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Abstract

The problem of estimating linear functionals based on Gaussian observations is considered. Proba-
bilistic error is used as a measure of accuracy and attention is focused on the construction of adaptive
estimators which are simultaneously near optimal under probabilistic error over a collection of con-
vex parameter spaces. In contrast to mean squared error it is shown that fully rate optimal adaptive
estimators can be constructed for probabilistic error. A general construction of such estimators is
provided and examples are given to illustrate the general theory.
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1. Introduction

One of the central goals in nonparametric function estimation is the development of pro-
cedures which adapt to the smoothness of the underlying function. One way to formalize
this goal is to focus on the construction of procedures which are simultaneously near mini-
max over a collection of parameter spaces. Estimators which attain such a goal are termed
adaptive.
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Adaptation theory depends critically on how risk is measured. For estimating linear
functionals the problem of adaptation has mostly been studied under mean squared error.
For estimating a function at a point, Lepski [19] was the first to show in a number of cases
that under mean squared error the exact minimax rate of convergence cannot be attained
simultaneously over even a pair of Lipschitz classes. A logarithmic penalty must be paid
for adaptation. Further developments can be found for example in [20,22,15]. Efromovich
and Low [12] extended pointwise estimation to arbitrary linear functionals over symmetric
convex parameter spaces.

A more general theory for adaptation under mean squared error has been developed in
[3]. This theory covers general convex parameter spaces using geometric quantities, namely
the ordered and between class moduli of continuity. For a linear functional T and parameter
spaces F and G the ordered modulus of continuity w(e, F, G) is defined by

(e, F,G) =sup{Tg —Tf:llg— fll2<& feF, geg} ey

When G = F, w(e, F, F) is the modulus of continuity over F, introduced by Donoho and
Liu [9] for minimax theory, and will be denoted by w(¢, F). The between class modulus of
continuity is then defined as w (¢, F, G) = max{w(e, F, G), w(¢, G, F)} or equivalently

wi(e, F,G) =sup{|Tg —Tfl: lg— fl2<e feF, geg} (2)

These moduli were shown to be instrumental in characterizing the possible degree of adapt-
ability over two convex classes F and G in the same way that the modulus of continuity
w(e, F) was used by Donoho and Liu [9] and Donoho [8] to capture the minimax risk over
a single convex parameter space J. In particular the general theory given in [3] shows that
sometimes the cost of adaptation can be much more than a logarithmic factor.

In addition to mean squared error there are other natural performance measures. In this
paper we shall focus on probabilistic error. For a given estimator T, linear functional T f
and precision level ¢ the probabilistic error over F is given by

sup P(IT = Tf|>0). 3
feF

It is often natural, as in the construction of confidence intervals to first specify a tolerance
level o for the probabilistic error and seek the smallest value of ¢ in (3) attaining such a
level. For a given o the minimax benchmark is given by

r(F,a) =inf {d: inf sup P(|f —Tf|lzd)<oay. “4)
T feF

Asymptotic versions of (4) are one way to define an optimal rate of convergence. See
for example [23,14,8]. Note also that 7 (F, ) is the half length of the shortest fixed length
confidence interval with coverage probability over F of at least 1 —a. Following an approach
of Donoho [8] lower bounds for r (F, o) are given in Section 2 for arbitrary parameter spaces.
An alternative approach not considered in this paper is to fix a precision level ¢ in (3) and
to construct an optimal procedure T minimizing the probabilistic error over F given in (3).
The asymptotic behavior of this Bahadur risk has for example been studied in [17].
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In this paper, we are primarily interested in adaptive estimation under probabilistic error
over a collection of parameter spaces. There is a dramatic difference between mean squared
error adaptation and probabilistic error adaptation. In contrast to mean squared error where
the minimax rate of convergence cannot in general be attained simultaneously over even two
parameter spaces it is shown in Section 3 that under probabilistic error fully rate optimal
adaptation is always possible over any finite collection of convex parameter spaces. A
general construction of a rate optimal adaptive estimator is given based on the ordered
modulus of continuity. The adaptive estimator is constructed using tests between parameter
spaces which are based on estimators which trade bias and variance in a precise way. This
general approach was used in [19] but the specific tests are designed for probabilistic error.

For a collection of k convex parameter spaces upper bounds for the performance of this
estimator are given in terms of k£ and the moduli of continuity. Illustrative examples are
given in Section 4. One example considers Lipschitz classes which contrast the difference
between mean squared error and probabilistic error adaptation when £ is fixed. An example
is also given where the number of convex parameter spaces is not fixed and which shows
that the upper bound is rate optimal as a function of k.

