
Statistica Sinica 28 (2018), 63-92
doi:https://doi.org/10.5705/ss.202016.0032

TWO-SAMPLE TESTS FOR HIGH-DIMENSIONAL

LINEAR REGRESSION WITH AN APPLICATION

TO DETECTING INTERACTIONS

Yin Xia, Tianxi Cai and T. Tony Cai

Fudan University, Harvard University and University of Pennsylvania

Abstract: Motivated by applications in genomics, we consider in this paper global

and multiple testing for the comparisons of two high-dimensional linear regression

models. A procedure for testing the equality of the two regression vectors glob-

ally is proposed and shown to be particularly powerful against sparse alternatives.

We then introduce a multiple testing procedure for identifying unequal coordinates

while controlling the false discovery rate and false discovery proportion. Theo-

retical justifications are provided to guarantee the validity of the proposed tests

and optimality results are established under sparsity assumptions on the regression

coefficients. The proposed testing procedures are easy to implement. Numerical

properties of the procedures are investigated through simulation and data analysis.

The results show that the proposed tests maintain the desired error rates under

the null and have good power under the alternative at moderate sample sizes. The

procedures are applied to the Framingham Offspring study to investigate the inter-

actions between smoking and cardiovascular related genetic mutations important

for an inflammation marker.
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1. Introduction

As we enter a new era of data science, called by some the “information

century”, research in several novel genomics and epigenomics fields are well un-

derway. Large-scale genome-wide scans, such as genome-wide association studies,

have become widely available tools for identifying common genetic variants that

contribute to complex diseases and treatment responses (McCarthy et al. (2008);

Venter et al. (2001)). However, there is growing evidence that genetic variants

alone explain only a small proportion of variations in complex disease phenotypes.

Most complex diseases are a result of interplay between genes and environment
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(Hunter (2005)). It is thus of substantial interest to rigorously study the ef-

fects of environment and its interaction with genetic predispositions on disease

phenotypes.

When the environmental factor is a binary variable such as smoking status

or gender, such interaction problems can be addressed through the two-sample

high-dimensional regression framework. Specifically, interaction detection can be

formulated based on comparing two high-dimensional regression models

Yd = µd +Xdβd + εd, for d = 1, 2, (1.1)

and identifing the nonzero components of β1−β2, where βd = (β1,d, . . . , βp,d)
T ∈

Rp, µd = (µ1,d, . . . , µnd,d)
T, Xd = (XT

1,·,d, . . . ,X
T

nd,·,d)
T, Yd = (Y1,d, . . . , Ynd,d)

T,

and εd = (ε1,d, . . . , εnd,d)
T, with {εk,d} being independent and identically dis-

tributed (i.i.d) random variables with mean zero and variance σ2εd and indepen-

dent of Xk,·,d, k = 1, . . . , nd. Two-sample interaction detection problems arise

in many other biomedical settings. For example, when the two samples repre-

sent diseased and non-diseased group and Y represents a diagnostic test, and

the non-zero components of β1 − β2 represent the covariates that affect the di-

agnostic accuracy of Y (Pepe (2003)). When the two samples represent two

treatment groups, the proposed testing procedures have important applications

in personalized medicine. The non-zero components of β1 − β2 correspond to

markers useful for individualized treatment selection since the rule that optimize

the treatment selection for an individual patient with genomic markers X can

be formed based on (β1 − β2)
TX (Matsouaka, Li and Cai (2014)). However,

the high dimensionality of the genomic data presents substantial statistical chal-

lenges in efficiently identifying gene-environment interactions and markers useful

for personalized treatment selection.

There is a paucity of literature focusing on multiple testing of the regression

coefficients in the high-dimensional two-sample setting while controlling the false

discovery rate (FDR) and false discovery proportion (FDP). For example, Zhang

and Zhang (2014), Van de Geer et al. (2014), and Javanmard and Montanari

(2013, 2014) considered confidence intervals and tests for a given coordinate of a

high-dimensional linear regression vector. Procedures that are based on the “de-

biased” Lasso estimators were proposed. The focus was solely on inference for a

given coordinate and simultaneous testing of all coordinates was not considered.

Recently, Liu and Luo (2014) investigated the one-sample version of the multiple

testing problem, testing simultaneously

H ′0,i : βi,1 = 0 versus H ′1,i : βi,1 6= 0, i = 1, . . . , p,
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with the control of FDR. They constructed the test statistics based on bias-

corrected sample covariances of the residuals and inverse regression, as explained

in detail in Section 2.2. The one-sample setting is simpler than the two-sample

multiple testing problem considered in the present paper. For example, their

proposed test statistics have desirable theoretical properties due to the facts that

(i) they are asymptotically normally distributed under H ′0,i : βi,1 = 0, and (ii) the

correlation between two test statistics is equal to the partial correlation between

two covariates, which is fully determined by the precision matrix. However, those

properties no longer hold when we extend the hypothesis testing problem to two

samples as described in (1.3).

In this paper, we are interested in developing efficient procedures for testing

β1 − β2. The first goal is to develop a global test for

H0 : β1 = β2 versus H1 : β1 6= β2 (1.2)

that is powerful against sparse alternatives. We then develop a procedure for

simultaneously testing the hypotheses

H0,i : βi,1 = βi,2 versus H1,i : βi,1 6= βi,2, i = 1, . . . , p, (1.3)

with FDR and FDP control. The test statistics are constructed using the covari-

ances between the residuals of the fitted regression models and the inverse re-

gression models. Although the techniques build on the inverse regression method

developed in Liu and Luo (2014) for the one-sample case, the two-sample case

poses significant additional difficulties in both methodology development and

technical analyses. We point out here two such major challenges and more de-

tailed discussion is given in Section 2.3.

(a) The construction of test statistics is much more involved than the one-

sample case. This is mainly due to the fact that the difference of regression

coefficients can no longer be reduced to the difference of residual covariances

as in the one-sample setting. Furthermore, corrections of the test statistics

are essential in the two-sample case to establish the asymptotic normality.

(b) The technical analyses of the two-sample case are much more challenging.

This is because the one-sample case can be easily reduced to a weakly corre-

lated testing problem provided that the precision matrix of the covariates is

sparse or nearly sparse, while the two-sample case cannot as the correlation

structure is much more complicated.

The properties of the proposed testing procedures are investigated theoret-

ically as well as numerically through simulation and data analysis. Theoretical
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justifications are provided to ensure the validity of the proposed tests and opti-

mality results are established under sparsity assumptions on the regression coef-

ficients. A simulation study is carried out to demonstrate that the proposed tests

maintain the desired error rates under the null and have good power under the

alternative at moderate sample sizes. The simulation results also show that the

new multiple testing procedure outperforms the well known Benjamini-Yekutieli

procedure (Benjamini and Yekutieli (2001)). In addition, the proposed testing

procedures are illustrated by an application to the Framingham Offspring Study

(Kannel et al. (1979)) to study how smoking and its interaction with a genetic

predisposition affect an inflammation marker which plays an important role in

the risk of developing cardiovascular disease.

The rest of the paper is organized as follows. In Section 2, we introduce the

construction of the new test statistics and discuss the technical differences and

theoretical challenges of the two-sample testing problems. Section 3 develops a

maximum-type statistic Mn and the corresponding test for the global hypothesis

H0 : β1 = β2 through the inverse regression framework. We establish in this

section the asymptotic null distribution of Mn and show the optimality results

under sparse alternatives. Large-scale multiple testing with FDR and FDP con-

trol is presented in Section 4. Section 5 investigates the numerical performance

of the proposed procedures by simulations. In Section 6, we apply the proposed

procedures to the Framingham Offspring Study. The proofs of the main results

are given in Section 8.

2. Methodology

2.1. Notation and definitions

We first introduce the notation and definitions that will be used throughout

the paper. For a vector βd = (β1,d, . . . , βp,d)
T ∈ Rp, define the `q norm by |βd|q =

(
∑p

i=1 |βi,d|q)1/q for 1 ≤ q ≤ ∞. For subscripts, we use the convention that i

stands for the ith entry of a vector and (i, j) for the entry in the ith row and jth

column of a matrix, k represents the kth sample and d is the group indicator. Let

Xd = (XT

1,·,d, . . . ,X
T

nd,·,d)
T be the nd× p data matrix, and Yd = (Y1,d, . . . , Ynd,d)

T

be the nd × 1 data matrix, for d = 1, 2. Throughout, suppose that we have i.i.d

random samples {Yk,d,Xk,·,d, 1 ≤ k ≤ nd} with Xk,·,d = (Xk,1,d, . . . , Xk,p,d) being

a random vector with covariance matrix Σd for d = 1, 2. Define Σ−1d = Ωd =

(ωi,j,d).

