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Adaptive Confidence Bands for Nonparametric
Regression Functions

T. Tony CAI, Mark LOW, and Zongming MA

This article proposes a new formulation for the construction of adaptive confidence bands (CBs) in nonparametric function estimation
problems. CBs, which have size that adapts to the smoothness of the function while guaranteeing that both the relative excess mass of the
function lying outside the band and the measure of the set of points where the function lies outside the band are small. It is shown that the
bands adapt over a maximum range of Lipschitz classes. The adaptive CB can be easily implemented in standard statistical software with
wavelet support. We investigate the numerical performance of the procedure using both simulated and real datasets. The numerical results
agree well with the theoretical analysis. The procedure can be easily modified and used for other nonparametric function estimation models.
Supplementary materials for this article are available online.
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1. INTRODUCTION

Adaptive inference has been a major focus in nonparametric
function estimation. Within this area, there has been consider-
able success constructing procedures for estimating a regression
function or density, which adapt to the smoothness properties
of the unknown function. A particularly successful example is
wavelet thresholding but there are a wide variety of estimation
procedures with proven optimality properties.

Unfortunately, the development of a satisfactory theory for
adaptive confidence bands (CBs) has proved to be more diffi-
cult. Ideally, an adaptive CB should have its size automatically
adjusted to the smoothness of the underlying function, while
maintaining a prespecified coverage probability. However, as
we shall show, such a goal is impossible even for Lipschitz
function classes and hence a new framework for investigating
adaptive CBs is needed. The primary goal of the present article
is to provide such a framework along with a new CB procedure
that not only has good numerical performance but also achieves
adaptivity in this new framework.

Consider the nonparametric regression model

yi = f (ti) + σϵi , i = 1, . . . , n, (1)

where ti = i
n

and ϵi
iid∼ N (0, 1). The goal is to construct a CB

for f on the interval [0, 1]. A CB can be represented by two
random functions, the lower limit L(·) and the upper limit U (·),
where L(t) and U (t) are two functions based on the observations
{y1, . . . , yn} such that L(t) ≤ U (t) for all 0 ≤ t ≤ 1. We shall
write CB = [L(t), U (t)].

For a fixed collection of functions F , write Bα(F) for the
collection of all CBs that have guaranteed coverage probability

T. Tony Cai (E-mail: tcai@wharton.upenn.edu) is Dorothy Silberberg
Professor of Statistics, Mark Low (E-mail: lowm@wharton.upenn.edu) is
Walter C. Bladstrom Professor of Statistics, and Zongming Ma (E-mail:
zongming@wharton.upenn.edu) is Assistant Professor of Statistics, Department
of Statistics, The Wharton School, University of Pennsylvania, Philadelphia,
PA 19104. The research of Tony Cai was supported in part by NSF FRG Grant
DMS-0854973, NSF Grant DMS-1208982, and NIH Grant R01 CA 127334-05.

Color versions of one or more of the figures in the article can be found online
at www.tandfonline.com/r/jasa.

of at least 1 − α over F , that is,

Bα(F) =
{
CB = [L(t), U (t)] : inf

f ∈F
Pf (f (t) ∈ [L(t), U (t)],

∀ 0 ≤ t ≤ 1) ≥ 1 − α
}
. (2)

Useful bands for the unknown function should then be chosen
from this collection so that the size of the resulting band is
“small” while guaranteeing coverage. Two natural measures of
the size of the band are given by the average width

∫ 1
0 (U (t) −

L(t))dt and the maximum width maxt (U (t) − L(t)).
Given that the size of the CB is allowed to be random, it

is helpful to evaluate the expected width of the band, which
typically may also depend on the function f . For a confidence
band CB = [L(t), U (t)], write

w(CB, f ) = Ef

∫ 1

0
(U (t) − L(t))dt

for the expected average width for a particular f ∈ F . In this
setting, an adaptive band should have values of w(CB, f ), which
adjust to the unknown function f in the sense that it is small when
a function f is easier to estimate. However, before explaining
why this goal is not typically possible, it is helpful to first
introduce

w(CB,F) = sup
f ∈F

w(CB, f ) = sup
f ∈F

Ef

∫ 1

0
(U (t) − L(t))dt,

the maximum expected average width where the maximum is
taken over all f ∈ F . In addition, the minimax expected average
width Wα(F) of CBs that have guaranteed coverage probability
at least 1 − α over F is denoted by

Wα(F) = inf
CB∈Bα (F)

w(CB,F) = inf
CB∈Bα (F)

sup
f ∈F

w(CB, f ).

For example, consider the Lipschitz classes

$(β,M) = {f : |f (y) − f (x)| ≤ M|y − x|β for x, y ∈ [0, 1]}
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for 0 < β ≤ 1, and for β > 1

$(β,M) = {f : |f (⌊β⌋)(x) − f (⌊β⌋)(y)| ≤ M |x − y|β ′

for x, y ∈ [0, 1]},

where ⌊β⌋ is the largest integer less than β and β ′ = β − ⌊β⌋.
These are among the most commonly considered parameter
spaces in the nonparametric function estimation literature. The
minimax theory for such parameter spaces can be developed rel-
atively easily and as shown later the minimax expected average
width is given by

Wα($(β,M)) ≍ M
1

2β+1

(
log n

n

) β
1+2β

and can be attained by a fixed width CB centered on a linear
estimator. However, as is typical the CB centered on a linear
procedure that attains this bound for a given Lipschitz class
behaves poorly for other classes. It either has poor coverage or
the expected average width of the band is unnecessarily large.
Such a band is clearly not adaptive to the smoothness property
of the function. This therefore leads naturally to the question
of whether it is possible to construct a CB that performs well
simultaneously over a collection of Lipschitz classes.

1.1 Impossibility of Adaptation Over Lipschitz Classes

An adaptive CB over a collection of parameter spaces C =
{Fi : i ∈ I }, where I is an index set should guarantee a given
coverage probability over C while simultaneously minimizing
the maximum expected average width over each of the parameter
spaces Fi . Hence, a confidence band CB ∈ Bα(∪i∈IFi) is called
adaptive over {Fi : i ∈ I } if for all i ∈ I ,

w(CB,Fi) ≤ CiWα(Fi),

where Ci are constants not depending on n, and we say that
adaptation is possible over the collection {Fi : i ∈ I } if such a
procedure exists.

Unfortunately, this adaptation goal is not typically attainable.
For example, it is not possible to adapt over even two Lipschitz
classes $(β0,M0) and $(β1,M1) with β0 < β1. That is, for
all CB ∈ Bα($(β0,M0) ∪$(β1,M1)), there is a constant d > 0
such that

w(CB,$(β1,M1)) ≥ dn
− β0

2β0+1 ≫ Wα($(β1,M1)). (3)

This result is an immediate consequence of the minimax lower
bound given in Theorem 2 in Section 4, which provides even
stronger negative statements. These results show that there is
essentially no room for improvement in terms of rate of con-
vergence. The expected average width (up to log terms) is es-
sentially the same for every function and hence the size must
be essentially of the same order as in the worst case no matter
the true function. In marked contrast to estimating the unknown
function under integrated mean squared error, the construction
of adaptive bands in this context is thus impossible from the
classical view of covering the entire function.

This impossibility of constructing adaptive CBs in such set-
tings is now well known and has led to alternative formulations
of the adaptation problem. In the literature, there are at least
two different approaches toward this goal. One approach is to

impose additional structural assumptions. This reduces the pa-
rameter space and makes the coverage requirement (2) easier to
satisfy. For example, Hengartner and Stark (1995) and Dümb-
gen (1998), among many others, considered shape constraints
such as monotonicity or convexity, and showed that adapta-
tion is achievable under such constraints. Recently, Giné and
Nickl (2010) considered a self-similarity-type constraint that
also leads to adaptation. Moreover, their results also implied
that functions not satisfying such constraint are nowhere dense
in Lipschitz classes. See also Hoffman and Nickl (2011) and
Bull (2012). The other approach toward adaptation is to relax
the notion of coverage. In particular, Genovese and Wasserman
(2008) suggested the notion of surrogate coverage, which re-
quires the band to cover either the function f or a smoother
surrogate with probability 1 − α. Under this new notion of cov-
erage, the authors showed that a particular type of adaptation
can be achieved. Wahba (1983) proposed the notion of average
coverage. Instead of covering the entire function with proba-
bility 1 − α, the average coverage criterion requires the CB to
cover on average 100 × (1 − α)% of the points. See also Nychka
(1988). However, for average coverage an adaptation theory has
not yet been developed.

1.2 New Formulation

The focus of the present article is to introduce two different
but related relaxations of the classical notion usually required
of a CB, namely, that of covering the function at all points. The
goal is still to cover the true function rather than some surrogate
function and we do not wish to impose order constraints on
the function or to restrict attention only to special self-similar-
type functions within a smoothness class. Instead we shall, as in
the case for average coverage, give up guaranteeing coverage at
all points with the goal of allowing more adaptive CBs where the
size of the band reflects the underlying difficulty in recovering
the particular unknown function.