2. Minimax theory

Throughout this paper we consider estimation of a linear functional T f based on Gaussian
observations

1
dy(t) = f(t)dt + 7 dw (@), (5)

where W is standard Brownian motion or

Y(i)=f(i)+%zz', (6)
where z; are i.i.d. standard normal random variables.

In this context minimax theory is well developed for squared error loss. In particular one
of the central results of Donoho and Liu [9] is that for any linear functional and a given
convex parameter space the associated modulus of continuity determines the minimax rate
of convergence under a large number of loss functions. For example under squared error
loss and Gaussian observations wz(%ﬁ, JF) is the minimax rate for estimating the linear

functional T f over a convex parameter space . Extensions of these results to nonconvex
parameter spaces has been given in [6].

Results have also been developed for the shortest fixed length confidence intervals with a
given level of coverage. See [8]. These results have immediate implications for probabilistic
error. In particular it follows from the confidence interval results in [8] that for any o« > 0

~

and a given convex parameter space J there exists a linear estimator 7" such that

sup P <|f —Tf| > w(zz“/z,f» < 7
feF \/ﬁ
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and also that for any procedure T

sup P(|7A*—Tf|>a)<&,]—">> > o. ®)
feF \/ﬁ

The focus of this paper is on adaptation theory under probabilistic error. For the devel-
opment of such a theory it is necessary to derive lower bounds for probabilistic error over
arbitrary parameter spaces. The following theorem which essentially follows from ideas in
[8] provides such a lower bound.

Theorem 1. Let G be a parameter space and let 0 < o < % For estimating a linear
functional T f based on Gaussian models (5) or (6)

A 1 274
P -1t —,g))>w ©
o (' /! 2w(ﬁ ! )

or equivalently

1 274
rg,0)z-o(——, . 10
G, ) 3 ( NG Q) (10)

Theorem I provides a benchmark for the evaluation of any procedure under probabilistic
error. For a given estimator T let

r(f",Q,oc):inf{d: sup P(|f—Tf|>d><a}. (1)
feg
Results in Section 3 on adaptive estimation will show that the lower bound given in (10) is
rate optimal. The construction in Section 3 also provides a minimax rate optimal estimator
for probabilistic error over a finite union of convex sets. More specifically let G = Uﬁ.‘zl Fi
where F, F2, ..., Fr is a collection of convex parameter spaces with pairwise nonempty
intersections. Then the estimator T given in (16) satisfies

) 13
sup P (|T ~Tfl> S0 (Zi‘//%k,g» <o

feg
and hence
A 13 Zo/2k
g Ta ) g_ = . 12
r(G,o)<r(T,G, o) 2w<ﬁ Q) (12)

This result is a direct consequence of Theorem 2. A comparison of (10) and (12) shows that
when the parameter space G is a finite union of convex sets the minimax rate of convergence
under probabilistic error is determined by the modulus of continuity.

3. Adaptation

In this section we turn to the development of an adaptation theory for probabilistic error.
Perhaps the most notable feature of this theory is that fully rate adaptive procedures always
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exist over a finite collection of convex parameter spaces. This is in sharp contrast to the
theory for mean squared error where penalties often must be paid for adaptation. We first
briefly recall some known results on adaptation under mean squared error in Section 3.1
and then turn to probabilistic error in Section 3.2.

3.1. Adaptation under mean squared error

The construction of adaptive estimators is a central problem in nonparametric function
estimation. For estimating linear functionals the focus so far has been adaptation under
mean squared error. Lepski [19] was the first to show that for estimating a function at a
point over a collection of Lipschitz classes a logarithmic penalty must be paid for adaptation.
Efromovich and Low [12] showed that this phenomenon is in general true for estimating
linear functionals over a collection of nested symmetric convex parameter spaces. On the
other hand Cai and Low [3] show that in some settings the cost of adaptation can be
much more than a logarithmic factor. Under order restrictions such as estimating monotone
functions at a point Kang and Low [16] show that fully rate adaptive estimators sometimes
exist. Efromovich [11] shows that these results are not just an asymptotic phenomena but
are also noticeable in small data sets.