For any vector µd ∈ Rp, let µ−i,d denote the (p − 1)-dimensional vector
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formed by removing the ith entry from µd. For a symmetric matrix Ad, let

λmax(Ad) and λmin(Ad) denote the largest and smallest eigenvalues of Ad, re-

spectively. For any n × p matrix Ad, Ai,−j,d denotes the ith row of Ad with its

jth entry removed and A−i,j,d denotes the jth column of Ad with its ith entry

removed. A−i,−j,d denotes the (n− 1)× (p− 1) submatrix of Ad with its ith row

and jth column removed. Let A·,−j,d denote the n × (p − 1) submatrix of Ad

with the jth column removed, Ai,·,d denote the ith row of Ad, A·,j,d denote the

jth column of Ad and Ā·,j,d = 1/n
∑n

i=1Ai,j,d. Let Ā·,−j,d = 1/n
∑n

i=1Ai,−j,d,

Ā·,j,d = (Ā·,j,d, . . . , Ā·,j,d)
T

n×1, and Ā(·,−j,d) = (ĀT

·,−j,d, . . . , Ā
T

·,−j,d)
T

n×(p−1). Let

Ād = 1/n
∑n

i=1Ai,·,d. For a matrix Ω = (ωi,j)p×p, the matrix 1-norm is the

maximum absolute column sum, ‖Ω‖L1
= max1≤j≤p

∑p
i=1 |ωi,j |, the matrix ele-

mentwise infinity norm is defined to be ‖Ω‖∞ = max1≤i,j≤p |ωi,j | and the elemen-

twise `1 norm is ‖Ω‖1 =
∑p

i=1

∑p
j=1 |ωi,j |. For a set H, let |H| be the cardinality

of H. For two sequences of real numbers {an} and {bn}, write an = O(bn) if

there exists a constant C such that |an| ≤ C|bn| holds for all n, write an = o(bn)

if limn→∞ an/bn = 0, and write an � bn if there are positive constants c and C

such that c ≤ an/bn ≤ C for all n.

2.2. Test statistics

To form the test statistics, we consider the inverse regression models obtained

by regressing Xk,i,d on (Yk,d,Xk,−i,d), as introduced in Liu and Luo (2014)

Xk,i,1 = αi,1 + (Yk,1,Xk,−i,1)γi,1 + ηk,i,1, (k = 1, . . . , n1),

Xk,i,2 = αi,2 + (Yk,2,Xk,−i,2)γi,2 + ηk,i,2, (k = 1, . . . , n2),

where for d = 1, 2, ηk,i,d has mean zero and variance σ2ηi,d and is uncorrelated

with (Yk,d,Xk,−i,d), and γi,d = (γi,1,d, . . . , γi,p,d)
T satisfies

γi,d = −σ2ηi,d

(
−
βi,d
σ2εd

,
βi,dβ

T

−i,d
σ2εd

+ Ωi,−i,d

)
T

, (2.1)

where σ2ηi,d = (β2i,d/σ
2
εd + ωi,i,d)

−1, as provided in Liu and Luo (2014).

Remark 1. Equation (2.1) can be obtained directly as follows. Denote the

covariance matrix of Z = (Xk,i,d, Yk,d,Xk,−i,d) by Σ = Cov(Z). Section 2.5 of

Anderson (2003) shows that γi,d can be obtained by γi,d = Σ−122 Σ21, where Σ22 =

Cov(Z1) with Z1 = (Yk,d,Xk,−i,d) and Σ21 = Cov(Z1, Xk,i,d) is the covariance

between Z1 and Xk,i,d. Then (2.1) follows from the regression model Yd =

µd +Xdβd + εd and the fact that Xd and εd are uncorrelated with each other.

Because ri,d = Cov(εk,d, ηk,i,d) can be expressed as −γi,1,dCov(εk,d, Yk,d) =
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−γi,1,dσ2εd = −σ2ηi,dβi,d, the null hypotheses in global testing problem (1.2) and

entry-wise testing problem (1.3) would be, respectively, equivalent to

H0 : max
1≤i≤p

∣∣∣∣ ri,1σ2ηi,1
− ri,2
σ2ηi,2

∣∣∣∣ = 0, (2.2)

and

H0,i :
ri,1
σ2ηi,1

=
ri,2
σ2ηi,2

, i = 1, . . . , p, (2.3)

and we base the tests on the estimates of {ri,d/σ2ηi,d , i = 1, . . . , p; d = 1, 2}.
Define the residuals

ε̂k,d = Yk,d − Ȳd − (Xk,·,d − X̄d)β̂d,

η̂k,i,d = Xk,i,d − X̄i,d − (Yk,d − Ȳd, (Xk,−i,d − X̄·,−i,d))γ̂i,d,

where β̂d = (β̂1,d, . . . , β̂p,d) and γ̂i,d = (γ̂i,1,d, . . . , γ̂i,p,d) are the respective esti-

mators of βd and γi,d satisfy

max{|β̂d − βd|1, max
1≤i≤p

|γ̂i,d − γi,d|1} = OP(an1),

max{|β̂d − βd|2, max
1≤i≤p

|γ̂i,d − γi,d|2} = OP(an2), (2.4)

for some an1 and an2 such that

max{an1an2, a2n2} = o{(n log p)−1/2}, and an1 = o

(
1

log p

)
. (2.5)

Estimators β̂d and γ̂i,d that satisfy (2.4) and (2.5) can be obtained easily via

standard methods such as the lasso and Danzig selector, see, for example, Xia,

Cai and Cai (2015) and Liu and Luo (2014).

Based on the residuals ε̂k,d and η̂k,i,d, a natural estimator of ri,d is the sample

covariance between the residuals,

r̃i,d = n−1d

nd∑
k=1

ε̂k,dη̂k,i,d.

Because r̃i,d tends to be biased, we define a bias corrected estimator for ri,d as

r̂i,d = r̃i,d + σ̂2εd γ̂i,1,d + σ̂2ηi,d β̂i,d, (2.6)

where σ̂2εd = n−1d
∑nd

k=1 ε̂
2
k,d and σ̂2ηi,d = n−1d

∑nd
k=1 η̂

2
k,i,d are the sample variances

satisfying

max{|σ̂2εd − σ
2
εd |, max

1≤i≤p
|σ̂2ηi,d − σ

2
ηi,d |} = OP

{(
log p

nd

)1/2}
,

which can be obtained by Lemma 2 in Xia, Cai and Cai (2015) under conditions

(2.4) and (2.5). By Lemma 2, the bias of r̂i,d is then of order max{βi,d(log p/nd)
1/2,
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(nd log p)−1/2}.

Remark 2. The most straightforward way to estimate ri,d is to use the sample

covariance between the error terms, n−1d
∑nd

k=1 εk,dηk,i,d. However, the error terms

are unknown, and we can use the the sample covariance between the residuals

r̃i,d instead. The bias of r̃i,d exceeds the desired rate (nd log p)−1/2, and thus

we calculate the difference of r̃i,d and n−1d
∑nd

k=1 εk,dηk,i,d, which up to order

(nd log p)−1/2, is equal to σ̂2εd γ̂i,1,d + σ̂2ηi,d β̂i,d. Hence, we define r̂i,d = r̃i,d +

σ̂2εd γ̂i,1,d + σ̂2ηi,d β̂i,d as in (2.6).

For i = 1, . . . , p and d = 1, 2, a natural estimator of ri,d/σ
2
ηi,d can then be

defined by

Ti,d =
r̂i,d
σ̂2ηi,d

. (2.7)

Subsequently, we may test the hypotheses (1.2) and (1.3) using the estimators

T = {Ti,1−Ti,2 : i = 1, . . . , p}. However, since Ti,1−Ti,2 in T are heteroscedastic

with possibly a wide range of variability, we instead consider a standardized

version of Ti,1 − Ti,2. Specifically, let

Ui,d = n−1d

nd∑
k=1

{εk,dηk,i,d − E(εk,dηk,i,d)} and Ũi,d =
(βi,d + Ui,d)

σ2ηi,d
.

It can be shown in Lemma 2 that, uniformly in i = 1, . . . , p,

|Ti,d − Ũi,d| = OP

{
βi,d

(
log p

nd

)1/2}
+ oP{(nd log p)−1/2}.

Noting that θi,d = Var(Ũi,d) = Var(εk,dηk,i,d/σ
2
ηi,d)/nd = (σ2εd/σ

2
ηi,d + β2i,d)/nd, we

estimate θi,d by

θ̂i,d =
(σ̂2εd/σ̂

2
ηi,d + β̂2i,d)

nd
,

and define the standardized statistics

Wi =
Ti,1 − Ti,2

(θ̂i,1 + θ̂i,2)1/2
, i = 1, . . . , p. (2.8)

We base the tests for (1.2) and (1.3) on {Wi, i = 1, . . . , p}, which will be studied

in detail in Sections 3 and 4.

2.3. Discussion

We discuss here the substantial differences between the two-sample and one-

sample cases and the necessity for significant adjustments and corrections in the

two-sample setting.



70 YIN XIA, TIANXI CAI AND T. TONY CAI

The proposed tests are based on estimators of ri,1/σ
2
ηi,1 − ri,2/σ

2
ηi,2 . Here

we estimate ri,d = Cov(εk,d, ηk,i,d) through constructing a bias-corrected sample

covariance between the residuals, r̂i,d, as defined in (2.6). That is, we need to

get an estimate of the difference between the naive estimate r̃i,d and an unbiased

estimate of ri,d, which is n−1d
∑nd

k=1 εk,dηk,i,d.

Liu and Luo (2014) considered the one-sample case of the multiple testing

problem (1.3) so ri/σ
2
ηi = 0 is equivalent to ri = 0 under the null hypothesis, and

ri is easier to estimate. The procedure in Liu and Luo (2014) is based on the

estimation of ri instead of ri/σ
2
ηi . In the two-sample case, ri,1/σ

2
ηi,1 = ri,2/σ

2
ηi,2 is

not equivalent to ri,1 = ri,2. Thus, it is necessary to construct testing procedures

based directly on estimators of ri,1/σ
2
ηi,1 − ri,2/σ

2
ηi,2 .

