗+ 1, then we would be solving a larger program than necessary. In

practice, we do not know the exact value of r∗ in advance. Nevertheless, motivated by Burer and

Monteiro (2003), we suggest the following scheme to solve the problem which avoids solving (30)
for r ≫ r∗:
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(1) Choose an initial small k and compute a local minimum (U,V ) of (30), using above projected

gradient method.

(2) Use an optimization technique to determine whether the injections Û of U into R
d1×(k+1) and

V̂ of V into R
d2×(k+1) comprise a local minimum of (30) with the size increased to k+1.

(3) If (Û ,V̂ ) is a local minimum, then we can take M = UV T as the final solution; otherwise

compute a better local minimum (Ũ ,Ṽ ) of (30) with size k + 1 and repeat step (2) with

(U,V ) = (Ũ ,Ṽ ) and k = k+1.

It was also suggested in Lee et al. (2010) that when dealing with extremely large data sets with

S consisting of hundreds of millions of index pairs, one may consider using a stochastic gradient

method based on the following decomposition for ℓ, that is,

ℓ(UV T ;Y ) =
1

|S| ∑
(i, j)∈S

g(uT
i v j;Yi, j) with

g(t;y) = 1{y=1} log

(
1

F(t)

)
+1{y=−1} log

(
1

1−F(t)

)
,

where S ⊂ [d1]× [d2] is a training set of row-column indices, ui and v j denote the i-th row of U

and j-th row of V, respectively. The stochastic gradient method says that at t-th iteration, we only

need to pick one training pair (it , jt) at random from S, then update g(uT
it

v jt ;Yit , jt ) via the previous

procedure. More precisely, if ‖uit‖2
2 > R, we project it back so that ‖uit‖2

2 = R, otherwise we do not

make any change (do the same for v jt ). Next, if |uT
it

v jt |> α, replace uit and vit with
√

αuit/|uT
it

v jt |1/2

and
√

αvit/|uT
it

v jt |1/2 respectively, otherwise we keep everything still. At the t-th iteration, we do

not need to consider any other rows of U and V . This simple algorithm could be computationally as

efficient as optimization with the trace-norm.

5. Numerical Results

In this section, we report the simulation results for low-rank matrix recovery based on 1-bit observa-

tions. In all cases presented below, we solved the convex program (30) by using our implementation

in MATLAB of the projected gradient algorithm proposed in Section 4 for a wide range of values

of the step-size parameter τ.

We first consider a rank-2, d × d target matrix M∗ with eigenvalues {d/
√

2,d/
√

2,0, ...,0},

so that ‖M∗‖F/d = 1. We choose to work with the Gaussian conditional model under uniform

sampling. Let YS be the noisy binary observations with S = {(i1, j1), ...,(it , jt)}, that is, for (i, j)∈ S,

Yi, j =

{
+1, with probability Φ(M∗

i, j/σ),

−1, with probability 1−Φ(M∗
i, j/σ),

and the objective function is given by

ℓS(M;Y ) =
1

|S|

{
∑

(i, j)∈Ω+

log
[ 1

Φ(Mi, j/σ)

]
+ ∑

(i, j)∈Ω−
log

[ 1

1−Φ(Mi, j/σ)

]}
,

where Ω+ = {(i, j) ∈ S : Yi, j = 1} and Ω− = {(i, j) ∈ S : Yi, j = −1}. In Figure 1, averaging the

results over 20 repetitions, we plot the squared Frobenius norm of the error (normalized by the
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Figure 1: Plot of the average Frobenius error ‖M̂ −M∗‖2
F/d2 versus the sample size s for three

different matrix sizes d ∈ {80,120,160}, all with rank r = 2.

dimension) ‖M̂ −M∗‖2
F/d2 versus a range of sample sizes s = |S|, with the noise level σ taken to

be α/2, for three different matrix sizes, d ∈ {80,120,160}. Naturally, in each case, the Frobenius

error decays as s increases, although larger matrices require larger sample sizes, as reflected by the

upward shift of the curves as d is increased.