More specifically the first relaxation focuses on the measure
of the set of points where coverage does not occur, whereas
the second focuses on the excess mass of the function lying
outside of the CB. Hence, for the first relaxation, the goal is
to construct a CB with bandwidth automatically adjusting to
the smoothness of the underlying function, while maintaining
coverage of the function at “most” of the points in [0, 1]. This
point of view is related to that of guaranteeing average coverage
as described earlier. Under the second relaxation, the goal is to
have CBs that, with a prespecified probability, limit the amount
of excess mass of the true function outside of the CB. The goal
is to guarantee that the excess mass compared with the size of
the band is negligible.

1.3 Set of Noncovered Points

For a confidence band CB = [L(t), U (t)], define the set of
noncovered points by

N (CB, f ) = {t ∈ [0, 1] : f (t) /∈ [L(t), U (t)]}.

Note that N (CB, f ) is a random subset of [0, 1] since CB is
random. It is natural to require that this random set N (CB, f )
be “small” for a good confidence band procedure CB. That is,
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one would like CB to cover the function f over “most” of the
points in [0, 1] with probability at least 1 − α.

In this article “most” will refer to a set of points with measure
that goes to zero as the sample size increases. More specifically,
the coverage probability condition (2) is relaxed to

inf
f ∈F

Pf (µ(N (CB, f )) ≤ ξn) ≥ 1 − α (4)

for some sequence of positive numbers ξn such that ξn → 0 as
n → ∞.

Under this relaxation, the goal of an adaptive band can then
be formulated for the Lipschitz classes. Subject to guaranteeing
covering the function at most points, the aim is to minimize the
expected average width simultaneously for an entire collection
of Lipschitz classes, a goal that is ruled out by (3) for usual CBs.

1.4 Relative Excess Mass

In addition to wanting a CB to cover the true function at
most points, it is also natural to want the total mass of the func-
tion that lies outside the band to be small. For a confidence
band CB = [L(t), U (t)] and a function f , define the excess
mass function by

ef (t) = [f (t) − U (t)]+ + [L(t) − f (t)]+. (5)

Then the integrated excess mass of the function f with respect to
CB is

∫ 1
0 ef (t)dt . In other words,

∫ 1
0 ef (t)dt is the total amount

of mass of f that lies outside of the band CB. We then measure
the performance of CB by its relative excess mass

RE(CB, f ) =
∫ 1

0 ef (t)dt
∫ 1

0 [U (t) − L(t)]dt
.

For a good CB procedure, with probability at least 1 − α, the
area of the true function lies outside of the band should be
“small” compared with the area of the band itself, that is, its
relative excess mass should be small. More precisely, we relax
the coverage requirement (2) to

inf
f ∈F

Pf (RE(CB, f ) ≤ ξ ′
n) ≥ 1 − α (6)

for some sequence of positive numbers ξ ′
n such that ξ ′

n → 0 as
n → ∞.

1.5 Adaptive Procedure

One focus of the present article is to develop an adaptive
CB, which controls both the measure of the set of noncovered
points and the relative excess mass and for which both go to zero
asymptotically. Such a goal is possible for particular ranges of
Lipschitz classes. However, before we discuss in detail our adap-
tive band, it is important to first discuss limits on the possible
range of adaptation as this range will enter naturally into our
adaptive band. Note that a band that is adaptive over two Lips-
chitz classes$(β0,M0) and$(β1,M1) should satisfy either (4)
if attention is focused on the collection of points where cover-
age does not occur or (6) if attention is focused on excess mass
where in both cases F = $(β0,M0) ∪$(β1,M1). For the band
to be adaptive, the maximum expected average width should be
(log n/n)βi /(1+2βi ) over $(βi ,Mi) for i = 0 and i = 1.

Unfortunately, lower bound results given in Section 4 show
that this goal cannot be achieved ifβ1 > 2β0 > 0. In fact, in such

a case if the maximum expected average width over $(β1,M1)
is of order (log n/n)β1/(1+2β1), then

sup
f ∈$(β0,M0)

Pf

(
µ(N (CB, f )) ≥ 1

2

)
≥ 1

2

and

sup
f ∈$(β0,M0)

Pf (RE(CB, f ) ≥ r) ≥ 1
2

for any given r > 0, when n is sufficiently large. That is, there is
better than 50% of chance that the CB misses some function in
$(β0,M0) over more than half of the interval [0, 1] and there
is better than 50% of chance that some function in $(β1,M1)
has excess mass much more than the area of the band.

This shows that adaptation is not possible over Lipschitz
classes $(β,M) for β ∈ [β0, β1] with β1 > 2β0 > 0 even un-
der either of the more relaxed conditions. These extremely neg-
ative results, however, do not apply when β1 < 2β0 and so our
focus is on constructing CBs that are adaptive over the collection
of Lipschitz classes$(β,M) forβ ∈ [β0, 2β0] for a prespecified
minimum smoothness value β0 > 0.

One major goal of the present article is to show that it is
indeed possible to adapt over the range [β0, 2β0] under both the
set of noncovered points criterion (4) and the relative excess
mass criterion (6). Given the minimum smoothness β0 and the
maximum Lipschitz constant M0, we construct a data-driven
CB using wavelet techniques. The proposed band centers on a
wavelet projection estimator of the regression function where
the projection level is determined by the results of testing mul-
tiple hypotheses. The null hypotheses are naturally constructed
from the Hölder conditions on the wavelet coefficients of Lip-
schitz functions, while the alternative hypotheses are carefully
designed to control both the set of noncovered points and ex-
cess mass. After determining the projection level and hence
the center, we specify the width of the band by controlling the
stochastic error and the bias of such projection estimators sep-
arately. The resulting band is a uniform band where the width
of the band U (t) − L(t) = ŵn does not depend on t. It is shown
to meet both criteria (4) and (6) simultaneously over all Lips-
chitz classes $(β,M), where β ∈ [β0, 2β0] and M ∈ [1,M0].
In addition, the adaptive CB is shown to have desirable average
coverage probability.

The proposed CB procedure can be implemented efficiently
in standard statistical software with wavelet support. Numerical
performance of the procedure is investigated using both simu-
lated examples and a call center dataset. For simulated examples,
the performance of the band agrees well with the asymptotic the-
ory even when the sample size is not large. For the call center
data, the procedure leads to a smooth and interpretable band and
confirms the significance of a peak of call arrival.

1.6 Organization of the Article

The rest of the article is organized as follows. Section 2
presents the detailed construction of an adaptive CB using
wavelet techniques. Section 3 analyzes the theoretical properties
of the CB, and investigates its numerical performance by simu-
lations and real data analysis. A call center dataset is analyzed
to illustrate the procedure. Section 4 formally states the limits
on the range of adaptation over the Lipschitz classes $(β,M)
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under both the set of noncovered points criterion (4) and the
excess mass criterion (6) by establishing lower bounds under
both criteria. The lower bounds together with the upper bounds
obtained in Section 2 show that the proposed CB is optimally
adaptive under both criteria. Further discussions on the connec-
tions of our results and those of related problems are given in
Section 5. The main results are proved in Section 6. Additional
technical details are provided in a supplement to this article.

2. CONSTRUCTION OF ADAPTIVE
CONFIDENCE BAND

Before providing the detailed construction of the adaptive
CB, it is useful to restate a precise formulation of our goal in
the construction of adaptive CBs over Lipschitz classes. For a
prespecified minimum smoothness parameter β0, the collection
of function spaces that we aim to adapt over is

A(β0,M0) = {$(β,M) : β ∈ [β0, 2β0],M ∈ [1, M0]} , (7)

where M0 > 1 is also given. In addition, we require β0 > 1
4 .

For a prespecified confidence level 1 − α, the goal is to con-
struct a single confidence band CB = [L(t), U (t)], which si-
multaneously satisfies the following three requirements.

(a) (Average width condition) There exists a constant C, such
that for any $(β,M) ∈ A(β0,M0),

sup
f ∈$(β,M)

Ef

∫ 1

0
[U (t)−L(t)]dt ≤CM

1
2β+1

(
σ 2 log n

n

) β
2β+1

.

(8)

(b) (Noncovered points condition) There exist a sequence of
positive numbers ξn = ξn(β0,M0) with ξn → 0 as n →
∞, such that for each $(β,M) ∈ A(β0,M0),

lim
n→∞

inf
f ∈$(β,M)

Pf (µ(N (CB, f )) ≤ ξn) ≥ 1 − α. (9)

(c) (Excess mass condition) There exist a sequence of pos-
itive numbers ξ ′

n = ξ ′
n(β0,M0) with ξ ′

n → 0 as n → ∞,
such that for each $(β,M) ∈ A(β0,M0),

lim
n→∞

inf
f ∈$(β,M)

Pf

(
RE(CB, f ) ≤ ξ ′

n

)
≥ 1 − α. (10)

If a CB satisfies all three conditions, then its size contracts
at an optimal rate with respect to the smoothness parameters β
and M. In addition, with asymptotic probability at least 1 − α, it
covers the function on most points in [0, 1] and the excess mass
of the function is negligible compared with the band size.