Furthermore, in the one-sample case, the asymptotic normality of Ti can be

established because βi,1 = 0 under the null, which is shown in Lemma 2. Thus

the theoretical properties of the individual test statistics are easier to obtain. In

the two-sample case, βi,1 and βi,2 are not necessary equal to 0 under the null, and

corrections are thus essential in order to show Wi is close to a normal random

variable; the technical details are much more complicated.

More importantly, in the one-sample case, under the null hypothesis βi,1 = 0,

and thus Corr(εkηk,i, εkηk,j) = ωi,j/(ωi,iωj,j), which is fully determined by the

precision matrix of the covariates and thus simplifies the calculations. In the two-

sample version, βi,1 = βi,2 under the null hypothesis and they are not necessary

equal to zero. The calculation of Corr(εk,dηk,i,d, εk,dηk,j,d), which determines the

correlation between Wi and Wj , is much more involved, and it can be shown in

the proof of Theorem 4 that

ξ̃i,j,d = Corr(εk,dηk,i,d, εk,dηk,j,d) =
(ωi,j,dσ

2
εd + 2βi,dβj,d)

{(ωi,i,dσ2εd + 2β2i,d)(ωj,j,dσ
2
εd + 2β2j,d)}1/2

.

(2.9)

The technical analysis for establishing the theoretical results in Sections 3 and 4

is thus much more challenging.

3. Global Test

In this section, we wish to test the global hypothesis

H0 : β1 = β2 versus H1 : β1 6= β2.

We propose a procedure based on the standardized statistics {Wi, i = 1, . . . , p}

Mn = max
1≤i≤p

W 2
i = max

1≤i≤p

(Ti,1 − Ti,2)2

θ̂i,1 + θ̂i,2
. (3.1)
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It is shown in Section 3.1 that, under certain regularity conditions, Mn−2 log p+

log log p converges to a Gumbel distribution under the null, and the asymptotic

α-level test can thus be defined as

Ψα = I(Mn ≥ qα + 2 log p− log log p), (3.2)

where qα is the 1 − α quantile of the Gumbel distribution with the cumulative

distribution function exp(−π−1/2e−t/2),

qα = − log(π)− 2 log log(1− α)−1.

We reject the null hypothesis H0 whenever Ψα = 1.

3.1. Asymptotic null distribution

We first introduce some regularity conditions, under which, Mn−2 log p+log

log p converges weakly to a Gumbel random variable with distribution function

exp(−π−1/2e−t/2).

(C1) log p = o(n1/5), n1 � n2, and for some constants C0, C1, C2 > 0, C−10 ≤
λmin(Ωd) ≤ λmax(Ωd) ≤ C0, C

−1
1 ≤ σ2εd ≤ C1, and |βd|∞ ≤ C2 and

Var(Yk,d) ≤ C2 for d = 1, 2. There exists some τ > 0 such that |Aτ | = O(pr)

with r < 1/4, where Aτ = {i : |βi,d| ≥ (log p)−2−τ , 1 ≤ i ≤ p, for d =

1 or 2}.

(C2) Let Dd be the diagonal of Ωd and let (ξi,j,d) = Rd = D
−1/2
d ΩdD

−1/2
d , for

d = 1, 2. max1≤i<j≤p |ξi,j,d| ≤ ξd < 1 for some constant 0 < ξd < 1.

(C3) There exists some constant K > 0 such that maxVar(aTXT
k,·,d)=1 E exp(K(aT

XT

k,·,d)
2) and E exp(Kε2k,d) are finite.

Condition (C1) on the eigenvalues is commonly used in the high-dimensional

setting and implies that most of the variables are not highly correlated with each

other. Condition (C2) is also mild. For example, if max1≤i≤j≤p |ξi,j,d| = 1, then

Ωd is singular. (C3) is s sub-Gaussian tail condition, and it can be weakened to

a polynomial tail condition if p < nc for some constant c > 0.

Theorem 1. Suppose (C1), (C2), (C3), (2.4), and (2.5) hold. Then under H0,

for any t ∈ R,

P(Mn − 2 log p+ log log p ≤ t)→ exp{−π−1/2 exp(− t
2

)}, as n1, n2, p→∞,

(3.3)

where Mn is defined in (3.1). Under H0, the convergence in (3.3) is uniform for

all {Yk,d,Xk,·,d : k = 1, 2, . . . , nd} satisfying (C1), (C2), (C3), (2.4), and (2.5).
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Remark 3. The analysis can be extended to test H0 : βG,1 = βG,2 versus H1 :

βG,1 6= βG,2 for a given index set G. We can construct the test statistic as MG,n =

maxi∈GW
2
i , and obtain a similar Gumbel limiting null distribution by replacing

p with |G|, as n1, n2, |G| → ∞. The condition (C1) will be slightly different, with

Aτ being replaced by AG,τ = {i : |βi,d| ≥ (log p)−2−τ , i ∈ G, for d = 1 or 2}.

Remark 4. Condition (C1) is slightly stronger than the conditions in Liu and

Luo (2014) as we need |Aτ | = O(pr) with r < 1/4. This is due to the major

difference between the one-sample and two-sample cases that the global null

H0 : β = 0 is a simple null in the one-sample case and the null H0 : β1 = β2 is

composite in the two-sample case. In the one-sample case, Ti is a nearly unbiased

estimate of βi because βi = 0 under the global null. However, in the two-sample

case, as stated in Lemma 2, additional correction terms involving βi,d are needed

in order to make Ti,d nearly unbiased because βi,1 and βi,2 are not necessary

equal to 0 under the null. Thus, slightly stronger conditions on Aτ are needed.

3.2. Asymptotic power

We now analyze the asymptotic power of the test Ψα given in (3.2). The test

is shown to be particularly powerful against a large class of sparse alternatives

and the power is minimax rate optimal. We first define a class of regression

coefficients:

U(c) =

{
(β1,β2) : max

1≤i≤p

|βi,1 − βi,2|
(θi,1 + θi,2)1/2

≥ c(log p)1/2

}
. (3.4)

We show that the null hypothesis H0 can be rejected by the test Ψα with over-

whelming probability, if (β1,β2) ∈ U(2
√

2).

Theorem 2. Let the test Ψα be given in (3.2). Suppose (C1), (C3), (2.4) and

(2.5) hold. Then

inf
(β1,β2)∈U(2

√
2)
P(Ψα = 1)→ 1, n, p→∞.

Theorem 2 shows that the null parameter set in which β1 = β2 is asymptot-

ically distinguishable from U(2
√

2) by the test Ψα.

We further show that the lower bound in (3.4) is rate optimal. Let Tα be

the set of all α-level tests, P(Tα = 1) ≤ α under H0 for all Tα ∈ Tα. If c in (3.4)

is sufficiently small, then any α level test is unable to reject the null hypothesis

correctly uniformly over (β1,β2) ∈ U(c) with probability tending to one.

Theorem 3. Suppose that log p = o(n). Let α, β > 0 and α+β < 1. Then there

exists a constant c0 > 0 such that for all sufficiently large n and p,
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inf
(β1,β2)∈U(c0)

sup
Tα∈Tα

P(Tα = 1) ≤ 1− β.

Theorem 3 shows that the order (log p)1/2 in the lower bound of max1≤i≤p{|βi,1
− βi,2|/(θi,1 + θi,2)

1/2} in (3.4) cannot be further improved.

4. Multiple Testing with False Discovery Rate Control

4.1. Multiple testing procedure

If the global null hypothesis is rejected, it is then of interest to identify the

subset of variables in X that interact with the group indicator. This can be

achieved by simultaneously testing on the entries of β1−β2 with FDR and FDP

control,

H0,i : βi,1 = βi,2 versus H1,i : βi,1 6= βi,2, 1 ≤ i ≤ p. (4.1)

The standardized differences of Ti,1 − Ti,2 are defined by the test statistics

Wi = (Ti,1 − Ti,2)/(θ̂i,1 + θ̂i,2)
1/2 as in (2.8). Let t be the threshold such that

H0,i is rejected if |Wi| ≥ t. Let H0 = {i : βi,1 = βi,2, 1 ≤ i ≤ p} be the set

of true nulls. Let R0(t) =
∑

i∈H0
I(|Wi| ≥ t) and R(t) =

∑
1≤i≤p I(|Wi| ≥ t),

respectively, denote the total number of false positives and the total number of

rejections. The FDP and FDR are defined as

FDP(t) =
R0(t)

R(t) ∨ 1
, FDR(t) = E{FDP(t)}.

Ideally, we select the threshold level as

t0 = inf
{

0 ≤ t ≤ (2 log p)1/2 : FDP(t) ≤ α
}
.

However, H0 is unknown, and we estimate
∑

i∈H0
I{|Wi| ≥ t} by 2p{1 − Φ(t)}

due to the sparsity of β1 − β2, where Φ(t) is the standard normal cumulative

distribution function. This leads to the following multiple testing procedure.