Next, we compare the performance of the max-norm based regularization with that of the trace-

norm using the same criterion as in Davenport et al. (2012). More specifically, the target matrix M∗

is constructed at random by generating M = LRT , where L and R are d×r matrices with i.i.d. entries

drawn from Uniform [−1/2,1/2], so that rank(M∗) = r. It is then scaled such that ‖M∗‖∞ = 1,

while in the last case, M∗ is formed such that ‖M∗‖F/d = 1. As before, we focus on the Gaussian

conditional model but with noise level σ varies from 10−3 to 10, and set d = 500, r = 1 and s =
0.15d2, which is exactly the same case studied in Davenport et al. (2012). We plot in Figure 2 the

squared Frobenius norm of the error (normalized by the norm of the underlying matrix M∗) over a

range of different values of noise level σ on a logarithmic scale. As evident in Figure 2, the max-

norm based regularization performs slightly but consistently better than the trace-norm, except on

the one point where σ = log10(0.25). Also, we see that for both methods, the performance is poor

when the noise is either too little or too much.

In the third experiment, we consider matrices with dimension d = 200 and choose a moderate

level of noise, that is, σ = log10(−0.75), according to previous experiences. Figure 3 plots the

relative Frobenius norm of the error versus the sample size s for three different matrix ranks, r ∈
{3,5,10}. Indeed, larger rank means larger intrinsic dimension of the problem, and thus increases

the difficulty of any reconstruction procedure.
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Figure 2: Plot of the relative Frobenius error ‖M̂ −M∗‖2
F/‖M∗‖2

F versus the noise level σ on a

logarithmic scale, with rank r = 1, using both max-norm and trace-norm constrained

methods.
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Figure 3: Plot of the relative Frobenius error versus the rescaled sample size s/d2 for three different

ranks r ∈ {3,5,10}, all with matrix size d = 200.
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6. Discussion

This paper studies the problem of recovering a low-rank matrix based on highly quantized (to a

single bit) noisy observation of a subset of entries. The problem was first formulated and analyzed

by Davenport et al. (2012), where the authors consider approximately low-rank matrices in terms

that the singular values belong to a scaled Schatten-1 ball. When the infinity norm of the unknown

matrix M∗ is bounded by a constant and its entries are observed uniformly in random, they show

that M∗ can be recovered from binary measurements accurately and efficiently.

Our theory, on the other hand, focuses on approximately low-rank matrices in the sense that

unknown matrix belongs to certain max-norm ball. The unit max-norm ball is nearly the convex hull

of rank-1 matrices whose entries are bounded in magnitude by 1, thus is a natural convex relaxation

of low-rank matrices, particularly with bounded infinity norm. Allowing for non-uniform sampling,

we show that the max-norm constrained maximum likelihood estimation is rate-optimal up to a

constant factor, and that the corresponding convex program may be solved efficiently in polynomial

time. An interesting question naturally arises that whether it is possible to push the theory further

to cover exact low-rank matrix completion from noisy binary measurements.

The numerical study in Section 5 provides some evidence of the efficiency of the max-norm

constraint approach in 1-bit matrix completion problem. More extensive experimental studies, ap-

plications to real data, and numerical comparisons with empirically weighted trace-norm method in

a non-uniform scenario will be left as future work.

In our previous work (Cai and Zhou, 2013), we suggest to use max-norm constrained least

square estimation to study standard matrix completion (from observations where additive noise is

present) under a general sampling model. Similar error bounds are obtained, which are tight to

within a constant. Comparing both results in the case of Gaussian noise demonstrates that as long

as the signal-to-noise ratio remains constant, almost nothing is lost by quantizing to a single bit.

7. Proofs

We provide the proofs of the main results in this section.