However for integrated squared error it is well known that rate optimal adaptive estimators
can often be constructed. In fact it was first shown in [13] that sharp adaptive estimators
can be constructed over collections of Sobolev spaces. These estimators are simultaneously
asymptotically minimax over each Sobolev ball in the collection. Cai and Low [7] considers
the problem of adaptation over shrinking neighborhoods which includes as special cases
estimation at a point and estimation over the whole interval. It is shown that the cost
of adaptation depends critically on the size of the neighborhood over which the risk is
measured.

3.2. Adaptation under probabilistic error

We shall now turn to the problem of adaptation under probabilistic error. The adaptation
problem is formulated as follows. Let Fy, F2, ..., Fi be a collection of convex parameter
spaces with pairwise nonempty intersections. SetG; = U{Zl F;. In this section we consider
adaptation over G;. Note that {G;, j = 1, ..., k} is a collection of nested but not necessarily
convex parameter spaces. The benchmark for probabilistic error over each of these spaces is
provided by Theorem 1. The goal is to construct a single estimator T which simultaneously
attains, within a fixed constant factor, the lower bound in (10) for all G;.

As in the mean squared error adaptation theory in [3] and the confidence interval theory
given in [4] the construction of the adaptive procedure relies on the ordered modulus of
continuity as given in (1). The details of the construction of the adaptive estimator are
however quite different. An important preliminary step is to find linear estimators with
precise bias-variance tradeoffs over pairs of parameter spaces. It should be mentioned that
the bias tradeoff is given in terms of upper bounds over one parameter space and lower

bounds over the other space. These linear estimators can be described as follows. For

I<i,j<ksetw;j =w (Z“ﬁ, Fi, F j). The bias-variance tradeoff is then accomplished
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by estimators given in [6]. These linear estimators T; ,j have variance bounded by 2 w?

20/2k bJ

and bias which satisfies

) A 1
flélyf:_/. (E(Ti, ;) =Tf= — 3 @i (13)
and
1
sup (E(Tl ]) - Tf)< wl J* (14)
feFi

This collection of linear estimators will be used for the construction of anonlinear adaptive
procedure. For convenience write T for Tl ;. It should be noted that the estimator T has
variance and squared bias bounded above by

A 1 , ,
Var(Ti)gz—a)2 <Za/2k,.ﬂ> , and sup Bias* (T)< - <Za/2k,}‘,~> .
22k " feFi Vn

Consequently the estimator 7; is minimax rate optimal over F; for squared error loss.
Similarly for probabilistic error straightforward calculations also yield

B 3 (zop2
sup P<|T~—Tf| > —w( }')) <o. (15)
feFi l 2\

Hence, from the general lower bound (9), r(fi, F, o) is within a small constant factor of
the minimax benchmark » (F, a).

The construction of the adaptive procedure is based on a sequence of tests between the
different pairs of parameter spaces. For | <p<k — 1 let

. 3 . . 3
A= ] 1<Tp,l — S @pr+ o) STy <Tip + S (@1 +w,,))
p<l<k

and set Ag = 0. A, is a test between F, and uk Fj. The test chooses F, with
probability of at least 1 — a/2k when [ € ]—'
The nonlinear adaptive estimator can now be described as follows.

1. Test between F; and U’;:2 Fj using Aj.

2. If the test A chooses F| then use f‘l as the estimate of T f.
3. Otherwise, delete F| and repeat Steps 1 and 2.
More formally the procedure can be written as

j=p+1

1—Aj)Ai. (16)

T :]T'

The following theorem shows that the estimator T is fully rate optimally adaptive over the
collection G;.
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Theorem 2. Forl1<j<kletG; = Ulj:l Fiwhere Fy, Fa, ..., Frisacollection of convex
parameter spaces with pairwise nonempty intersections. For all 1 < j <k the estimator given
in (16) satisfies

A 13 Zo/2k
sup P (IT—Tf|>—w<—,g')> <o
reg; f 2 \/ﬁ /

and hence

A 13 Z
r(T.Gj 0 <o (% gj> .
Remark. The estimator given in (16) is specifically designed for adaptation under proba-
bilistic error. It necessarily has poor performance under mean squared error. See [5].
As mentioned earlier for a fixed parameter space confidence intervals can be obtained by
inverting the result for probabilistic error. In this setting Theorem 2 immediately yields a
result for confidence intervals.

Corollary 1. Let G = Ule Fi where F1, Fa, ..., Fi is a collection of convex parameter
spaces with pairwise nonempty intersections. Let T be given as in (16). Then

A 13 (zgk
T+ — ,
Zw( NG g)

is a confidence interval for T f which has coverage probability of at least 1 — o over G.