In this section, such an adaptive CB is constructed based on
the observed data {yi : 1 ≤ i ≤ n}.

The band is a uniform band with width that depends on the
data. The detailed construction depends on an estimate of the
underlying function, which is taken to be the center of the band
along with a specification of the data-dependent width. The
center is given by a wavelet estimate of the function. It is thus
helpful to first introduce a few useful facts about the wavelet co-
efficients of Lipschitz functions. Then, we investigate the bias
and variance properties of projection estimators, which leads to
a rate optimal oracle band. Motivated by this oracle procedure,

we introduce a hypothesis testing scheme for selecting the pro-
jection level based on data, which results in a data-driven choice
for both the center and the width of the band.

2.1 Wavelet Preliminaries

We first characterize Lipschitz functions via their wavelet co-
efficients. Let {ψlk : l ≥ 0, k = 1, . . . , 2l} form a wavelet ba-
sis on [0, 1] with the mother wavelet ψ ∈ Cs for some in-
teger s > 2β0. In addition, we assume that ψ is compactly
supported with support length S. For any f ∈ $(β,M), let
θ [f ] = (θlk) = (⟨f,ψlk⟩) be its wavelet coefficients. Then, see,
for example, Lemma 7.3 in Johnstone (2012)

max
k

|θlk(f )| ≤ cψM 2−(β+ 1
2 )l , for all l, (11)

where cψ is a constant depending only on the wavelet basis
and β0.

For instance, we could let cψ = max{1, cβ0

∫
[|x|2β0 ∨ 1]

|ψ(x)|dx}, where cβ0 =
∏[2β0]

j=1 (2β0 + 1 − j ) if 2β0 > 1 and
1 otherwise. Thus, cψ can be evaluated numerically given ψ
and β0.

For convenience, we assume the sample size n = 2J for
some integer J > 0. With the same wavelet basis, the observed
data {yi : 1 ≤ i ≤ n} can be transformed into empirical wavelet
coefficients

{θ̂lk : 1 ≤ k ≤ 2l , 1 ≤ l < J }. (12)

Let φ be the father wavelet of the wavelet basis, then

Eθ̂lk = θ̄lk ≡ ⟨fn,ψlk⟩, with

fn(t) =
n∑

k=1

n−1/2f

(
k

n

)
φJk(t). (13)

If f ∈ $(β,M), by making cψ in (11) sufficiently large, we also
have

max
k

|θ̄lk(f )| ≤ cψM 2−(β+ 1
2 )l , for all l < J . (14)

For a proof, see the supplement.

2.2 A Confidence Band For a Given Lipschitz Class

Our CB uses a projection estimator as its center. In this part,
we investigate the bias and variance properties of projection
estimators, which leads to a minimax rate optimal band for a
given Lipschitz class.

For any resolution level j < J , the projection estimator of f
at level j is

f̂j (t) =
j∑

l=0

2l∑

k=1

θ̂lkψlk(t), (15)

where the empirical wavelet coefficients θ̂lk are given in (12).
Let fj (t) = Ef̂j (t). Then a band can be formed by taking its
center as f̂j and setting the width of the band to be twice the
sup-norm of the difference

f (t) − f̂j (t) = (fj (t) − f̂j (t)) + (f (t) − fj (t)). (16)

Here, the first term is stochastic error and the second term is
bias. In what follows, we bound the two terms on the right side,
respectively.
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2.2.1 Bounding Stochastic Error. We use a result in Bull
(2013) to bound the stochastic error, which builds on the extreme
value theory for cyclostationary Gaussian processes (Piterbarg
and Seleznjev 1994; Hüsler 1999). It provides an extension of
Theorem 2 of Giné and Nickl (2010), both of which improve
earlier works of Smirnov (1950) and Bickel and Rosenblatt
(1973). To this end, we need the following assumption on the
mother wavelet ψ of the wavelet basis {ψlk}.

Assumption (W). The mother wavelet ψ of the wavelet basis
{ψlk} is compactly supported, and for σ 2

ψ (t) =
∑

k∈Z ψ(t − k)2,
its maximum is attained at a unique point t0 on [0, 1) with
(σ 2
ψ )′′(t0) < 0.

Giné and Nickl (2010) and Giné, Güntürk, and Madych
(2011) verified that the unique maximum assumption on σ 2

ψ (t)
is satisfied by spline bases, and Bull (2013) showed numeri-
cally that it is also satisfied by the Daubechies and Symmlet
classes. Thus, assumption (W) is satisfied by the Daubechies
and Symmlet bases, whose mother wavelets are compactly sup-
ported. Under this assumption, let

σ̄ 2
ψ = σ 2

ψ (t0) = max
t∈[0,1)

σ 2
ψ (t) and

vψ = −
∑

k∈Z ψ
′(t0 − k)2

σ̄ψσ
′′
ψ (t0)

. (17)

For any positive integer j, further define

aj =
√

2 log 2 (j + 1)
1
2 , (18)

bj = aj −
log(π log 2) + log(j + 1) − 1

2 log(1 + vψ )

2 aj

, (19)

cj = σ√
n
σ̄ψ2

j+1
2 . (20)

Proposition 1. Let jn → ∞, α0 ∈ (0, 1), and +n = [αn,α0],
where αn ∈ (0,α0) and α−1

n = o(eCjn ) for any C > 0. If
Assumption (W) is satisfied, then as n → ∞, for xα =
− log(− log(1 − α)), µjn

= cjn
bjn

and σjn
= cjn

/ajn
,

sup
α∈+n

∣∣∣∣
1
α

P
(
∥f̂jn

− fjn
∥∞ > µjn

+ σjn
xα
)
− 1

∣∣∣∣ → 0.

Remark 1. The quantity f̂jn
(t) − fjn

(t) =
∑

l≤jn

∑
k(θ̂lk −

θ̄lk)ψlk(t) does not depend on the underlying function f . There-
fore, the convergence is uniform for all the function f that we
are interested in. Following the lines of the proof in Bull (2012,
2013), one sees that the convergence is also uniform for all
sequences {j ′

n} such that j ′
n ≥ jn for all n.

By Proposition 1, with proper centering and scaling deter-
mined by the projection level jn and the wavelet basis, the
stochastic error ∥fjn

− f̂jn
∥∞ converges weakly to a Gumbel

distribution. When jn → ∞, σjn
≍ µjn

/jn ≪ µjn
. Thus, with

asymptotic probability 1 − α,

∥fjn
− f̂jn

∥∞ ≍ µjn
≍ σn− 1

2 2
j
2 j

1
2 . (21)

2.2.2 Bounding Bias. The bias term ∥f − fj∥∞ can be
bounded by ∥f − fj∥∞ ≤ ∥fn − fj∥∞ + ∥f − fn∥∞, with fn

given by (13). For an analysis of the first term ∥fn − fj∥∞,
define

τψ = sup
l≥0

sup
t∈[0,1]

2− l
2

∑

k∈Z

|ψlk(t)|. (22)

Since ψ has compact support with support length S,

τψ = sup
l≥0

sup
t∈[0,1]

2− l
2

∑

k∈Z

|2 l
2ψ(2l t − k)| ≤ S max

t∈R
|ψ(t)|=O(1).

In practice, for any particular wavelet basis with compact sup-
port, τψ can be evaluated numerically. For any f ∈ $(β,M),
(14) and (22) lead to

∥fn − fj∥∞ =

∥∥∥∥∥∥

J−1∑

l=j+1

2l∑

k=1

θ̄lkψlk

∥∥∥∥∥∥
∞

≤ τψ

J−1∑

l=j+1

2
l
2 max

1≤k≤2l
|θ̄lk| ≤ τψcψM

J−1∑

l=j+1

2−βl .

A similar analysis on the second term yields ∥f − fn∥∞ ≤
τψ
∑

l≥J 2
l
2 max1≤k≤2l |θlk| ≤ τψcψM

∑
l≥J 2−βl .

Putting these two bounds together results in a further bound

∥f − fj∥∞ ≤ τψcψM
∑

l>j

2−βl = τψcψ

1 − 2−β M2−β(j+1) (23)

and thus, ∥f − fj∥∞ ≍ M 2−βj .

2.2.3 Bias-Variance Tradeoff and an Oracle Band. Sup-
pose that the band is centered at projection estimators f̂jn

, where
jn → ∞ as n → ∞. Then by Proposition 1 and (23) an asymp-
totic 1 − α CB over $(β,M) is given by

[f̂jn
− wn, f̂jn

+ wn], (24)

where the half-width

wn = wn(β,M) = (µjn
+ σjn

xα) + τψcψ

1 − 2−β M2−β(jn+1).