7.1 Proof of Theorem 3

The proof of Theorem 3 is based on general excess risk bounds developed in Bartlett and Mendelson

(2002) for empirical risk minimization when the loss function is Lipschitz. We regard matrix recov-

ery as a prediction problem, that is, consider a matrix M ∈ R
d1×d2 as a function: [d1]× [d2] → R,

that is, M(k, l) = Mk,l . Moreover, define a function g(x;y) R×{±1} 7→ R, which can be seen as a

loss function:

g(x;y) = 1{y=1} log

(
1

F(x)

)
+1{y=−1} log

(
1

1−F(x)

)
.

For a subset S = {(i1, j1), ...,(in, jn)} ⊆ ([d1]× [d2])
n of the observed entries of Y , let DS(M;Y ) =

1
n ∑n

t=1 g(Mit , jt ;Yit , jt ) =
1
n
ℓS(M;Y ) be the average empirical likelihood function, where the training

set S is drawn i.i.d. according to Π (with replacement) on [d1]× [d2]. Then we have

DΠ(M;Y ) := ES∼Π[g(Mit , jt ;Yit , jt )] = ∑
(k,l)∈[d1]×[d2]

πkl ·g(Mk,l;Yk,l).
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Under condition (U3), we can consider g as a function: [−α,α]×{±1}→ R, such that for any

y ∈ {±1} fixed, g(·;y) is essentially an Lα-Lipschitz loss function. Also notice that in the current

case, Yi, j take ±1 values and appear only in indicator functions, 1{Yi, j = 1} and 1{Yi, j = −1}.

Therefore, a combination of Theorem 8, (4) of Theorem 12 from Bartlett and Mendelson (2002) as

well as the upper bound (6) on the Rademacher complexity of the unit max-norm ball yields that,

for any δ > 0, the following inequality holds with probability at least 1−δ over choosing a training

set S of 2 < n ≤ d1d2 index pairs according to Π:

sup
M∈Kmax(α,R)

(
EY DΠ(M;Y )−EY DS(M;Y )

)

≤ 17LαR

√
d

n
+Uα

√
8log(2/δ)

n
:= Rn(α,r;δ). (31)

Since M̂max is optimal and M∗ is feasible to the optimization problem (13), we have

DS(M̂max;Y )≤ DS(M
∗;Y ) =

1

n

n

∑
t=1

g(M∗
it , jt ;Yit , jt ).

Because M∗ has a fixed value which does not depend on S, the empirical likelihood term DS(M
∗;Y )

is an unbiased estimator of DΠ(M
∗;Y ), that is,

ES∼Π[DS(M
∗;Y )] = DΠ(M

∗;Y ).

Next, we will derive an upper bound on the deviation DS(M
∗;Y )−DΠ(M

∗;Y ) that holds with high

probability. To do this, let A1, ...,An be independent random variables taking values in [d1]× [d2]
according to Π, that is, P[At = (k, l)] = πkl , t = 1, ...,n, such that DS(M

∗;Y ) = 1
n ∑n

t=1 g(MAt
;YAt

)
and

DS(M
∗;Y )−DΠ(M

∗;Y ) =
1

n

n

∑
t=1

(
g(M∗

At
;YAt

)−E[g(M∗
At

;YAt
)]
)
.

Then we apply the Hoeffding’s inequality to the random variables ZAt
:= g(M∗

At
;YAt

)−E[g(M∗
At

;YAt
)],

conditionally on Y . Observe that 0 ≤ g(M∗
At

;YAt
)≤Uα almost surely for all 1 ≤ t ≤ n, therefore for

any u > 0, we have

PS∼Π

{
DS(M

∗;Y )−DΠ(M
∗;Y )> u

}
≤ exp

(
− 2nu2

U2
α

)
, (32)

which in turn implies that that with probability at least 1−δ over choosing a subset S according to

Π,

DS(M
∗;Y )−DΠ(M

∗;Y )≤Uα

√
log(1/δ)

2n
. (33)