It follows that the length of the optimal fixed length confidence interval with a given level
of coverage over a finite union of convex sets is determined up to a constant by the modulus
of continuity over the parameter space. Moreover the lower bound given in (9) shows that
no random length confidence interval with the same level of coverage can have maximum
expected length with a faster rate of convergence.

Sometimes as in the nearly black object example given in Section 4 it is of interest
to consider collections of parameter spaces which are unions of a growing number (as n
2
Zi/z
also that the ordered modulus of continuity w(e, H, J) is a concave function of ¢ whenever
both H and J are convex parameter spaces with nonempty intersection. See [6]. Hence for

D>1

increases) of convex sets. It is then useful to note that z,/5; <

logk +1 - z4/2. Note

o(De, UL, F)) = max o(De, F;, Fj)< max Dao(e, Fi, F))
1<i,j<m I<i,j<m

= Dw(e, UL, F).

It then follows that

Zo/2k ) 2 (Za/Z )
o|——=,G;| < |[=—logk+1 -0 —=,G;
< N V 22 N
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and consequently

A 13 2 Zo/2
r(T,Q~,ac)</logk+l~w< g) (17)
J 2 Zi/z ﬁ J

Comparing the upper bound (17) with the minimax lower bound given in (9) shows that the
upper bound contains an extra /log k factor. The nearly black object example in Section 4
shows that this ,/log k factor cannot in general be removed when k grows with n.

The result given in Theorem 2 should be contrasted to results for adaptation under mean
squared error and also for adaptive confidence intervals. It is known that under mean squared
error fully rate adaptive estimators typically do not exist and a penalty usually must be paid
for adaptation. See [3]. Although there is a direct connection between the construction of
optimal confidence intervals and minimax results for probabilistic error over a fixed param-
eter space, there is however a major difference for the corresponding adaptive estimation
problems. In the adaptive setting it is not possible to invert the bounds given for probabilis-
tic error since these bounds depend upon the unknown parameter space. There are many
examples where it is possible to construct estimators that are guaranteed to be “optimally
close” probabilistically to the unknown functional without knowing the accuracy of the esti-
mator. For the construction of confidence intervals the accuracy of the estimator is however
needed and consequently it is more difficult to construct adaptive confidence intervals than
to construct estimators which are adaptive probabilistically.

4. Examples

In this section we consider two examples to illustrate the results of Section 3. The first
example has a fixed number of parameter spaces. It is used to highlight the difference
between mean squared error and probabilistic error adaptation. In the second example the
number of parameter spaces increases with n. This example is used to show that the factor
Zay2k ~ +/log k (for large k) in the upper bound in Theorem 2 cannot in general be dropped.

4.1. Lipschitz classes

Lipschitz classes are one of the most commonly studied parameter spaces in nonpara-
metric function estimation particularly when the object is to recover the function at a given
point. For these classes it is well known that under mean squared error a minimum penalty
of a logarithmic factor must be paid for adaptation. See [19,2]. We shall see that fully rate
optimal adaptation can be achieved over any finite collection of Lipschitz classes under
probabilistic error.

For f§ > 0 the Lipschitz function class is defined as

1 _
F(B, M) = {f: [—2, 2} = R, |[fP ) = fPI<MIx — 5l f’} (L)
where p is the largest integer strictly less than . Let f; > f, > -+ > f, > 0. Set

Fi; = F(f;, M) and as in Section 3let G; = U{:] Fi.
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Now suppose that we observe the white noise with drift process (5) and that the linear
functional is point evaluation where for convenience we take 7 f = f(0). Straightforward
calculations show that for i > j there are constants C; ; and C; such that

23
w(e, Fi, Fj) = C,-,jsw(l +o0(1))

and
2;
w(e, Gj) = Cje™i™ (14 o(1)).
_ b
It follows that (G}, o) is of ordern /i *".

Let 7 be the estimator defined in (16). It follows from Theorem 2 that there are constants
C (o) such that

. __b
sup P(IT —Tf|=Cj(n i) <a
feg;

for all 1< j <k and all n. Hence

R _ b
r(T,Gj,0)<Cj(wn *it'.

In this sense T is a rate optimal adaptive estimator over the finite collection of Lipschitz
classes under probabilistic error.