1. Calculate the test statistics Wi = (Ti,1 − Ti,2)/(θ̂i,1 + θ̂i,2)
1/2 as in (2.8).

2. For a given 0 ≤ α ≤ 1, calculate

t̂ = inf

{
0 ≤ t ≤ (2 log p)1/2 :

2p{1− Φ(t)}
R(t) ∨ 1

≤ α
}
.

If t̂ does not exists, set t̂ = (2 log p)1/2.

3. For 1 ≤ i ≤ p, reject H0,i if and only if |Wi| ≥ t̂.

4.2. Theoretical properties

We now investigate the theoretical properties of this multiple testing proce-

dure. For any 1 ≤ i ≤ p, define
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Γi(γ) = {j : 1 ≤ j ≤ p, |ξi,j,d| ≥ (log p)−2−γ , d = 1, 2},

where ξi,j,d is defined in Condition (C2). Under regularity conditions, this pro-

cedure controls the FDP and FDR at the pre-specified level α, asymptotically.

Theorem 4. Let

Sρ =

{
i : 1 ≤ i ≤ p, |βi,1 − βi,2|

(θi,1 + θi,2)1/2
≥ (log p)1/2+ρ

}
.

Suppose for some ρ > 0 and some δ > 0, |Sρ| ≥ [1/(π1/2α)+δ](log p)1/2. Suppose

that |Aτ ∩ H0| = o(pν) for any ν > 0, where Aτ is given in Condition (C1).

Assume that p0 = |H0| ≥ cp for some c > 0, and (2.4) and (2.5) hold. If there

exists some γ > 0 such that max1≤i≤p |Γi(γ)| = o(pν) for any ν > 0, then under

(C1) - (C3) with p ≤ cnr for some c > 0 and r > 0, we have

lim
(n,p)→∞

FDR(t̂)

αp0/p
= 1,

FDP(t̂)

αp0/p
→ 1

in probability, as (n, p)→∞.

The condition on |Sρ| is mild, because among p hypotheses in total, it

only requires a few number of entries with the standardized difference exceeding

(log p)1/2+ρ/n1/2 for some constant ρ > 0. The technical condition |Aτ ∩ H0| =
o(pν) for any ν > 0 is to ensure that most of the regression residuals are not

highly correlated with each other under the null hypotheses H0,i : βi,1 = βi,2.

5. Simulation Study

We consider the numerical performance, including the sizes and powers of

both the global and the multiple testing procedures, through simulation studies.

We investigated the performance of both procedures under two sets of simula-

tions. For the first, we generated the data by considering two constructions of

regression coefficients under three matrix models, with covariates being a com-

bination of continuous and discrete random variables. For the second set, we

studied the numerical performance of the proposed multiple testing procedure in

a setting that is similar to the data application described in Section 6. We com-

pared the proposed multiple testing procedure with Benjamini-Yekutieli (B-Y)

procedure, as considered in Benjamini and Yekutieli (2001), and show that the

B-Y procedure is much more conservative and has lower power in all cases.
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5.1. Implementation details

The proposed testing procedures required the estimation of the regression

coefficients βd and γi,d, for i = 1, . . . , p and d = 1, 2. One may use the Lasso to

estimate these parameters, as follows.

βd = D
−1/2
X arg min

u

{ 1

2nd

∣∣∣(Xd − X̄d)D
−1/2
X u− (Yd − Ȳd)

∣∣∣2
2

+ λn|u|1
}
, (5.1)

and

γi,d = D
−1/2
i,d arg min

v

{ 1

2nd

∣∣∣((Yd,X·,−i,d)− (Ȳd, X̄(·,−i,d)))D
−1/2
i,d v

− (X·,i,d − X̄·,i,d)
∣∣∣2
2

+ λi,n|v|1
}
, (5.2)

where DX = diag(Σ̂), Di,d = diag(σ̂Yd , Σ̂−i,−i), λn = κ
√
σ̂Yd log p/nd and λi,n =

κ
√
σ̂i,i log p/nd, in which σ̂Yd is the sample variance of Yd and Σ̂ = (σ̂i,j) is the

sample covariance matrix of Xd. In the global testing of H0 : β1 = β2, we chose

the tuning parameter κ = 2.

For multiple testing of H0,i : βi,1 = βi,2, we selected the tuning parameters λn
and λi,n in (5.1) and (5.2) adaptively by the data with the principle of making∑

i∈H0
I{|Wi| ≥ t} and 2{1 − Φ(t)}|H0| as close as possible. That is, a good

choice of the tuning parameters should minimize the error∫ 1

c

(∑
i I(|W (b)

i | ≥ Φ−1(1− α/2))

αp
− 1

)2

dα,

where c > 0 and W
(b)
i is the statistic of the corresponding tuning parameter. Step

2 below is a discretization of the above integral. The algorithm is summarized

as follows.

1. Let λn = b/20
√
σ̂Yd log p/nd and λi,n = b/20

√
σ̂i,i log p/nd for b = 1, . . . , 40.

For each b, calculate β̂
(b)
d and γ̂

(b)
i,d , i = 1, . . . , p, d = 1, 2. Based on the

estimation of regression coefficients, construct the corresponding statistics

W
(b)
i for each b.

2. Choose b̂ as the minimizer of

b̂ = arg min

10∑
s=1

(∑
1≤i≤p I{|W

(b)
i |≥Φ−1(1−s[1− Φ{(log p)1/2}]/10)}
2ps[1− Φ{(log p)1/2}]/10

− 1
)2
.

The tuning parameters λn and λi,n are then chosen to be

λn =
b̂

20

√
σ̂Yd

log p

nd
and λi,n =

b̂

20

√
σ̂i,i

log p

nd
. (5.3)
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5.2. Simulation under different matrix models

We first generated the design matrices Xk,·,d, for k = 1, . . . , nd and d = 1, 2,

with some of the covariates being continuous and the others being discrete. For

simplicity, we generated Xk,·,d from the same distribution for d = 1, 2. As a

first step, for three different matrix models, we obtained i.i.d samples Xk,·,d ∼
N(0,Σ(m)), for k = 1, . . . , nd, with m = 1, 2 and 3. We then replaced l covariates

of Xk,·,d by one of three discrete values 0, 1 or 2, with probability 1/3 each,

where l is a random integer between bp/2c and p. We first introduce the matrix

models Σ(m) used in the simulations. Let D = (Di,j) be a diagonal matrix with

Di,i = Unif(1, 3) for i = 1, . . . , p. The following models were used to generate the

design matrices.

Model 1: Ω∗(1) = (ω
∗(1)
i,j ), where ω

∗(1)
i,i = 1, ω

∗(1)
i,i+1 = ω

∗(1)
i+1,i = 0.6, ω

∗(1)
i,i+2 = ω

∗(1)
i+2,i =

0.3 and ω
∗(1)
i,j = 0 otherwise. Ω(1) = D1/2Ω∗(1)D1/2.

Model 2: Ω∗(2) = (ω
∗(2)
i,j ), where ω

∗(2)
i,j = ω

∗(2)
j,i = 0.5 for i = 10(k − 1) + 1

and 10(k − 1) + 2 ≤ j ≤ 10(k − 1) + 10, 1 ≤ k ≤ p/10. ω
∗(2)
i,j = 0 otherwise.

Ω(2) = D1/2(Ω∗(2) + δI)/(1 + δ)D1/2 with δ = |λmin(Ω∗(2))|+ 0.05.

Model 3: Ω∗(3) = (ω
∗(3)
i,j ), where ω

∗(3)
i,i = 1, ω

∗(3)
i,j = 0.8 × Bernoulli(1, 0.05)

for i < j and ω
∗(3)
j,i = ω

∗(3)
i,j . Ω(3) = D1/2(Ω∗(3) + δI)/(1 + δ)D1/2 with δ =

|λmin(Ω∗(3))|+ 0.05.

Global Test For the global testing of H0 : β1 = β2, the sample sizes were

taken to be n = n1 = n2 = 100, while the dimension p varied over the values 100,

200, 400, and 1,000. Under the global null hypothesis, we have β1 = β2 = β, and

two scenarios of generating β were considered. For case 1, 10 nonzero locations

{k1, . . . , k10} of β were randomly generated with magnitudes βki,1 = 2i0.5n−0.151 ,

i = 1, . . . , 10. For case 2, s nonzero locations for β were randomly selected, with

s = 5, 8, 10, and 15 for p = 100, 200, 400 and 1,000, respectively. The nonzero

locations had magnitudes with any values between −10 and 10. The error terms

εk,d were generated as normal random variables with mean 0 and variances having

any values between 0.5 and 2.5. The nominal significance level for all the tests

was set at α1 = 0.05.

Table 1 shows that the sizes of the global test Ψα1
are close to the nominal

level for both cases under all matrix models. This reflects the fact that the null

distribution of the test statistics Mn is well approximated by its limiting null

distribution, as shown in Theorem 1. The empirical sizes are slightly below the

nominal level in some cases for lower dimensions, as similarly observed in Xia,

Cai and Cai (2015), due to correlation among the variables. It is also shown in
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Table 1. Empirical sizes and powers (%) for global testing with α1 = 0.05, n1 = n2 = 100,
and 1,000 replications.

p Case 1 Case 2
Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

Size
100 4.1 3.2 2.9 4.4 2.9 2.8
400 4.8 3.8 3.7 4.0 4.1 3.5

1,000 6.1 4.4 5.4 5.9 4.6 6.4
Power

100 71.9 64.3 67.4 95.1 97.1 96.6
400 88.3 86.2 83.5 82.3 77.0 82.1

1,000 95.1 92.6 97.9 47.3 42.0 48.1

Table 1 that the proposed test is powerful in all settings, though β1 and β2 only

differ in five or fewer locations with magnitudes of the order
√

log p/n.