Putting pieces together, we get

EY

[
DΠ(M̂max;Y )−DΠ(M

∗;Y )
]

= EY

[
DΠ(M̂max;Y )−DS(M

∗;Y )
]
+EY

[
DS(M

∗;Y )−DΠ(M
∗;Y )

]

≤ EY

[
DΠ(M̂max;Y )−DS(M̂max;Y )

]
+EY

[
DS(M

∗;Y )−DΠ(M
∗;Y )

]

≤ sup
M∈Kmax(α,R)

{
EY [DΠ(M;Y )]−EY [DS(M;Y )]

}
(34)

+EY

[
DS(M

∗;Y )−DΠ(M
∗;Y )

]
.
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Moreover, observe that the left-hand side of (34) is equal to

EY

[
DΠ(M̂max;Y )−DΠ(M

∗;Y )
]

= ∑
(k,l)∈[d1]×[d2]

πkl

[
F(M∗

k,l) log

(
F(M∗

k,l)

F((M̂max)k,l)

)
+(F̄(M∗

k,l)) log

(
F̄(M∗

k,l)

F̄((M̂max)k,l)

)]
,

which is the weighted Kullback-Leibler divergence between matrices F(M) and F(M̂max), denoted

by KΠ(F(M)‖F(M̂max)), where

F̄(·) := 1−F(·) and F(M) := (F(Mk,l))d1×d2
.

This, combined with (31), (33) and (34) imply that for any δ > 0, the following inequality holds

with probability at least 1−δ over S:

KΠ(F(M∗)‖F(M̂max))≤ Rn(α,r;δ/2)+Uα

√
log(2/δ)

2n
. (35)

Together, (8), (35) and Lemma 8 below establish (16).

Lemma 8 (Lemma 2, Davenport et al., 2012) Let F be an arbitrary differentiable function, and

s, t are two real numbers satisfying |s|, |t| ≤ α. Then

d2
H(F(s);F(t))≥ inf

|x|≤α

(F ′(x))2

8F(x)(1−F(x))
· (s− t)2

The proof of Theorem 3 is now completed.

7.2 Proof of Theorem 5

The proof for the lower bound follows an information-theoretic method based on Fano’s inequality

(Cover and Thomas, 1991), as used in the proof of Theorem 3 in Davenport et al. (2012). To begin

with, we have the following lemma which guarantees the existence of a suitably large packing set

for Kmax(α,R) in the Frobenius norm. The proof follows from Lemma 3 of Davenport et al. (2012)

with a simple modification, see, for example, the proof of Lemma 3.1 in Cai and Zhou (2013).

Lemma 9 Let r = (R/α)2 and γ ≤ 1 be such that r ≤ γ2 min(d1,d2) is an integer. There exists a

subset S(α,γ)⊆ Kmax(α,R) with cardinality

|S(α,γ)|=
[

exp

(
r max(d1,d2)

16γ2

)]
+1

and with the following properties:

(i) For any N ∈ S(α,γ), rank(N)≤ r
γ2 and Nk,l ∈ {±γα/2}, such that

‖N‖∞ =
γα

2
,

1

d1d2

‖N‖2
F =

γ2α2

4
.
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(ii) For any two distinct Nk,Nl ∈ S(α,γ),

1

d1d2

‖Nk −Nl‖2
F >

γ2α2

8
.

Then we construct the packing set M by letting

M =
{

N +α(1− γ/2)Ed1,d2
: N ∈ S(α,γ)

}
, (36)

where Ed1,d2
∈ R

d1×d2 is such that the (d1,d2)
th entry equals one and others are zero. Clearly,

|M |= |S(α,γ)|. Moreover, for any M ∈ M , Mk,l ∈ {α,(1− γ)α} by the construction of S(α,γ) and

(36), and

‖M‖max = ‖N +α(1− γ/2)Ed1,d2
‖max ≤

α
√

r

2
+α(1− γ/2)≤ α

√
r,

provided that r ≥ 4. Therefore, M is indeed a δ-packing of Kmax(α,R) in the Frobenius metric with

δ2 =
α2γ2d1d2

8
,

that is, for any two distinct M,M′ ∈ M , we have ‖M−M′‖F ≥ δ.