This example also illustrates a common situation where estimators which are adaptive
under probabilistic error cannot be used to construct corresponding rate optimal adaptive
confidence intervals. In fact in this case such adaptive confidence intervals do not exist.

For any confidence interval with a given coverage probability of at least 1 — « over Gy the
_ _Pk
maximum expected length over G; must be of order n  2+*! whereas there are confidence
intervals with coverage probability of at least 1 — o over G; which have maximum expected
Bj

length of order n %i*" . See [21,4].

4.2. Nearly black object

The nearly black object arises naturally in wavelet function estimation and for estimating
the whole object has been studied for example in Donoho, Johnstone, Hoch and Stern (1992)
and Abramovich, Benjamini, Donoho and Johnstone (2000). It was also considered in [4,6]
for minimax estimation under mean squared error and in the construction of confidence
intervals for a linear functional. This example is used here to show that the factor z4/2¢ ~
/1log k (for large k) in the upper bound in Theorem 2 cannot in general be dropped.

Consider the Gaussian sequence model:

1
zi i=1,...,n, 19)

yi=fi+ﬁ
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id
where z; N (0, 1) and linear functional Tf =Y, f;.

Fix m, <n” where y < % and let G be the collection of vectors in IR" with at most m,,
nonzero entries. Let Z(m,,, n) be the class of all subsets of {1, ..., n} of m, elements and
for I € Z(m,, n) let

Fr={feR": fj=0 Vj¢l}.

Note that F; is a m, dimensional subspace spanned by the coordinates in I. These are
obviously convex and G = UJF; where the union is taken over / in the set Z(m,,, n). From
now on we shall assume that / is in the set Z(m,,, n).

Simple calculations as in [6] show that for all I, J € Z(m,, n)

(e, Fr, Fy) = /Card({ U J)e

and consequently
w(87f17g) Zw(eagafl) = w(87g) = \/2mn &.

LetK = (’;’n ) be the number of the m,,-dimensional parameter spaces ;. The following
theorem gives a lower bound on the probabilistic error over G = UF].

Theorem 3. Suppose that n>4 and m, < n’ with y < % Let Tf = Y !, fi and let
O<a< % be fixed. Then there exists a constant C (o) > 0 such that for any estimator T

sup P(T — Tf| > C(@w ( v logK,g)> > (20)
feg «/ﬁ

and consequently

r(G, 3) > C(x)w (V log K g) .

Jn

This result shows that the factor z,/2x ~ /log K in the upper bound given in Theorem
2 cannot in general be dropped.

5. Proofs

Proof of Theorem 1. We shall focus on the proof for the white noise with drift model (5).
The proof for the sequence model (6) is analogous. Fix ¢ > 0. For any 6 > 0 there are
functions f1 € Fj and f> € F; such that

22
ITf— THI> 04 (%g) —5

and such that

2z
||fz—f1||z<—;‘.

7
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Denote by P; the probability measure associated with the white noise process
1 1 1
dy (@) = fit)dt + —dwW((t), —=-<t<=,i=1,2.
(1) = fi()dr + NG (0 3 70
Let 8, =n| fi — f2||%. Then a sufficient statistic for the family of measures {P; : i = 1, 2}
is given by the log—likelihood ratio S, = log(d P»/d P1) with

S N( 2 ,B,) under P,
! N(2 f,)  under P,.

An equivalent sufficient statistic is thus given by

_TH+TH  TH-ThH
Qn— 2 + ﬁn 'Snv

N (Tfl, %ﬂ) under P;,
O ~ P
" N (sz, (T"ZE&) under P,.

In testing between Hy: 0 = Tf; and H,: 0 = T f, based on Q, the Neymann—Pearson
Lemma yields for any test I if

Prp(I'=1)<«
then

Prp,(I' =0)>o0.