To evaluate the power of the global test, we selected five locations, {k1, . . . , k5},
among the nonzero locations of β1, with magnitudes βkj ,2 = βkj ,1 + uj , j = 1,

. . . , m, where uj has magnitude randomly and uniformly from the set [−2β(log p/

n)1/2,−β(2 log p/n)1/2]∪[β(2 log p/n)1/2, 2β(log p/n)1/2], with β=max1≤i≤p |βi,1|.
The actual sizes and powers in percentage for each case under three matrix mod-

els, reported in Table 1, are estimated from 1,000 replications. For each repli-

cation, the nonzero locations and magnitudes of the regression coefficients could

vary.

Multiple Testing For simultaneous testing of {H0,i : βi,1−βi,2 = 0, for 1 ≤ i ≤
p} with FDR control, we first generated β1 according to the above two cases. For

case 1, ten nonzero locations {k′1, . . . , k′10} for β2 were randomly generated and

the locations could vary for these two vectors. The magnitudes were generated

with values βk′i,2 = 4i0.5n−0.152 , i = 1, . . . , 10. For case 2, s nonzero locations for

β2 were randomly selected, again with s = 5, 8, 10, and 15 for p = 100, 200, 400

and 1,000, respectively, also with magnitudes having any values between −10

and 10.

In Table 2, we present the empirical FDR and true discovery rate (power)

of the proposed procedure (NEW) and the B-Y procedure at the FDR level of

α2 = 0.1, based on 100 replications, where the power is summarized based on

1

100

100∑
l=1

∑
i∈H1

I(|Wi,l| ≥ t̂)
|H1|

,

where Wi,l denotes standardized difference for the lth replication and H1 denotes
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Table 2. Empirical FDRs and powers (%) for the new FDR procedure and B-Y procedure
with α2 = 0.1, n1 = n2 = 100, and 100 replications.

p Method Case 1 Case 2
Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

Size

100
NEW 5.9 5.8 6.8 3.8 4.5 3.6
B-Y 0.3 1.0 0.7 0.1 0.3 0.7

400
NEW 6.7 7.4 6.8 6.2 5.5 5.5
B-Y 0.4 0.6 0.4 0.2 0.7 0.5

1,000
NEW 6.2 6.0 6.1 9.4 9.4 9.8
B-Y 0.6 1.0 0.4 1.5 1.6 1.4

Power

100
NEW 95.3 94.7 94.7 93.3 92.1 90.4
B-Y 91.5 88.1 88.5 88.6 90.3 88.3

400
NEW 92.7 88.2 90.8 84.3 82.9 83.6
B-Y 86.1 82.2 84.3 81.5 78.7 81.3

1,000
NEW 84.7 82.7 85.1 71.7 70.4 71.9
B-Y 77.7 75.0 77.6 66.2 64.5 66.1

the nonzero locations of β1 − β2. The results suggest that across all configu-

rations, the FDRs are well controlled under the nominal level α by both FDR

control procedures. However, the B-Y procedure is extremely conservative in all

scenarios. For the new FDR procedure, the empirical FDRs are also conservative,

due to the correlations among the regression residuals under the nulls H0,i, and

also due to the fact that we use |H| to estimate |H0| because the latter is usually

unknown. Furthermore, the total number of true signals is small in all cases due

to the sparsity of the regression coefficients; for example, when the total number

of true signals is ten, the FDP for each replication tends to be either 0 or some

number close to 0.1, which will also cause the conservatism of the FDR estima-

tion. In case 2, we can see that the empirical FDR gets closer to the nominal

level as dimension increases, because the number of true signals increases when

p grows. In summary, the new procedure has empirical FDR much closer to the

nominal level than B-Y procedure in all cases. Table 2 also reflects that the

FDR control procedure introduced in Section 4 is more powerful than the B-Y

procedure for different scenarios.

5.3. Simulation by mimicking data

We now consider a simulation setting mimicking the data considered in Sec-

tion 6, where we have p = 119, n1 = 46 and n2 = 417. We investigated both

cases of the construction of the regression coefficients as considered in Section 5.2,
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Table 3. Empirical FDRs and powers (%) for the new FDR procedure and B-Y procedure
under the data setting with α3 = 0.1, p = 119, n1 = 46, n2 = 417, and 100 replications.

p Method Case 1 Case 2
Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

Size

119
NEW 9.4 11.2 11.0 8.7 8.9 8.8
B-Y 2.2 3.0 2.9 1.7 1.4 1.6

Power

119
NEW 83.6 81.7 83.9 79.6 78.2 80.3
B-Y 76.2 72.1 74.8 73.7 72.6 74.6

with ten nonzero locations, under all three matrix models, with covariates as a

combination of continuous and discrete random variables. The nominal level was

set at α3 = 0.1, and the empirical FDR’s and powers for both FDR procedures,

as reported in Table 3, were evaluated based on 100 replications. As in Section

5.2, the empirical FDRs are well controlled under the data setting by the new

FDR procedure, while the B-Y procedure is again very conservative. For case 1,

the empirical FDR’s of the new procedure are slightly larger than the nominal

level, due to the fact that n1 is much smaller than n2 in this setting, and thus β1

and β2 have magnitudes much closer to each other based on their construction.

The performance of the new method for case 2 is less conservative than in Section

5.2 due to the fact we have ten nonzero locations for the regression coefficients

when the dimension is 119 in the data setting. Table 3 also indicates that the

new procedure is more powerful than the B-Y procedure under the data setting

in all scenarios.

6. Data Analysis

We illustrate our proposed methods using the Framingham Offspring Study

(Kannel et al. (1979)) of coronary artery disease (CAD). Over the past three

decades, various risk prediction models for CAD have been developed (Wilson

et al. (1998); Ridker et al. (2007)). Unlike those for many other diseases, the risk

models such as the Framingham Risk Score have been incorporated into clini-

cal practice guidelines (Lloyd-Jones et al. (2004); D’Agostino Sr et al. (2008)).

However, these models, largely based on traditional clinical risk factors, have

recognized limitations in their clinical utilities. It is thus important to explore

avenues beyond the routine clinical measures to improve prediction. One poten-

tial approach is to fully understand the roles of intermediate phenotypes, such

as the C- reactive protein (CRP) and genomic markers. In recent years, many
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genome-wide association studies (GWAS) have been conducted to identify CAD-

related single-nucleotide polymorphism (SNP) mutations. The newly identified

SNPs, while significantly associated with CAD risk or the intermediate pheno-

types of CAD, explain very little of the genetic risk for the trait (Humphries,

Yiannakouris and Talmud (2008); Paynter et al. (2009)). This coincides with the

growing awareness that the failure to identify genetic scores that significantly im-

prove risk prediction for complex traits may be in part due to failure to account

for the interplay of genes and environment. It is thus of substantial interests to

study environment and its interaction with a genetic predisposition in causing

human diseases.

Here, we use data from Framingham Offspring Study to examine how the

interaction between smoking and genetic risk factors affect the inflammation

marker CRP, since the inflammation system plays a vital role in the atheroscle-

rotic process (Ross (1999)). We focus on the 463 female participants with com-

plete information on CRP, 116 SNP’s previously reported as associated with

CAD intermediate phenotypes, two leading principal components that adjust

for population stratification, as well as age and smoking status at exam seven.

Smoking is known to roughly double life-time risk of CAD and is thought to

increase cardiovascular risk via a few different mechanisms. We examine the in-

teraction between smoking and the genetic markers, as well as other risk factors

based on the proposed method. We fit linear regression models for smokers and

for non-smokers and the variables with significantly different coefficients between

smokers and non-smokers are deemed as having an interactive effect.

The effects of top eight SNPs including rs11585329, rs17583120, rs17132534,

rs11214606, rs17529477, rs10891552, rs4293, and rs4351, on CRP are considered

as significantly modified by smoking. Interestingly, the smoking and rs11585329

interaction has been reported as important contributor to the risk of colorectal

cancer whereas inflammation is a hallmark of cancer (Liu et al. (2013)). SNP

rs17132534 belongs to the UCP2 gene whose main function is the control of

mitochondria-derived reactive oxygen species. A variant in the UCP2 has been

previously shown to interact with smoking to influence plasma markers of oxida-

tive stress and hence likely to be associated with prospective CHD risk (Stephens,

Bain and Humphries (2008)). SNPs rs10891552, rs17529477, and rs11214606 all

belong to the DRD2 gene, which is linked to addictive behaviors, including alco-

holism and smoking. Smoking was found to modify the effects of polymorphism

in DRD2 gene on gastric cancer risk (Ikeda et al. (2008)). SNPs rs4293 and rs

4351 belong to the ACE gene, linked with hypertension and CAD among other
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disorders. Interactions between smoking and polymorphism in the ACE gene

have been reported for blood pressure and coronary atherosclerosis (Hibi et al.

(1997); Sayed-Tabatabaei et al. (2004); Schut et al. (2004)).