Next, a standard argument (Yang and Barron, 1999; Yu, 1997) yields a lower bound on the

‖ · ‖F -risk in terms of the error in a multi-way hypothesis testing problem. More concretely,

inf
M̂

max
M∈Kmax(α,R)

E‖M̂−M‖2
F ≥ δ2

4
min

M̃

P(M̃ 6= M⋆),

where the random variable M⋆ ∈ R
d1×d2 is uniformly distributed over the packing set M , and the

minimum is carried out over all estimators M̃ taking values in M . Applying Fano’s inequality

(Cover and Thomas, 1991) gives the lower bound

P(M̃ 6= M⋆)≥ 1− I(M⋆;YS)+ log2

log |M | , (37)

where I(M⋆;YS) denotes the mutual information between the random parameter M⋆ in M and the

observation matrix YS. Following the proof of Theorem 3 in Davenport et al. (2012), we could bound

I(M⋆;YS) as follows:

I(M⋆;YS)≤ max
M,M′∈M ,M 6=M′

K(YS|M‖YS|M′)

= max
M,M′∈M ,M 6=M′ ∑

(k,l)∈S

K(Yk,l|Mk,l‖Yk,l |M′
k,l)

≤ n[F(α)−F((1− γ)α)]2

F((1− γ)α)[1−F((1− γ)α)]
≤ nα2γ2

β(1−γ)α
,

where the last inequality holds provided that F ′(x) is decreasing on (0,∞). Substituting this into the

Fano’s inequality (37) yields

P(M̃ 6= M⋆)≥ 1−
( nα2γ2

β(1−γ)α
+ log2

)/(r(d1 ∨d2)

16γ2

)
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Recall that γ∗ > 0 solves the equation (22):

γ∗ = min

{
1

2
,

R1/2

α

(
β(1−γ∗)α(d1 ∨d2)

32n

)1/4}
.

Requiring

64log(2)(γ∗)2

d1 ∨d2

≤ r ≤ (d1 ∧d2)(γ
∗)2,

which is guaranteed by (23), to ensure that this probability is least 1/4. Consequently, we have

inf
M̂

max
M∈Kmax(α,R)

E‖M̂−M‖2
F ≥ α2(γ∗)2d1d2

128
,

which in turn implies (24).

7.3 Proof of Theorem 7

The proof of Theorem 7 modifies the proof of Theorem 3, therefore we only summarize the key

steps in the following. Let {A1, ...,An} = {(i1, j1), ...,(in, jn)} be independent random variables

taking values in [d1]× [d2] according to Π, and recall that

ℓS(M;Y ) =
s

∑
t=1

[
1{YAt =1} log

( 1

F(MAt
)

)
+1{YAt =−1} log

( 1

1−F(MAt
)

)]
.

According to Srebro et al. (2005) and the proof of Theorem 3, it suffices to derive an upper bound

on

∆ := E

[
sup

M∈KΠ,∗

n

∑
t=1

εt√
πit ·π· jt

(Mw)At

]
= E

[
sup

M∈K∗(α,r)

n

∑
t=1

εt√
πit ·π· jt

MAt

]
,

where εt are i.i.d. Rademacher random variables. Then it follows from (5) that

∆ ≤ α
√

r ·E
[

sup
‖u‖2=‖v‖2=1

n

∑
t=1

εt√
πit ·π· jt

uit v jt

]

= α
√

r ·E
[

sup
‖u‖2=‖v‖2=1

∑
i, j

(
∑

t:(it , jt)=(i, j)

εt√
πit ·π· jt

)
uiv j

]

= α
√

r ·E
[∥∥∥

n

∑
t=1

εt

eit e
T
jt√

πit ·π· jt

∥∥∥
]
.