(25)

This band is constructed with the knowledge of both M and
β. To minimize the half-width, and hence achieve the smallest
average width among all bands of the form (24), a level j cb =
j cb
n (β, R) is chosen, which balances the two terms in the half-

width expression, where the superscript “cb” stands for CBs. In

other words, we require σn− 1
2 2

jcb

2 (j cb)
1
2 ≍ M 2−βj cb

. Note that
this necessarily requires j cb ≍ log n. Thus, we could require
more precisely that j cb is the solution of

2−βσ

√
log n

n
< cψM2−(β+ 1

2 )j ≤ σ

√
2 log n

n
, (26)

which leads to

2j cb ≍
(

M

σ

) 2
2β+1

(
n

log n

) 1
2β+1

. (27)

This leads to the optimal bias-variance tradeoff up to a constant
multiplier. When jn = j cb

n , the average width of the band in

(24) is wn = O(M
1

2β+1 (σ 2 log n/n)
β

2β+1 ). By Theorem 2, such a
band achieves over the class $(β,M) the minimax rate for the
average width of the band.

The band however involves the knowledge of β and M in
finding the right level j cb in (26) and in specifying wn. Though
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this band is not adaptive, the above discussion suggests that we
can obtain a data-driven adaptive CB by estimating the level j cb

and the half-width wn based on data.

2.3 A Data-Driven Confidence Band

We are now in the position to construct a data-driven adap-
tive CB. To this end, we first give a scheme for selecting an
appropriate projection level based on repeated hypothesis test-
ing. After selecting such a level, we use an upper bound on the
stochastic error of this estimator along with an estimate of its
bias to choose the width of the band.

2.3.1 Data-Based Selection of Projection Level. We first
define two levels jmin = jmin

n and jmax = jmax
n as the largest

integers such that

2jmin ≤
⌈(

n

σ 2 log n

) 1
4β0+1

⌉

, 2jmax ≤

⎡

⎢⎢⎢

(
c2
ψM2

0 n

σ 2 log n

) 1
2β0+1

⎤

⎥⎥⎥
.

(28)

Note that jmin and jmax are near optimal projection levels for the
$(2β0, 1) and the $(β0,M0) classes. For any other $(β,M) ∈
A(β0,M0), the corresponding projection level should be sand-
wiched by these two extremes. Thus, we focus on those levels
in the set

J = [jmin, jmax] ∩ N. (29)

Our goal is to construct an adaptive CB over the collec-
tion A(β0,M0) and so we are interested in CBs for func-
tions f where f ∈ $(β,M) for some $(β,M) ∈ A(β0,M0).
In fact in most cases, f ∈ $(β,M) for an entire collection of
$(β,M) ∈ A(β0,M0). Since bands corresponding to projection
levels with smaller j values are narrower, our ideal projection
level is the smallest j, which satisfies (26) for some M and β,
where f ∈ $(β,M) with $(β,M) ∈ A(β0,M0).

The actual selection proceeds as follows. We progressively
search for the projection level in J , starting at jmin. Suppose
we are now investigating some j ∈ J . Then there exists some
class$(β,M) ∈ A(β0,M0) such that the level j satisfies (26). In
other words, j is optimal for$(β,M). If the underlying function
f ∈ $(β,M), (14) implies that for all j ≤ l < J ,

max
k

|θ̄lk| ≤ cψM 2−(β+ 1
2 )l ≤

(
cψM 2−(β+ 1

2 )j ) l
j

≤
(

2σ 2 log n

n

) l
2j

≡ cjl . (30)

Here, the second inequality holds because cψM ≥ 1, and the last
inequality comes from (26). Thus, if we test the null hypotheses

H0,j l : max
1≤k≤2l

|θ̄lk| ≤ cjl, (31)

for all j ≤ l < J , we should not reject any of them. If any of
H0,j l , j ≤ l ≤ J is rejected, we move on to investigate the level
j + 1 until j = jmax. Otherwise, we select the current level j as
our estimated projection level ĵ cb. If the current level is jmax,
we let ĵ cb = jmax directly.

We now spell out the details about how to test H0,j l . For
testing H0,j l for j ≤ l < J , we consider three test statistics

T0,j l = max
k

|θ̂lk|, T1,j l =
2l∑

k=1

|θ̂lk|I{|θ̂lk |>τj l},

T2,j l =
2l∑

k=1

|θ̂lk|I{|θ̂lk |>σn}, (32)

where σn = σn−1/2 and τj l = cjl + σn(l/2)1/2.
To define the rejection rule, for any a, t > 0, let

µ(a; t) = φ(t + a) + φ(t − a) + a[-(t + a) −-(t − a)],
(33)

where φ and - are the density and distribution functions of the
standard normal distribution. Define events

R0,j l =
{
T0,j l > σn(

√
3 +

√
2)
√

log n
}

,

R1,j l =
{

T1,j l

σn

> 2lµ

(
cjl

σn

;
τj l

σn

)
+
(

2l log n

4

)1/2

×
(

cjl

σn

+
(

5 log n

2

)1/2
)}

,

R2,j l =

⎧
⎨

⎩
T2,j l

σn

>2lµ

(
cjl

σn

; 1
)

+
((

1+
c2
j l

σ 2
n

)

2l log n

)1/2
⎫
⎬

⎭ .

(34)

Finally, we test H0,j l according to the following rejection rule:

We reject H0,j l on the event{
R0,j l ∪ R1,j l , if cjl > σn(log n)−1/2,

R0,j l ∪ R2,j l , otherwise.
(35)

Thus our estimated projection level is given by

ĵ cb =min{j ∈ J : H0,j l is not rejected by (35) for j ≤ l < J }
(36)

with the convention that H0,jmaxl , j
max ≤ l < J are never re-

jected. We center our band at

f̂ĵ cb (t) =
∑

l≤ĵ cb

∑

k

θ̂lkψlk(t). (37)

2.3.2 Construction of the Band. We now specify the width
of the band and to this end, we essentially need to provide
estimators for the quantity on the right-hand side of (25). The
quantity is the sum of two terms, with the first term bounding
the stochastic error and the second bounding the bias. In what
follows, we deal with the two terms separately. For the first term,
to accommodate the uncertainty of ĵ cb, we replace xα by

xαn
= − log (− log (1 − αn)) , with αn = α

|J |
. (38)

Here, |J | = jmax − jmin + 1 gives the cardinality of the set J .
Moreover, we replace all jn by ĵ cb and obtain the bound for this
term as

ŵs
n = µĵ cb + σĵ cbxαn

. (39)
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For the second term in (25) note that it equals τψ
∑

l>j cψM2−βl

and since we no longer know (β,M), it cannot be evaluated
directly. However, (30) suggests that the summands can be
bounded above by cjl’s for all l < J . In addition, we multi-
ply the partial sum from ĵ cb to J − 1 by a factor of 1.01 to
cover the sum over those levels beyond J − 1. This leads to the
replacement of the second term by

ŵb
n = 1.01 · τψ

J−1∑

l=ĵ cb+1

2l/2cĵ cbl . (40)

Since τψ can be evaluated numerically, ŵb
n can be computed

given ĵ cb.
Finally, the data-based CB is

[f̂ĵ cb − ŵn, f̂ĵ cb + ŵn], with ŵn = ŵs
n + ŵb

n. (41)

Here ĵ cb, ŵs
n, and ŵb

n are given by (36), (39), and (40),
respectively.

3. PERFORMANCE OF CONFIDENCE BAND

Both the center and width of the CB given in Section 2 adjust
to the underlying smoothness of the unknown function. We
now look at the properties of the band providing theoretical
properties, some simulation results as well as an application to
some call center data. In the application to call center data, we
also indicate how the theory developed for Normal errors can
be naturally extended to other settings.

3.1 Theoretical Properties

We now state theoretical properties of the CB (41). In partic-
ular, Theorem 1 establishes that this band satisfies the require-
ments (8)–(10).

Theorem 1. Suppose the wavelet basis satisfies Assumption
(W). For any fixed β0 > 1

4 and M0 > 1 and α ∈ (0, 1), the CB
(41) satisfies the area condition (8), the noncovered points condi-
tion (9), and the excess mass condition (10) simultaneously over
the collection of function spacesA(β0,M0). Moreover, we could

let ξn = C(log n)−
β0

2(4β0+1) in (9) and ξ ′
n = C(β0,M0)(log n)−

β0
4β0+1

in (10).

The lower bound results given in Section 4 show that the
CB (41) is optimally adaptive under both the set of noncovered
points criterion (9) and the excess mass criterion (10).

Theorem 1 also implies the following adaptation result on
average coverage. For a confidence band CB = [L(t), U (t)],
average coverage can be defined by

AC(CB, f ) =
∫ 1

0
Pf (L(t) ≤ f (t) ≤ U (t))dt. (42)

Note that

AC(CB, f ) = Ef (1 − µ(N (CB, f ))). (43)

Hence, if Pf (µ(N (CB, f )) ≤ ξ ) ≥ 1 − α, it follows that

AC(CB, f ) = Ef (1 − µ(N (CB, f ))) ≥ (1 − ϵ)(1 − α).