7. Extension to Non-Binary Environmental Variable

Motivated by applications in genomics, we have proposed hypothesis test-

ing procedures for detecting the interactions between environment and genomic

markers when the environmental variable is binary, such as smoking status, as

illustrated in Section 6. Our testing approach can be extended to detect the in-

teractions when the environmental variable is discrete and finite, but non-binary.

Specifically, suppose the environmental variable takes K possible values. Inter-

action detection can then be formulated based on comparing K high-dimensional

regression models

Yd = µd +Xdβd + εd, for d = 1, . . . ,K.

One wishes to develop a global test for

H0 : β1 = β2 = · · · = βK versus H1 : βl 6= βk for some 1 ≤ l < k ≤ K, (7.1)

as well as develop a procedure for simultaneously testing the hypotheses

H0,i : βi,1 = βi,2 = · · · = βi,K versus H1,i : βi,l 6= βi,k for some 1 ≤ l < k ≤ K,
i = 1, . . . , p, (7.2)

with FDR and FDP control.

The test statistics for each model can be formulated similarly as in Section

2.2. For d = 1, . . . ,K, we let

Ti,d =
r̂i,d
σ̂2ηi,d

and estimate θi,d by

θ̂i,d =
(σ̂2εd/σ̂

2
ηi,d + β̂2i,d)

nd
.

Then the pairwise standardized statistics can be defined by

W
(l,k)
i =

Ti,l − Ti,k
(θ̂i,l + θ̂i,k)1/2

, 1 ≤ l < k ≤ K, i = 1, . . . , p.

Then if K is finite, we construct the sum of square type test statistic by

Si =
∑

1≤l<k≤K
(W

(l,k)
i )2.

As in Cai and Xia (2014), it can be shown that the limiting null distribution
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of Si is a mixture chi-square distribution. Based on this fact, we can further

develop global and multiple testing procedures. When the environmental variable

is binary, the test statistics Si reduce to (2.8) in Section 2.2. On the other hand,

if the environmental variable is continuous, the testing problem is significantly

different, and out of the scope of the current paper. We leave it to future research.

8. Proofs

We prove the main results in this section. We begin by collecting technical

lemmas that will be used in the proof of the main theorems.

8.1. Technical lemmas

The first lemma is the classical Bonferroni inequality.

Lemma 1 (Bonferroni inequality). Let B = ∪pt=1Bt. For any k < [p/2], we have

2k∑
t=1

(−1)t−1Ft ≤ P(B) ≤
2k−1∑
t=1

(−1)t−1Ft,

where Ft =
∑

1≤i1<···<it≤p P(Bi1 ∩ · · · ∩Bit).

For d = 1, 2, let Ui,d = n−1d
∑nd

k=1{εk,dηk,i,d − E(εk,dηk,i,d)} and Ũi,d = βi,d +

Ui,d/σ
2
ηi,d . The following lemma is essentially proved in Liu and Luo (2014).

Lemma 2. Suppose that Conditions (C1), (C3), (2.4) and (2.5) hold. Then

Ti,d = Ũi,d +

(
σ̃2εd
σ2εd

+
σ̃2ηi,d
σ2ηi,d

− 2

)
βi,d + oP{(nd log p)−1/2},

where σ̃2εd = n−1d
∑nd

k=1(εk,d − ε̄k,d)2 and σ̃2ηi,d = n−1d
∑nd

k=1(ηk,i,d − η̄k,i,d)2 with

ε̄k,d = n−1d
∑nd

k=1 εk,d and η̄k,i,d = n−1d
∑nd

k=1 ηk,i,d. Consequently, uniformly in

i = 1, . . . , p,

|Ti,d − Ũi,d| = OP

{
βi,d

(
log p

nd

)1/2}
+ oP{(nd log p)−1/2}.

Lemma 3. Let Xk ∼ N(µ1,Σ1) for k = 1, . . . , n1 and Yk ∼ N(µ2,Σ2) for

k = 1, . . . , n2. Define

Σ̃1 = (σ̃i,j,1)p×p =
1

n1

n1∑
k=1

(X − µ1)(X − µ1)
T,

Σ̃2 = (σ̃i,j,2)p×p =
1

n2

n2∑
k=1

(Y − µ2)(Y − µ2)
T.

Then, for some constant C > 0, σ̃i,j,1 − σ̃i,j,2 satisfies the large deviation bound
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P

[
max
(i,j)∈S

(σ̃i,j,1−σ̃i,j,2−σi,j,1+σi,j,2)2

Var{(Xk,i−µ1,i)(Xk,j−µ1,j)}/n1+Var{(Yk,i−µ2,i)(Yk,j−µ2,j)}/n2
≥ x2

]
≤ C|S|{1− Φ(x)}+O(p−1)

uniformly for 0 ≤ x ≤ (8 log p)1/2 and any subset S ⊆ {(i, j) : 1 ≤ i ≤ j ≤ p}.
The complete proof of this lemma can be found in the supplementary mate-

rial of Xia, Cai and Cai (2015).

8.2. Proof of Theorem 1

To prove Theorem 1, we first show that the terms in Aτ are negligible.

Then we focus on the terms in H \ Aτ , where H = {1, . . . , p}, and show that

P(maxi∈H\Aτ W
2
i − 2 log p + log log p ≤ t) → exp(−π−1/2 exp(−t/2)), where Wi

is defined in (2.8).

Define

Vi =
Ui,1/σ

2
ηi,1 − Ui,2/σ

2
ηi,2

(θi,1 + θi,2)1/2
,

where θi,d = Var(Ũi,d) = Var(εk,dηk,i,d/σ
2
ηi,d)/nd = (σ2εd/σ

2
ηi,d + β2i,d)/nd, for d =

1, 2. By Lemma 2 in Xia, Cai and Cai (2015), under conditions (2.4) and (2.5),

we have

|σ̂2εd − σ
2
εd | = OP

(√ log p

nd

)
, and max

i
|σ̂2ηi,d − σ

2
ηi,d | = OP

(√ log p

nd

)
. (8.1)

Thus we have

max
i
|θ̂i,d − θi,d| = oP

(
1

(nd log p)

)
. (8.2)

By Lemma 2, we have

Wi = Vi + bi + oP{(log p)−1/2},

where bi = {(σ̃2ε1/σ
2
ε1 + σ̃2ηi,1/σ

2
ηi,1)βi,1− (σ̃2ε2/σ

2
ε2 + σ̃2ηi,2/σ

2
ηi,2)βi,2}/(θ̂i,1 + θ̂i,2)

1/2.

Note that for i ∈ H\Aτ , βi,d = o{(log p)−1}. Thus we have maxi∈H\Aτ |Wi−Vi| =
oP{(log p)−1/2}. For i ∈ Aτ ,

bi ≤

∣∣∣∣∣ σ̃2ε1βi,1/σ
2
ε1 − σ̃

2
ε2βi,2/σ

2
ε2

{Var(ε2k,1)β2i,1/(σ4ε1n1) + Var(ε2k,2)β
2
i,2/(σ

4
ε2n2)}1/2

∣∣∣∣∣
+

∣∣∣∣∣ σ̃2ηi,1βi,1/σ
2
ηi,1 − σ̃

2
ηi,2βi,2/σ

2
ηi,2

{Var(η2k,i,1)β2i,1/(σ4ηi,1n1) + Var(η2k,i,2)β
2
i,2/(σ

4
ηi,2n2)}1/2

∣∣∣∣∣+ oP{(log p)−1/2}.

Due to the fact that the indices of the random variables only show up in the

second term here, by Lemma 3 and the condition that |Aτ | = O(pr) with r < 1/4,

we have
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P(max
i∈Aτ

W 2
i ≥ 2 log p− log log p+ t) ≤ |Aτ |{P(V 2

i ≥ 2r log p)

+ P(b̃2i ≥ 2r log p)}+ o(1) = o(1),

where b̃i = |(σ̃2ηi,1βi,1/σ
2
ηi,1 − σ̃

2
ηi,2βi,2/σ

2
ηi,2)/({Var(η

2
k,i,1)β

2
i,1/(σ

4
ηi,1n1) +Var(η2k,i,2)

β2i,2/(σ
4
ηi,2n2)}

1/2)|. Thus, it suffices to show that

P( max
i∈H\Aτ

V 2
i − 2 log p+ log log p ≤ t)→ exp(−π−1/2 exp(− t

2
)).

Let q = |H\Aτ | and let n2/n1 ≤ K1 withK1 ≥ 1. Define Zk,i = (n2/n1){εk,1ηk,i,1−
E(εk,1ηk,i,1)}/σ2ηi,1 for 1 ≤ k ≤ n1 and Zk,i = −{εk,2ηk,i,2 − E(εk,2ηk,i,2)}/σ2ηi,2 for

n1 + 1 ≤ k ≤ n2. Thus we have

Vi =

∑n1+n2

k=1 Zk,i

(n22θk,1/n1 + n2θk,2)1/2
.