Any estimator 7' yields a test by setting I' = 1 when 7 > 2/ ‘I;T‘f 2 and I" = 0 otherwise.
Therefore
1 224 0
P T-Tfi|>—- , — =) >
s o (17 =150 (7.) =3) =2

The Theorem follows on taking the limitas 6 — 0. [

Proof of Theorem 2. We shall assume that f € F; and show that

A 13 Zo/2k
sup Py <|T—Tf|>—a)< .G >> 21
fe]:j 2 \/_ J
The theorem is then an immediate consequence of (21).
Note that

A 13 "
(e (52.0)

<> Py (m - Tf|>§w (Zjik g,) NIA = 1)) +P(Aj =0)
=1
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/ . 13 Za/2k
<Zmin{Pf<|T1—Tf|>—w( g)),P(m:l)}

=1 2 f '
+P(Aj =0). (22)

Let 1 </ < j. There are two cases. In the first case consider

A 11 Za/2k
ET, —T —
|ET; fl> 2“’([ gl)

Then either E(T; — Tf) > 1 “/ff .G or E(T; — Tf) < — (W Gj). We only
consider the first of these since the argument for the second is analogous
Note that

A 1 Za
E(Tj, - Tf)<§w< \//3" gJ)

and

. 4
Var(fy — ) < 54— <Z°‘/2k,9’j> :
oc/2k v

Hence

. .3
PA=1) <P (TIST,',I + E(wj,l +wz)>
A A Z
< P(Tzs j,l+3w(—“/2k,g,-)>

20(16)

< PlZ> 5
2 (e .
Zx/zkw( Vn ’gf>
o
< —. 23
% (23)
The second case is when
A 11 Za/2k
ET, —Tf|l<—
ET ~TfI< w( -k 91)
Note that since Var(f}) < 21 2 (Z“ﬂ, g j> standard calculations yield
La/2k Vn
A 13 Za/2k o
Pe\ITi —Tf1=2— 24
f<|l /1 260(\/— g]>> <% (24)

It then follows from (23) and (24) that for f € F;

. ) 13 [z a
mm{Pf <|ﬂ—Tf|>?w<Zﬁk g]>>»P(Al=1)}<ﬁ- (25)
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Now consider P(A; = 0). Note that

k
. .3
P(Aj=0) < ) <P(TJ<T./,/—§(0)J‘J+@/)>
I=j+1

~ ~ 3
+P (Tj > T, + E(wl,j +wj))) .
Note also that

N o 3
E <Tj =1, — z(wz,j + wj)) < — (o, + wj)

and
~ ~ 1 2
Var(Tj — T1,j) < (o1, + j)”.
Zo/2k
Hence
(7 >F s o ton) <
s T (o)) <—.
J L,j ) 1] J 2%
Similarly
P(T < T =20 +0p)) <
e T — 2w w)) <—.
J Jil ) il J %
Hence

P(A; =0)<M.

It follows from (25) and (26) that

J . 13 (24
Z min {Pf (|T, - Tf|>?co (%Q,)) ,P(A = 1)}

=1
jo | (k=)o
PA=0)<—+ ————K
+ (] ) 2k+ % o

and the theorem follows. [

243

(26)

Proof of Theorem 3. In the proof write m for m,. Let y, be the density of a normal

distribution with mean u and variance % And for I € Z(m, n) let

g1,y =[] ¥y 00),
j=1
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where f; = \%l(j el)and p = ,/%log # Finally let
1

g=m Z 81

m/ 1e€Z(m,n)

and f = ]_[’}-=1 fo be the density of n independent normal random variables each with

mean 0 and variance % A similar mixture prior was used in [1] to give lower bounds in a
nonparametric testing problem.
Note that for all g;, Tg; = m\% and that for any d > 0 if
Py, (|f ~Tgl > d) <o

for all I € Z(m, n) then it follows that

Pg( j_>d><a.

T —m-—=
n

In [4] it is shown that when n >4 and m < n? withy < % then the L distance between
fand g can be bounded by

f|g — fI< (4"‘“‘2’” (1 + i.) - 1) 10.
n2

Hence for any 0 < & < 1 — 20 there exists n, such that for all n >n,, f lg — fl<e.

Let 7 be an estimator of 7. Any such estimator can be used to construct a test between

Hy: 0 =Tf and H, : 0 = Tg as follows. Choose Hy when T— Tf< % and choose H,

otherwise. Note that
1 I
P(Type I error 4 Type Il error) > 1 — 5/ lg— fI=1— 3

See for example [18]. Hence if

o mp 1
P\T-Tf>— )<=

i) T2
then
Pg(f"—Tg<—ﬂ> >l—f.
2/n 2 2
Hence

P17 —7f1> "2 p (17 —Tg > ") 518
max - >—, - >— |t > -2
2/n) 'k 81=am)| 7272

Note that the number of convex subsets K is equal to n choose m,, and it is easy to see that

n
K = < ) <nMn.
nmpy
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Hence 2"% > Cw(—vl\%{, G) for some constant C > 0. Hence the theorem follows. [
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