It is then easy to check that the adaptive CB has average
coverage probability.

Corollary 1. Under the assumptions of Theorem 1, the CB
(41) satisfies

lim
n→∞

inf
f ∈$(β,M)

AC(CB, f ) ≥ 1 − α

for all $(β,M) ∈ A(β0, R0).

This together with the lower bound on the minimum average
width given in Corollary 2 in Section 4 show that the CB (41)
is also optimally adaptive under the average coverage criterion.

Remark 2. Bull (2012) constructed a CB that was shown to
achieve adaptive coverage over a collection of subsets of Lips-
chitz functions that also satisfy a self-similarity condition (eq.
(2.1) in Bull 2012). Moreover, it was shown that such subsets
are in some sense large within the corresponding Lipschitz class
$(β,M) (Proposition 2.3 in Bull 2012). It is easy to see that the
center of our band contains at least as many resolution levels
as the center of the CB given in Bull (2012). Using this fact,
and following the lines of the proof to Theorem 3.3 in Bull
(2012), it can be shown that the CB proposed in the present ar-
ticle also satisfies the conclusion of Theorem 3.3 in Bull (2012)
and hence has true adaptive coverage over self-similar subsets
of $(β,M) classes. That is, our CB satisfies (9) and (10) with
ξn = ξ ′

n = 0 over the collections of self-similar Lipschitz func-

tions. It is worth noting that the rate O((log n/n)
β

2β+1 ) in (8) is the
tightest possible for achieving true coverage on these subsets.
See Theorem 3.4 of Bull (2012).

3.2 Simulation Studies

The proposed adaptive CB is easily implementable. We
report here the application of the proposed CB procedure to
four test functions. The four functions are

Case 1 f (t) ∝ B10,5(t) + B7,7(t) + B5,10(t),
Case 2 f (t) ∝ 3B30,17(t) + 2B3,11(t),

Case 3 f (t) ∝ 7B15,30(t) + 2 sin(32π t − 2π
3 ) − 3

cos(16π t) − cos(64π t),

Case 4 f (t) ∝ (t − 1
3 )I ( 1

3 ≤ t ≤ 1
2 ) + ( 2

3 − t)I ( 1
2 ≤ t ≤ 2

3 ),

where Ba,b(t) stands for the density function of a Beta(a, b)
distribution. In all cases, we rescale the function such that∫ 1

0 f 2 = 1. The test functions are plotted in Figure 1 as the black
solid curves. As can be seen from the plots, the first three cases
are smooth functions with decreasing level of smoothness. Case
4 has discontinuity in its first-order derivative, and is included
here as an attempt to defeat the procedure. Except Case 3, the
other three cases have been previously used in Wahba (1983).

In each repetition, the data are generated from one test func-
tion according to model (1) with n = 512 and σ = 0.25. We
then apply the band procedure with 1 − α = 0.95, β0 = 3, and
M0 = 100 using a Symmlet 8 basis. Figure 1 shows for each
case a typical realization of the observed data and the resulting
band.

Table 1 summarizes the simulation results from 1000 repeti-
tions. The first column (noncoverage) reports the 95th percentile
of the proportion of the points not covered by the band, and
the second column (relative excess) gives the 95th percentile
of relative excess mass. If the band maintains the traditional
coverage, then these two quantities should both be zeros. The
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Figure 1. One realization of the observed data and the resulting band. Case 1: top left. Case 2: top right. Case 3: bottom left. Case 4: bottom
right. Black solid: the true function. Gray: observed data. Orange: confidence band. Black dashed: band center.

third column reports the average size of the band. As reference,
the last column gives the average ℓ∞ distance from the band
center to the true function.

From Table 1, we see that for the first two cases, our procedure
seems to maintain traditional coverage for both functions, while
the band size adapts automatically to the smoothness of the
function. For Case 3, we do not achieve traditional coverage, but
both measure of noncovered points and relative excess mass are
well controlled. Moreover, the average band size is larger than
the first two cases as we expected. In the last case, though the
function violates our assumptions, the measure of noncovered
points and relative excess mass are still under control. However,
the earlier theoretical results do not apply to Case 4, and the
performance of the band could be worse for larger n. Last but
not least, in each case, the average size of the band is always
within five times the average ℓ∞ loss of the band center as an
estimator of the function f .

The construction of the adaptive CB requires a choice for
the parameters β0 and M0. To investigate the sensitivity of the

Table 1. Simulation results for confidence bands from 1000
repetitions: β0 = 3, M0 = 100

Relative Average Average
Noncoverage excess size ℓ∞ loss

Case 1 0 0 0.2895 0.0702
Case 2 0 0 0.4841 0.1149
Case 3 <10−4 0.0039 0.7270 0.3051
Case 4 0.0005 0.0078 0.4935 0.2246

proposed band to the choice of β0 and M0, we repeated the sim-
ulations reported above with three additional combinations of
(β0,M0): (2, 100), (2, 200), and (3, 200). All the other parame-
ters remain the same. The resulting average sizes of the bands
are reported in Table 2. These results indicate that the proposed
band is not very sensitive to the choices of β0 and M0 values in
terms of the average size. Other measures of performance also
remain similar. Note that all the functions here are scaled to
have unit L2 norm. Thus, in practice, if no domain knowledge
is available, we recommend setting β0 to be either 2 or 3, and
M0 to be either 100 or 200 times a reasonable estimator of the
L2 norm of the underlying function, such as that in Cai and Low
(2006b).

CBs satisfying the three requirements (8), (9), and (10) can
in theory also be constructed based on adaptive minimax L2

confidence balls such as those given in Juditsky and Lambert-
Lacroix (2003), Cai and Low (2006a), and Robins and van
der Vaart (2006). See also Hoffman and Lepski (2002). Let
(f̂n, sn(α)) denote an adaptive confidence ball with coverage

Table 2. Average sizes for confidence bands from different choices
of (β0, M0)

β0 = 2, β0 = 2, β0 = 3,

M0 = 100 M0 = 200 M0 = 200

Case 1 0.3049 0.3126 0.2923
Case 2 0.5191 0.5282 0.4911
Case 3 0.7732 0.8170 0.7941
Case 4 0.5201 0.5295 0.5027
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Table 3. Average values of 2 × sn(α/2) for confidence balls from
1000 repetitions: α = 0.05

Cai and Low Robins and van der Vaart

Case 1 0.7576 1.6425
Case 2 0.7948 1.6374
Case 3 0.8577 1.6643
Case 4 0.7906 1.6477

1 − α, where f̂n is the center and sn(α) is the radius. One could
transform it into a CB

[f̂n − Cn(α) sn(α/2), f̂n + Cn(α) sn(α/2)].

Section 5.8 of Wasserman (2006) suggests that one can set
Cn(α) =

√
2/α to achieve average coverage. Since the require-

ments (9)–(10) are stronger than average coverage, the actual
Cn(α) needed here has to be larger than

√
2/α.

Table 3 summarizes the average value of 2 × sn(α/2) with
α = 0.05 for confidence balls proposed by Cai and Low (2006a)
and Robins and van der Vaart (2006) for the four test functions
with β0 = 3 and M0 = 100. The radius parameters used in both
Cai and Low (2006a) and Robins and van der Vaart (2006)
are for the sequence domain. In view of (11), we use cψM0 as
the radius of the parameter spaces in the sequence domain when
using the formulas in both articles. For the method in Robins and
van der Vaart (2006), we use the block thresholding estimator
used in Cai and Low (2006a) as the center.

From Table 3, we find that the radii of the confidence balls
seem to be less adaptive to the smoothness of the underlying sig-
nals compared with sizes of the proposed band in Table 1. By the
above discussion, to make fair comparison to the third column
of Table 1 in terms of magnitude, one needs to further multiply
each number in Table 3 by a factor Cn(α) >

√
2/α

.= 6.3246
when α = 0.05. Thus, one can conclude that CBs obtained from
transforming these CBs have much larger sizes than the one pro-
posed in the current article on these simulation examples.

In summary, the simulation results show the practicality of
the proposed CB procedure, and seem to agree well with the
earlier theoretical analysis. In addition, the resulting bands do

not seem to be sensitive to the choices of β0 and M0 and perform
favorably to CBs obtained by transforming confidence intervals.

3.3 Call Center Data

We now illustrate our CB on a real data example. The dataset
consists of the arrival time of regular service calls to the call cen-
ter of an Israeli bank from August to October in 1999 (Brown
et al. 2005). We assume that the arrival rate follows an inho-
mogenous Poisson with mean µ(t). Our goal is to provide a CB
for this mean function.