Without loss of generality, we assume σ2εd = σ2ηi,d = 1. Define

V̂i =

∑n1+n2

k=1 Ẑk,i

(n22θk,1/n1 + n2θk,2)1/2
,

where Ẑk,i = Zk,iI(|Zk,i| ≤ τn)−E{Zk,iI(|Zk,i| ≤ τn)}, and τn = (4K1/K) log(p+

n). Note that maxi∈H\Aτ V
2
i = max1≤i≤q V

2
i , and that

max
1≤i≤q

n−1/2
n1+n2∑
k=1

E[|Zk,i|I{|Zk,i| ≥
(

4
K1

K

)
log(p+ n)}]

≤ Cn1/2 max
1≤k≤n1+n2

max
1≤i≤q

E

[
|Zk,i|I

{
|Zk,i| ≥

(
4
K1

K

)
log(p+ n)

}]
≤ Cn1/2(p+ n)−2 max

1≤k≤n1+n2

max
1≤i≤q

E

[
|Zk,i| exp

{(
K

2

)
|Zk,i|

}]
≤ Cn1/2(p+ n)−2.

Hence, P{max1≤i≤q |Vi − V̂i| ≥ (log p)−1} ≤ P( max1≤i≤q max1≤k≤n1+n2
|Zk,i| ≥

τn) = O(p−1). By the fact that
∣∣∣max1≤i≤q V

2
i −max1≤i≤q V̂

2
i

∣∣∣ ≤ 2 max1≤i≤q |V̂i|
max1≤i≤q |Vi − V̂i| + max1≤i≤q |Vi − V̂i|2, it suffices to prove that for any t ∈ R,

as n, p→∞,

P
(

max
1≤i≤q

V̂ 2
i − 2 log p+ log log p ≤ t

)
→ exp

(
− π−1/2 exp

(
− t

2

))
. (8.3)

By Lemma 1, for any integer l with 0 < l < q/2,

2l∑
d=1

(−1)d−1
∑

1≤i1<···<id≤q
P

(
d⋂
j=1

Fij

)
≤ P

(
max
1≤i≤q

V̂ 2
i ≥ yp

)
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≤
2l−1∑
d=1

(−1)d−1
∑

1≤i1<···<id≤q
P

(
d⋂
j=1

Fij

)
, (8.4)

where yp = 2 log p−log log p+t and Fij = (V̂ 2
ij
≥ yp). Let Z̃k,i = Ẑk,i/(n2θi,1/n1+

θi,2)
1/2 for i = 1, . . . , q and Wk = (Z̃k,i1 , . . . , Z̃k,id), for 1 ≤ k ≤ n1 + n2. Define

|a|min = min1≤i≤d |ai| for any vector a ∈ Rd. Then we have

P

(
d⋂
j=1

Fij

)
= P

(∣∣∣∣∣n−1/22

n1+n2∑
k=1

Wk

∣∣∣∣∣
min

≥ y1/2p

)
.

Then it follows from Theorem 1 in Zäıtsev (1987) that

P

(∣∣∣∣∣n−1/22

n1+n2∑
k=1

Wk

∣∣∣∣∣
min

≥ y1/2p

)
≤ P

{
|Nd|min ≥ y1/2p − εn(log p)−1/2

}
+c1d

5

2 exp

{
− n1/2εn

c2d3τn(log p)1/2

}
, (8.5)

where c1 > 0 and c2 > 0 are constants, εn → 0 which will be specified later,

and Nd = (Nm1
, . . . , Nmd

) is a normal random vector with E(Nd) = 0 and

Cov(Nd) = n1/n2Cov(W1)+Cov(Wn1+1). Here d is a fixed integer that does not

depend on n, p. Because log p = o(n1/5), we can let εn → 0 sufficiently slowly

that, for any large M > 0,

c1d
5/2 exp

{
− n1/2εn

c2d3τn(log p)1/2

}
= O(p−M ). (8.6)

Combining (8.4), (8.5), and (8.6) we have

P
(

max
1≤i≤q

V̂ 2
i ≥ yp

)
≤

2l−1∑
d=1

(−1)d−1
∑

1≤i1<···<id≤q
P
{
|Nd|min ≥ y1/2p − εn(log p)−1/2

}
+ o(1). (8.7)

Similarly, using Theorem 1 in Zäıtsev (1987) again, we can get

P
(

max
1≤i≤q

V̂ 2
i ≥ yp

)
≥

2l∑
d=1

(−1)d−1
∑

1≤i1<···<id≤q
P
{
|Nd|min ≥ y1/2p + εn(log p)−1/2

}
− o(1). (8.8)

The following lemma is shown in the supplementary material of Cai, Liu and

Xia (2013) with q � p and yp = 2 log p− log log p+ t.

Lemma 4. For any fixed integer d ≥ 1 and real number t ∈ R,
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1≤i1<···<id≤q

P
{
|Nd|min ≥ y1/2p ± εn(log p)−1/2

}
=

1

d!

{
(π)−1/2 exp

(
− t

2

)}d
{1 + o(1)}. (8.9)

It then follows from Lemma 4, (8.7), and (8.8) that

lim sup
n,p→∞

P
(

max
1≤i≤q

V̂ 2
i ≥ yp

)
≤

2l∑
d=1

(−1)d−1
1

d!

{
(π)−1/2 exp

(
− t

2

)}d
,

lim inf
n,p→∞

P
(

max
1≤i≤q

V̂ 2
i ≥ yp

)
≥

2l−1∑
d=1

(−1)d−1
1

d!

{
(π)−1/2 exp

(
− t

2

)}d
for any positive integer l. By letting l → ∞, we obtain (8.3) and Theorem 1 is

proved.

8.3. Proof of Theorem 2

Let M1
n = max1≤i≤j≤p{Ti,1−Ti,2− (βi,1−βi,2)}2/(θ̂i,1 + θ̂i,2). It follows from

the proof of Theorem 1 that P(M1
n ≤ 2 log p − 2−1 log log p) → 1, as n, p → ∞.

By (8.1), (8.2), and the inequalities

max
1≤i≤p

(βi,1 − βi,2)2

(θ̂i,1 + θ̂i,2)
≤ 2M1

n + 2Mn, max
1≤i≤p

|βi,1 − βi,2|
(θi,1 + θi,2)1/2

≥ 2
√

2(log p)1/2,

we have P(Mn ≥ qα + 2 log p− log log p)→ 1 as n, p→∞.

8.4. Proof of Theorem 3

To prove the lower bound, we first construct a worst case scenario to test

between β1 and β2. We apply the arguments in Baraud (2002) to prove the

result.

Without loss of generality, we assume σ2εd = 1, σi,i,d = 1, σi,j,d = 0, i 6= j

for d = 1, 2, and n1 = n2. Let m̂ be a random entry uniformly drawn from H =

{1, . . . , p}. We construct a class of β1, N = {β(m̂), m̂ ∈ H}, such that, βm̂,1 = ρ

and βi,1 = 0 for i 6= m̂, with ρ = c(log p/n)1/2, where c < 1/2 is a constant. Let

β2 = 0 and β1 be uniformly distributed on N . Let µρ be the distribution on

β1−β2. Note that µρ is a probability measure on {δ ∈ S1 : |δ|22 = ρ2}, where S1
is a class of p-dimensional vectors with one nonzero entry. Then the likelihood

ratio between samples {Yk,1,Xk,·,1} and {Yk,2,Xk,·,2} can be calculated as

Lµρ = Em̂

[
n∏
k=1

1

|Σ(m̂)|1/2
exp

{
− 1

2
ZT

k(Ω
(m̂) − I)Zk

}]
,
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where Σ(m̂) = Ω(m̂)−1 is the covariance matrix of {Yk,1,Xk,·,1} and {Z1, . . . ,Zn}
are i.i.d samples generated from N(0, I). Because Var(Yk,1) = σm̂,m̂,1β

2
m̂,1 + 1,

Var(Yk,2) = 1 and Cov(Yk,d, Xk,i,d) = βi,dσi,i,d. It can be easily calculated that

|Σ(m̂)| = 1 and Ω(m̂) = (ω
(m̂)
i,j ) with ω

(m̂)
1,1 = 1, ω

(m̂)
1,m̂+1 = ω

(m̂)
m̂+1,1 = −ρ, ω

(m̂)
m̂+1,m̂+1

= 1 + ρ2, and ω
(m̂)
i,j = 0 otherwise. Hence

L2
µρ = p−2

∑
m,m′∈H

E

[
n∏
k=1

exp
{
− 1

2
ZT

k(Ω
(m) + Ω(m′) − 2I)Zk

}]
.

With Ω(m) + Ω(m′) − 2I = (ai,j), it is easy to see that, when m 6= m′, ai,i = ρ2

and a1,i = −ρ for i = m + 1 or m′ + 1, aj,i = ai,j and ai,j = 0 otherwise; when

m = m′, ai,i = 2ρ2 and a1,i = −2ρ for i = m + 1, aj,i = ai,j and ai,j = 0

otherwise. Thus we have

E(L2
µρ) =

[
E(exp

{
ρ(x1x2+x2x3)−ρ2

(x22 + x23)

2

}]n
+p−1[E(exp{2ρx1x2−ρ2x22}]n,

where x1, x2, x3 are independent standard normal random variables. Because

E(exp{ρ(x1x2+x2x3)) = 1+ρ2, E(exp{−ρ2x22/2} = (1+ρ2)−1/2 and E(exp{2ρx1x2)
= 1 + 2ρ2, we have

E(L2
µρ) = 1 + p2c−1 + o(1) = 1 + o(1).

Theorem 3 is thus proved by Baraud (2002).

8.5. Proof of Theorem 4

We first show that t̂, as defined in Section 4.1, is attained in the interval

[0, (2 log p)1/2]. We then show that Aτ is negligible and we focus on the set

H\Aτ . We then show the FDP result by dividing the null set into small subsets

and controlling the variance of R0(t) for each subset, and the FDR result will

thus also be proved.