An upper bound on the above spectral norm has been derived in Foygel et al. (2011) using a

recent result of Tropp (2012). Let Qt = εt
eit eT

jt√
πit ·π· jt

∈ R
d1×d2 be i.i.d. random matrices with zero-

mean, then the problem reduces to estimate E‖∑s
t=1 Qt‖. Following the the proof of Foygel et al.

(2011), we see that, under condition (26)

E

∥∥∥
n

∑
t=1

Qt

∥∥∥≤C
(

σ1

√
log(d)+σ2 log(d)

)
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with

σ1 = n ·max

{
max

k
∑

l

πkl

πk·π·l
, max

l
∑
k

πkl

πk·π·l

}
≤ µnmax{d1,d2},

σ2 = max
k,l

1√
πk·π·l

≤ µ
√

d1d2.

Putting above estimates together, we conclude that

∆ ≤Cα
√

r
(√

µnmax{d1,d2} log(d)+µ
√

d1d2 log(d)
)
,

which in turn yields that for any δ ∈ (0,1), inequality

KΠ(F(M∗)‖F(M̂w,tr))

≤ C

{
Lαα

√
µr max{d1,d2} log(d)

n
+Uα

√
log(4/δ)

n

}

holds with probability at least 1−δ, provided that n ≥ µmin{d1,d2} log(d).

7.4 An Extension to Sampling Without Replacement

In this paper, we have focused on sampling with replacement. We shall show here that in the

uniform sampling setting, the results obtained in this paper continue to hold if the (binary) entries

are sampled without replacement. Recall that in the proof of Theorem 3, we let A1, ...,An be random

variables taking values in [d1]× [d2], S = {A1, ...,An} and assume the At’s are distributed uniformly

and independently, that is, S ∼ Π = {πkl} with πkl ≡ 1
d1d2

. The purpose now is to prove that the

arguments remain valid when the At’s are selected without replacement, denoted by S ∼ Π0. In this

notation, we have

DS =
1

n
∑

(i, j)∈S

g(Mi, j;Yi, j) and DΠ0
= ES∼Π0

[DS] =
1

d1d2
∑
(k,l)

g(Mk,l;Yk,l).

By Lemma 3 in Foygel and Srebro (2011) and (31), for any δ > 0,

sup
M∈Kmax(α,R)

(
EY DΠ0

(M;Y )−EY DS(M;Y )
)
≤ 17LαR

√
d

n
+Uα

√
8(log(4n)+ log(2/δ))

n

holds with probability at least 1− δ over choosing a training set S of 2 < n ≤ d1d2 index pairs

according to Π0. Next, observe that the large deviation bound (32) for the sum of independent

bounded random variables is a direct consequence of Hoeffding’s inequality. To see how inequality

(32) may be extended to the current case, we start with a more general problem. Let C be a finite

set with cardinality N. For 1 ≤ n ≤ N, let X1, ...,Xn be independent random variables taking values

in C uniformly at random, such that (X1, ...,Xn) is a C n-valued random vector modeling sampling

with replacement from C . On the other hand, let (Y1, ...,Yn) be a C n-valued random vector sampled

uniformly without replacement. Assume that Xi is centered and bounded, and write SX = ∑n
i=1 Xi,

SY = ∑n
i=1Yi. Then a large deviation bound holds for SX by Hoeffding’s inequality. In the proof, the

tail probability is bounded from above in terms of the moment-generating function, say, mX(λ) =
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Eexp(λSX). According to the notion of negative association (Joag-Dev and Proschan, 1983), it is

well-known that mY (λ) = Eexp(λSY )≤ mX(λ), which in turn gives a similar large deviation bound

for SY . Therefore, inequalities (32) and (33) are still valid if Π is replaced by Π0. Keep all other

arguments the same, we get the desired result.
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