We first divide the daily operating time (7 a.m. to midnight)
to n = 2048 equally spaced intervals. Let Ni ∼ Poisson(µ(ti))
be the number of calls arriving in the ith interval. Then the
transformed data

yi =
√

Ni + 1
4

approximately follows model (1) with f (t) =
√

µ(t). Then we
compute the data-based band (41) with 1 − α = 95% using the
yi’s and finally transform everything back by a square trans-
form. For details about this root–unroot procedure, see Brown
et al. (2010). When computing (41), we used Symmlet 8 basis,
β0 = 3 and M0 = 100. In addition, the noise standard deviation
is estimated by σ̂ = 1.4826 × MAD(θ̂J−1,k) as suggested by
Donoho and Johnstone (1994), where {θ̂J−1,k} are the empirical
wavelet coefficient at the J − 1 level.

Figure 2 plots the CB for the mean function µ(t) of the
inhomogenous Poisson process used to model call arrival. From
the plot, there is a clear peak of call arrival at around 10 a.m.,
which was previously noted in Brown et al. (2005). On the other
hand, the second peak at around 3 p.m. is not as significant.

4. LOWER BOUNDS FOR MISCOVERAGE

This section examines the intrinsic difficulty of constructing
CBs that are adaptive. First, we give some bounds that explain
why it is not possible to create adaptive bands over any two
Lipschitz classes that cover the entire function. This explains
why we focus on adaptation while controlling excess mass or
the measure of the points where the function is not covered. We
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Figure 2. 95% confidence band for µ(t): original data (left panel); confidence band (right panel, orange) with band center in dashed line.
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Cai, Low, and Ma: Adaptive Confidence Bands 1063

then turn attention to bands that allow for some points where the
function is not covered. Bounds given here show why adaptation
must be limited to the range of Lipschitz classes considered in
this article.

4.1 Bounds For Bands Covering The Entire Function

Hall and Titterington (1988) gave lower bounds for the maxi-
mum width of uniform CBs in the context of a function assumed
to have a given number of derivatives. Recall that for uniform
band, we write U (t) − L(t) = ŵn. In the case of the Lipschitz
classes considered in the present article, their bound can be
written as

sup
f ∈$(β,M)

Pf

(

ŵn ≥ ηM
1

2β+1

(
log n

n

) β
1+2β

)

≥ 1 − α, (44)

where η > 0 is a fixed constant not depending on β or M. Even
though this lower bound is useful for evaluating the performance
of the largest maximum width of a uniform CB for a given
parameter space, it is not sufficient for the goals of the present
article since a bound is needed for each f and not just for the
supremum.

Our first collection of lower bounds concern bands that have
guaranteed coverage for the entire function over a particular
$(β,M) class.

Theorem 2. Suppose that the confidence band CB =
[L(t), U (t)] ∈ Bα($(β,M)) has a guaranteed coverage prob-
ability of 1 − α over$(β,M). Then there is a C1 > 0 such that
for all ϵ > 0 there is an N such that for all n > N

sup
f ∈$(β,M)

Pf

(∫ 1

0
(U (t) − L(t))dt ≥ C1M

1
2β+1

(
log n

n

) β
1+2β

)

≥ 1 − α − ϵ (45)

and hence there is a C2 > 0 such that for n ≥ N ,

sup
f ∈$(β,M)

Ef

∫ 1

0
(U (t) − L(t))dt ≥ C2M

1
2β+1

(
log n

n

) β
1+2β

.

(46)

For each f ∈ $(β,M ′) with M ′ < M , there is a C > 0 and
a > 0 such that for all n,

Pf

(∫ 1

0
(U (t) − L(t))dt ≥ Cn− β

1+2β

)
≥ a. (47)

Finally, for a uniform band [L(t), U (t)] with U (t) − L(t) = ŵn

then for each f ∈ $(β,M ′) with M ′ < M , there is a C > 0 and
a > 0 such that for all n

Pf

(

ŵn ≥ C

(
log n

n

) β
1+2β

)

> a. (48)

The bounds given in this Theorem, particularly those of (47)
and (48) show that, for CBs that have honest coverage of the
entire function, it is not possible to adapt over any pair of Lip-
schitz classes $(β1,M1) and $(β2,M2) whenever β1 ̸= β2. It
is for this reason that we have allowed the band to have points
where the function is not covered.

4.2 Lower Bounds For Set of Noncovered Points and
Excess Mass

As mentioned the lower bounds given in the previous section
rule out the construction of adaptive CBs that have coverage for
the entire band. This does not rule out adaptation of bands in
the sense of covering the function at most points.

We shall now establish lower bounds for CBs under both
the set of noncovered points criterion (4) and the excess mass
criterion (6). These lower bounds yield directly the limits on
the range of Lipschitz classes over which adaptation is possible
under either criterion.

Theorem 3. Suppose that a CB either satisfies

inf
g∈$(β,M)

Pg

(
µ(N (CB, g)) <

1
2

− ϵ

)
≥ 1 − α, (49)

where ϵ > 0 and α < 1
2 or satisfies for some r > 0

inf
g∈$(β,M)

Pg(RE(CB, g) ≤ r) ≥ 1 − α. (50)

Then for all h ∈ $(β,M ′) with M ′ < M , there is a c > 0
(which may depend on h) such that

w(CB, h) ≥ cn− 2β
1+4β . (51)

Remark 3. It is useful to compare Theorem 2 and Theorem
3. Theorem 2 rules out adaptation over any pair of Lipschitz
classes, whereas Theorem 3 rules out adaptation over any pair of
Lipschitz classes$(β0,M0) and$(β1,M1) wheneverβ1 > 2β0.
More precisely suppose that β1 > 2β0 and that

w(CB,$(β1,M1)) ≤ C

(
log n

n

) β1
2β1+1

(52)

and so the CB has width achieving the minimax bound for
the class $(β1,M1). Theorem 3 then shows that there is some
function f ∈ $(β0,M0) such that for sufficiently large n

Pf

(
µ(N (CB, f )) ≥ 1

2

)
≥ 1

2
.

That is, there is better than 50% of chance that the CB misses the
function over more than half of the interval [0, 1]. Moreover,
there also exists f ∈ $(β0,M0), such that

Pf (RE(CB, h) ≥ 1) ≥ 1
2
.

That is, with probability at least more than 50%, the integrated
excess mass is at least as large as the area of the band. Therefore,
adaptation is still impossible over Lipschitz classes$(β,M) for
β ∈ [β0, β1] with β1 > 2β0 > 0 even under the more relaxed
coverage constraint (4) or under the excess mass constraint (6).

Remark 4. It is also possible to give bounds on the aver-
age coverage probability defined in (42). Note once more that
AC(CB, f ) = Ef (1 − µ(N (CB, f ))). Hence, if AC(CB, f ) ≥
1 − α, it follows that

1 − α ≤ Ef (1 − µ(N (CB, f )))
≤ (1 − c)Pf (µ(N (CB, f )) > c) + Pf (µ(N (CB, f )) ≤ c).
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Hence,

Pf (µ(N (CB, f )) > c) ≤ α

c

or alternatively

Pf (µ(N (CB, f )) ≤ c) ≥ 1 − α

c
.

The following corollary gives a bound on the minimum average
width of such a CB.

Corollary 2. Suppose that the confidence band CB has aver-
age coverage probability of at least 1 − α over$(β0,M0). Then
for all g ∈ $(β0,M) with M < M0, it follows that there is a
c > 0 such that

w(CB, g) ≥ cn
− 2β0

1+4β0 . (53)

Since n
− 2β0

1+4β0 ≫ ( log n
n

)
β1

1+2β1 whenever β1 > 2β0, this corollary
shows that even under this criteria adaptation over Lipschitz
classes is still ruled out whenever β1 > 2β0.

Theorem 3 shows that for an assumed minimum smoothness
parameter β0 > 0, the best one can hope for is to construct CBs
that are adaptive over the Lipschitz classes $(β,M) for β ∈
[β0, 2β0], under either the set of noncovered points criterion
(4) or the excess mass criterion (6). We should note that such
limitation also occurs in the construction of adaptive confidence
balls. See, for example, Cai and Low (2006a) and Robins and
van der Vaart (2006).

5. CONCLUSION AND DISCUSSION

One of the primary goals of the present article is to introduce
a concrete CB that not only fits our new theoretical framework
but also works well for relatively small to moderate sample
sizes. As mentioned in Section 3.2, CBs satisfying the three
requirements (8), (9), and (10) can in theory also be constructed
based on adaptive minimax L2 confidence balls such as those
given in Juditsky and Lambert-Lacroix (2003), Cai and Low
(2006a), and Robins and van der Vaart (2006). However, bands
constructed that way appear to be more of theoretical interest
rather than practical use. In particular the procedure in Juditsky
and Lambert-Lacroix (2003) involves an unspecified tuning pa-
rameter and is not readily implementable. The simulation study
in Section 3.2 also demonstrates the favorable performance of
our proposed procedure over the bands transformed from the L2

confidence balls given in Cai and Low (2006a) and Robins and
van der Vaart (2006).

It is worth noting that the band procedure proposed in Section
2 does not depend on the sequences ξn and ξ ′

n used in (9) and (10)
and it also maintains true coverage over self-similar Lipschitz
functions. Finding the optimal rates of convergence for these
two sequences subject to condition (8) is an interesting and
open theoretical problem that is beyond the scope of the present
article.