Under the condition of Theorem 4, we have∑
1≤i≤p

I{|Wi| ≥ (2 log p)1/2} ≥
{

1

(π1/2α)
+ δ

}
(log p)1/2,

with probability going to one. Hence, with probability tending to one, we have

2p∑
1≤i≤p I{|Wi| ≥ (2 log p)1/2}

≤ 2p

{
1

(π1/2α)
+ δ

}−1
(log p)−1/2.

Let tp = (2 log p− 2 log log p)1/2. Because 1− Φ(tp) ∼ 1/{(2π)1/2tp} exp(−t2p/2),

we have P(1 ≤ t̂ ≤ tp) → 1 according to the definition of t̂ in Section 4.1. For

0 ≤ t̂ ≤ tp,
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2p{1− Φ(t̂)}
max{

∑
1≤i≤p I{|Wi| ≥ t̂}, 1}

= α.

Thus, to prove Theorem 4, it suffices to prove∣∣∣∣∣
∑

i∈H0
I{|Wi| ≥ t} − p0G(t)

pG(t)

∣∣∣∣∣→ 0,

in probability, uniformly for 0 ≤ t ≤ tp, where G(t) = 2(1−Φ(t)) and p0 = |H0|.
We will show that it suffices to show∣∣∣∣∣

∑
i∈H0\Aτ I{|Vi| ≥ t} − p0G(t)

pG(t)

∣∣∣∣∣→ 0, (8.10)

in probability. We now consider two cases.

1). If t = {2 log p+o(log p)}1/2, the proof of Theorem 1 yields that P(maxi∈Aτ W
2
i ≥

t2) = o(1). Thus, it suffices to prove∣∣∣∣∣
∑

i∈H0\Aτ I{|Wi| ≥ t} − p0G(t)

pG(t)

∣∣∣∣∣→ 0,

in probability. We show in Theorem 1 that maxi∈H0\Aτ |Wi−Vi| = oP{(log p)−1/2}.
Thus it suffices to show (8.10).

2). If t ≤ (C log p)1/2 for some C < 2, we have∣∣∣∣∣
∑

i∈Aτ∩H0
I{|Wi| ≥ t}

pG(t)

∣∣∣∣∣ ≤ |Aτ ∩H0|
O(p1−C/2)

→ 0

in probability. Thus, it is again enough to show (8.10).

Let 0 ≤ t0 < t1 < · · · < tb = tp such that tι − tι−1 = vp for 1 ≤ ι ≤ b− 1 and

tb − tb−1 ≤ vp, where vp = 1/
√

log p(log4 p). Thus we have b ∼ tp/vp. For any

t such that tι−1 ≤ t ≤ tι, by the fact that G(t + o((log p)−1/2))/G(t) = 1 + o(1)

uniformly in 0 ≤ t ≤ c(log p)1/2 for any constant c, we have∑
i∈H0\Aτ I(|Vi| ≥ tι)

p0G(tι)

G(tι)

G(tι−1)
≤
∑

i∈H0\Aτ I(|Vi| ≥ t)
p0G(t)

≤
∑

i∈H0\Aτ I(|Vi| ≥ tι−1)
p0G(tι−1)

G(tι−1)

G(tι)
.

Thus it suffices to prove

max
0≤ι≤b

∣∣∣∣∣
∑

i∈H0\Aτ{I(|Vi| ≥ tι)−G(tι)}
pG(tι)

∣∣∣∣∣→ 0,

in probability. Define H̃0 = H0 \Aτ . Note that
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P

[
max
0≤ι≤b

∣∣∣∣∣
∑

i∈H̃0
{I(|Vi| ≥ tι)−G(tι)}

p0G(tι)

∣∣∣∣∣
≥ ε

]
≤

b∑
ι=1

P

[∣∣∣∣∣
∑

i∈H̃0
{I(|Vi| ≥ tι)−G(tι)}

p0G(tι)

∣∣∣∣∣ ≥ ε
]

≤ 1

vp

∫ tp

0
P

{∣∣∣∣∣
∑

i∈H̃0
I(|Vi| ≥ t)

p0G(t)
− 1

∣∣∣∣∣ ≥ ε
}
dt

+

b∑
ι=b−1

P

[∣∣∣∣∣
∑

i∈H̃0
{I(|Vi| ≥ tι)−G(tι)}

p0G(tι)

∣∣∣∣∣ ≥ ε
]
.

Thus, it suffices to show, for any ε > 0,∫ tp

0
P

{∣∣∣∣∣
∑

i∈H̃0
{I(|Vi| ≥ t)− P(I(|Vi| ≥ t)}

p0G(t)

∣∣∣∣∣ ≥ ε
}
dt = o(vp). (8.11)

Note that

E

∣∣∣∣∣
∑

i∈H̃0
{I(|Vi| ≥ t)− P(I(|Vi| ≥ t)}

p0G(t)

∣∣∣∣∣
2

=

∑
i,j∈H̃0

{P(|Vi| ≥ t, |Vj | ≥ t)− P(|Vi| ≥ t)P(|Vj | ≥ t)}
p20G

2(t)
.

We divides the indices i, j ∈ H̃0 into the subsets: H̃01 = {i, j ∈ H̃0, i = j},
H̃02 = {i, j ∈ H̃0, i ∈ Γj(γ), or j ∈ Γi(γ)} and H̃03 = H̃0 \ (H̃01 ∪H̃02). Then we

have∑
i,j∈H̃01

{P(|Vi| ≥ t, |Vj | ≥ t)− P(|Vi| ≥ t)P(|Vj | ≥ t)}
p20G

2(t)
≤ C

p0G(t)
. (8.12)

We now show the equation (2.9). Note that Cov(εk,dηk,i,d, εk,dηk,j,d) =

E(ε2k,dηk,i,dηk,j,d) − E(εk,dηk,i,d)E(εk,dηk,j,d). Because Cov(εk,d, ηk,i,d) = −σ2ηi,dβi,d,
we have E(εk,dηk,i,d)E(εk,dηk,j,d) = σ2ηi,dσ

2
ηj,dβi,dβj,d. Note that

E(ε2k,dηk,i,dηk,j,d) = E{ε2k,d(ηk,i,d + εk,dγi,1,d)(ηk,j,d + εk,dγj,1,d)}
− E{ε2k,d(ηk,i,d + εk,dγi,1,d)εk,dγj,1,d} − E(ε3k,dγi,1,dηk,j,d).

By definition, we have εk,d independent with ηk,i,d + εk,dγi,1,d. Thus, we have

E(ε2k,dηk,i,dηk,j,d) = σ2εdE{(ηk,i,d + εk,dγi,1,d)(ηk,j,d + εk,dγj,1,d)} − E(ε3k,dγi,1,dηk,j,d).

Note that

E(ε3k,dγi,1,dηk,j,d) = E{ε3k,dγi,1,d(ηk,j,d + εk,dγj,1,d)} − E(ε4k,dγi,1,dγj,1,d)

= −3γi,1,dγj,1,dσ
4
εd ,



90 YIN XIA, TIANXI CAI AND T. TONY CAI

and that

E{(ηk,i,d + εk,dγi,1,d)(ηk,j,d + εk,dγj,1,d)}
= Cov(ηk,i,d, ηk,j,d) + γi,1,dCov(εk,d, ηk,j,d) + γj,1,dCov(εk,d, ηk,i,d) + γi,1,dγj,1,dσ

2
εd .

We have Cov(εk,dηk,i,d, εk,dηk,j,d) = (ωi,jσ
2
εd + 2βi,dβj,d)σ

2
ηi,dσ

2
ηj,d . Thus

ξ̃i,j,d = Corr(εk,dηk,i,d, εk,dηk,j,d) =
(ωi,j,dσ

2
εd + 2βi,dβj,d)

{(ωi,i,dσ2εd + 2β2i,d)(ωj,j,dσ
2
εd + 2β2j,d)}1/2

.

Note that, for i ∈ H̃0, we have βi,d = O((log p)−2−τ )and so |Corr(Vi, Vj)| ≤ ξ < 1,

where ξ = max{ξ1, ξ2} + ε with ξd defined in (C2) and ε < 1 −max{ξ1, ξ2}, for

i, j ∈ H̃02. Hence∑
i,j∈H̃02

{P(|Vi| ≥ t, |Vj | ≥ t)− P(|Vi| ≥ t)P(|Vj | ≥ t)}
p20G

2(t)

≤ Cp
1+νt−2 exp{−t2/(1 + ξ)}

p2G(t)
≤ C

p1−ν{G(t)}2ξ/(1+ξ)
. (8.13)

It remains to consider the subset H̃03, in which Vi and Vj are weakly correlated. It

is easy to check that maxi,j∈H̃03
P(|Vi| ≥ t, |Vj | ≥ t) = (1+O{(log p)−1−γ})G2(t).

Hence,∑
i,j∈H̃03

{P(|Vi| ≥ t, |Vj | ≥ t)− P(|Vi| ≥ t)P(|Vj | ≥ t)}
p20G

2(t)
= O{(log p)−1−γ}.

(8.14)

Equation (8.11) and the FDP result then follow by combining (8.12), (8.13), and

(8.14), and the FDR result is also proved.
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