The CB that was developed in this article was for periodic
regression functions based on a nonparametric regression with
Gaussian noise model. However, as illustrated by the call center
data example existing techniques in the literature can help to

transform more complex datasets to settings where our proce-
dure is still appropriate. This will, for example, include nonpe-
riodic functions as well as other data-generating distributions.

In settings where the underlying function is not periodic,
boundary-corrected wavelet bases developed by Cohen et al.
(1993) can replace the periodized wavelet bases considered in
the present article. Cohen et al. (1993) constructed boundary-
corrected orthonormal wavelets on [0, 1] with 2j wavelet func-
tions at resolution level j. The wavelets have the same vanishing
moments property as the wavelets on the whole line. The bound-
ary correction affects only a fixed number of wavelet coefficients
at each resolution level and the corresponding discrete wavelet
transform introduces correlations to these wavelet coefficients.
See Cohen et al (1993) for more on boundary-corrected wavelet
bases. The required modification for the adaptive CB procedure
is minor.

In the present article, we have focused on nonparametric re-
gression with Gaussian noise. The method can be extended to
a number of other nonparametric models. For nonparametric
regression with an unknown noise distribution that is possi-
bly heavy-tailed, the local median transformation introduced in
Brown, Cai, and Zhou (2008) and Cai and Zhou (2009) can be
used to transform the problem into a standard nonparametric
regression with Gaussian noise. A key step is a local median
transformation, where the original observations are first divided
into small groups with the same number of observations in each
group, and then the medians of the data in these groups are
taken as a new dataset. The central idea is that the new dataset
can be well approximated by Gaussian random variables for a
wide collection of noise distributions. After the local median
transformation, the CB introduced in the present article, which
is designed for Gaussian noise, can then be applied to the new
dataset. All the claims still hold with minor changes to the
proofs.

Similar ideas can also be used to construct CBs for non-
parametric density estimation by using the root–unroot trans-
formation introduced in Brown et al. (2010). In addition, the
CB procedure introduced in this article can be generalized for
nonparametric regression in exponential families such as non-
parametric Poisson regression and binomial regression by us-
ing the mean-matching variance stabilizing transformation. See
Brown, Cai, and Zhou (2010) and Cai and Zhou (2010).

In the present article, we have focused on the construction of
uniform bands. An interesting topic for future investigation is
the construction of variable width bands that also achieve spatial
adaptivity.

6. PROOFS

In this section, we provide the proofs of all the main results. In
Section 6.1, we provide a proof of Theorem 1 that gives perfor-
mance guarantees on the performance of the adaptive confidence
procedure described in Section 2. In Section 6.2, we turn to the
proof of Theorem 3 that gives lower bounds for CBs that cover
most points or have small excess mass. The proof of Theorem
2 that gives lower bounds for CBs with guaranteed coverage of
the entire function is given in the supplement.
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6.1 Proof of Upper Bounds

We first introduce a couple of propositions describing the per-
formance of the tests used to construct the projection estimator,
which is used as the center of the CB. We then turn to a proof
of Theorem 1.

6.1.1 Testing Propositions. We now prove Theorem 1 and
Corollary 1. To this end, we first introduce two propositions that
give nonasymptotic bounds for the probabilities of Type I error
and powers of the test (35). The proofs of both propositions are
given in the supplement.

Recall that σn = σn−1/2. In what follows, for i = 0, 1, f ∈
Hi,jl means that the wavelet coefficients of both f and fn at the
lth resolution level satisfy the statement in Hi,jl , respectively.
The first proposition deals with excess mass type alternatives.

Proposition 2. Let j satisfy (26) for some β ∈ [β0, 2β0] and
M ∈ [1,M0]. Consider testing H0,j l (31) against

H1,j l :
2l∑

k=1

(|θ̄lk| − cjl)+ > ejl, (54)

where for a sufficiently large constant C,

ejl =

⎧
⎪⎨

⎪⎩

C σn2l(log n)−
1
2 , if 2−(β+ 1

2 )(l−j ) ∈ [(log n)−1, 1],
C 2lcj l, if 2−(β+ 1

2 )(l−j ) ∈ [2− l
4 l−

1
4 , (log n)−1),

C σn2
3l
4 l

1
4 , if 2−(β+ 1

2 )(l−j ) ∈ (0, 2− l
4 l−

1
4 ).

(55)

Let φj l ∈ {0, 1} be the test specified by (35) with φj l = 1 for
rejection. Then there exists another absolute constant C ′, s.t.

sup
j≤l≤j t

sup
f ∈H0,lj

Efφj l ≤ C ′n− 1
2 , (56)

inf
j≤l≤j t

inf
f ∈H1,lj

Efφj l ≥ 1 − C ′2− l
2 . (57)

The next proposition deals with noncovered points type al-
ternatives. For any set A, we use |A| to denote its cardinality.
Moreover, let

j t = 2jmin + 1
4β0 + 1

log2 log n + 4
4β0 + 1

×
[
log2 M0 − log2(1 − 2−β0 )

]
. (58)

Note that when l > j t, cψM02−(β0+ 1
2 )l ≤ Cσn2−l/4l1/4. More-

over, since β0 > 1/4, we have j t < J , at least for sufficiently
large n.

Proposition 3. Let j satisfy (26) for some β ∈ [β0, 2β0] and
M ∈ [1,M0]. Consider testing H0,j l (31) against

H ′
1,j l : 2−l |{θ̄lk : |θ̄lk| > c̃jl}| > κj l, (59)

where c̃j l = (γj l + 1)(cjl ∨ σn− 1
2 2− l

4 l
1
4 ) with

γj l

=

⎧
⎪⎨

⎪⎩

(log n)−
1
4 , if 2−(β+ 1

2 )(l−j ) ∈ [(log n)−
1
2 , 1],

2
1
2 β0(l−j ), if 2−(β+ 1

2 )(l−j ) ∈ [2− l
4 l−

1
4 , (log n)−

1
2 ),

(log n)
β0

2(4β0+1) 2
1
8 (j t−l), if 2−(β+ 1

2 )(l−j ) ∈ (0, 2− l
4 l−

1
4 ),

(60)

and for a sufficiently large constant C

κj l

=
{

Cσnc
−1
j l (log n)−

1
4 , if 2−(β+ 1

2 )(l−j ) ∈ [(log n)−
1
2 , 1],

Cγ−1
j l

(
1 ∧ σnc

−1
j l (log n)−

1
2
)
, otherwise.

Let φj l ∈ {0, 1} be the test specified by (35) with φj l = 1 for
rejection. Then there exists another absolute constant C ′, s.t.

sup
j≤l≤j t

sup
f ∈H0,lj

Efφj l ≤ C ′n− 1
2 , (61)

inf
j≤l≤j t

inf
f ∈H ′

1,lj

Efφj l ≥ 1 − C ′2− l
2 . (62)

6.1.2 Proof of Theorem 1. We divide the proof into three
parts. First, we verify the average area condition (8). Then, we
prove that the excess mass condition (10) is satisfied. Finally,
we come back to verify the noncovered points condition (9),
which uses some intermediate results in the proof of (10).

1. We first verify the area condition (8). Fix a function class
$(β,M) ∈ A(β0,M0). For this class, let j cb = j cb

n satisfy (26)
and hence (27).

Note that ĵ cb ∈ J and that jmin, jmax ≍ log n. By (41), (18),
(19), and (20), the width, and hence the area, of the band (41) is
of order O

(
σ2ĵ cb/2(log n/n)1/2

)
. Thus, to verify (8), it suffices

to show that uniformly over$(β,M), ĵ cb ≤ j cb + lψ with suffi-
ciently high probability, where lψ is a positive integer depending
only on the wavelet basis.

Note that f ∈ $(β,M) implies f ∈ H0,j l for all pairs (j, l),
where j ≤ j cb + lψ and l ≥ j . Since jmin, jmax, J ≍ log n,
there are at most O((log n)2) hypotheses testing when we ob-
tain ĵ cb. Thus, (56) and (61), together with the union bound,
ensure that with probability at least 1 − C ′n− 1

2 (log n)2, we have
ĵ cb ≤ j cb + lψ . So, for any n,

sup
f ∈$(β,M)

Pf (ĵ cb ≤ j cb + lψ ) ≥ 1 − C ′n− 1
2 (log n)2.

Therefore, we have

sup
f ∈$(β,M)

Ef

∫ 1

0
[U (t) − L(t)]dt

≤ Cσ

(
log n

n

) 1
2

sup
f ∈$(β,M)

[
Ef

(
2ĵ cb/2I{ĵ cb≤j cb+lψ }

)

+ Ef

(
2ĵ cb/2I{ĵ cb>j cb+lψ }

)]

≤ Cσ

(
log n

n

) 1
2

sup
f ∈$(β,M)

[
Ef

(
2(j cb+lψ )/2I{ĵ cb≤j cb+lψ }

)

+ Ef
(
2jmax/2I{ĵ cb>j cb+lψ }

)]

≤ Cσ

(
log n

n

) 1
2 [

2(j cb+lψ )/2 + 2jmax/2C ′n− 1
2 (log n)2]

≤ Cψσ

(
log n

n

) 1
2
(

M2n

σ 2 log n

) 1
4β+2

= CψM
1

2β+1

(
σ 2 log n

n

) β
2β+1

.

Here, the last inequality holds because 2jmax/2n−1/2(log n)2 ≤
1 ≤ 2j cb/2 when n ≥ n0(β0,M0, σ ). This completes the verifi-
cation of the area condition.
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2. In the second step, we verify the excess mass con-
dition (10). Recall ŵs

n in (39) and ŵb
n in (40), where for

fĵ cb =
∑

l≤ĵ cb

∑
k θ̄lkψlk , ŵs

n is intended to bound the stochastic
error ∥f̂ĵ cb − fĵ cb∥∞ and ŵb

n to bound the bias ∥f − fĵ cb∥∞.
Let ēf = (f − U )+ be the excess mass exceeding the up-

per limit, and ef = (L − f )+ the excess mass exceeding
the lower limit. Note that f − U = (f − fĵ cb − ŵb

n) + (fĵ cb −
f̂ĵ cb − ŵs

n). Since (a + b)+ ≤ a+ + b+, this leads to

ēf ≤
(
f − fĵ cb − ŵb

n

)
+ +

(
fĵ cb − f̂ĵ cb − ŵs

n

)
+ ≡ ēb

f + ēs
f .

(63)

As before, the superscript s stands for stochastic error and b for
bias. In what follows, we bound ēf by controlling ēb

f and ēs
f

separately. A completely analogous argument will lead to the
same bound for ef .

Now fix a class $(β,M) ∈ A(β0,M0), and pick any f ∈
$(β,M). Define the event

Ef = {∥fĵ cb − f̂ĵ cb∥∞ ≤ ŵs
n, and all H0,j l

vs. H1,j l are tested correctly}. (64)

On this event, we have ēs
f = 0. From now on, we focus on

controlling ēb
f .

We start with a simple case. If f also belongs to$(2β0, 1), then
ĵ cb ≥ jmin. Thus, for large n, ŵb

n is no less than the rightmost
side of (23), and so ēb

f = 0.
When f /∈ $(2β0, 1), let ĵ cb satisfy (26) for some β̂ ∈

[β0, 2β0] and M̂ ∈ [1,M0]. Moreover, let cĵ cbl be defined as
in (30) with j replaced by ĵ cb for ĵ cb ≤ l < J , and 0 otherwise.
By (22) and (40), we obtain

ŵb
n ≥

∑

l>ĵ cb

∑

k

cĵ cbl|ψlk(t)|.

Recall θlk and θ̄lk defined in Section 2.1. With slight abuse
of notation, we define θ̄lk = θlk for all l ≥ J . Thus, |f (t) −
fĵ cb (t)| ≤

∑
l>ĵ cb

∑
k |θ̄lk||ψlk(t)|. Hence,

∫ 1

0
ēb
f (t)dt ≤

∫ 1

0

⎡

⎣
∞∑

l>ĵ cb

∑

k

|θ̄lk||ψlk(t)|

−
∞∑

l>ĵ cb

∑

k

cĵ cbl|ψlk(t)|

⎤

⎦

+

dt.

We apply the inequality (a + b)+ ≤ a+ + b+ repeatedly to fur-
ther bound the right side by

∑

l>ĵ cb

∑

k

∫ 1

0
(|θ̄lk||ψlk| −

∑

k

cĵ cbl|ψlk|)+

≤
∑

l>ĵ cb

∑

k

(|θ̄lk| − cĵ cbl)+

∫ 1

0
|ψlk|.

Further note that
∫ 1

0 |ψlk(t)|dt ≤ 2−l/2∥ψ∥1, where ψ is the
mother wavelet and ∥ψ∥1 =

∫
R |ψ(t)|dt . The last two displays

thus lead to
∫ 1

0
ēb
f (t)dt ≤ ∥ψ∥1

∑

l>ĵ cb

2− l
2

∑

k

(|θ̄lk| − cĵ cbl)+. (65)

To further bound the right side of (65), we divide the resolution
levels above ĵ cb into three parts as {l : l > ĵ cb} = J1 ∪ J2 ∪ J3,
where

J1 = {l : 2−(β̂+ 1
2 )(l−ĵ cb) ∈ [(log n)−1, 1)},

J2 = {l : 2−(β̂+ 1
2 )(l−ĵ cb) ∈ [2− l

4 l−
1
4 , (log n)−1)},

J3 = {l : 2−(β̂+ 1
2 )(l−ĵ cb) ∈ (0, 2− l

4 l−
1
4 )}.

(66)

In what follows, we bound the sum in (65) over each Ji sepa-
rately. For notational convenience, we let

ω̂n = 2ĵ cb/2
(
σ 2 log n

n

)1/2

. (67)

For J1, on Ef , Proposition 2 leads to

I ≡
∑

J1

2− l
2

∑

k

(|θ̄lk| − cĵ cbl)+ ≤ Cσn(log n)−
1
2

∑

J1

2
l
2 .

The definition of J1 implies that l − ĵ cb ≤ 2(2β̂ +
1)−1 log2 log n, and so for all l ∈ J1, 2l/2 ≤ 2ĵ cb/2(log n)1/(2β̂+1).
Since {2l/2} is a geometric increasing sequence, the last display
implies

I ≤ C2
ĵcb

2 σn(log n)
1

2β̂+1
− 1

2 ≤ Cω̂n(log n)−
2β̂

2β̂+1 . (68)

For J2, on Ef , Proposition 2 leads to

II ≡
∑

J2

2− l
2

∑

k

(|θ̄lk| − cĵ cbl)+ ≤ C
∑

J2

2
l
2 cĵ cbl

≤ Cω̂n(log n)−
4β0

4β0+1 . (69)

Here, the second inequality holds because the summands in the
middle term is geometrically decreasing, which is implied by
β̂ ≥ β0 > 1/4.

Turn to J3. Since f ∈ $(β,M), Proposition 2 and (11) imply
that

2− l
2

2l∑

k=1

(|θ̄lk| − cĵ cbl)+ ≤
{
Cσn2

l
4 l

1
4 , for all l ≤ j t,

cψM 2−βl , for all l ∈ J3.

Consider the critical level

l1 = 4
4β + 1

log2

(
M

1 − 2−β

)
+ 1

4β + 1
log2 log n + 2

4β + 1

× log2

(
n

σ 2 log n

)
. (70)

Since β ≥ β0 > 1/4 and M ≤ M0, we obtain l1 ≤ j t < J .
Thus, we have

III ≡
∑

J3

2− l
2

∑

k

(|θlk| − cĵ cbl)+ ≤
∑

J3∋l≤l1

Cσn2
l
4 l

1
4

+
∑

l>l1

cψM 2−βl .

Further note that M 2−βl1/(1 − 2−β ) ≍ σn2
l1
4 l

1
4
1 ≤

C(log n)−
β

4β+1 M
1

4β+1 (σ 2 log n/n)
2β

4β+1 . We thus bound the
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right side of the last display to obtain

III ≤ C σn2
l1
4 l1

1
4 + cψM 2−βl1

1 − 2−β ≤ C(log n)−
β

4β+1 M
1

4β+1

×
(
σ 2 log n

n

) 2β
4β+1

. (71)

We now assemble (68), (69), and (71) to bound the right
side of (65). Note that β̂ ≤ 2β0, and so 2β̂/(2β̂ + 1) <

4β0/(4β0 + 1). Moreover, β ≥ β0 leads to (σ 2 log n/n)
2β

4β+1 ≤
(σ 2 log n/n)

2β0
4β0+1 ≤ C2jmin/2(σ 2 log n/n)

1
2 ≤ Cω̂n. Therefore,

we obtain
∫ 1

0
ēb
f (t)dt ≤ I + II + III ≤ Cψ

[
(log n)−

2β̂
2β̂+1

+ (log n)−
β

4β+1 M
1

4β+1
]
ω̂n.

On the other hand, the area of the band
∫ 1

0 [U (t) − L(t)]dt ≥
ŵb

n ≥ Cτψω̂n. On the event Ef , ēf = ēb
f , and so

∫ 1
0 ēf (t)dt

∫ 1
0 [U (t) − L(t)]dt

≤ Cψ
[
(log n)−

2β̂
2β̂+1 + (log n)−

β
4β+1 M

1
4β+1
]

≤ C(β0,M0)(log n)−
β0

4β0+1 ,

where C(β0,M0) = CψM
1

4β0+1

0 . By symmetry, the same result
holds for ef . So on Ef ,

RE(CB, f ) ≤ C(β0,M0)(log n)−
β0

4β0+1 ,

for C(β0,M0) = CψM
1

4β0+1

0 . (72)

To complete the verification of (10), we evaluate the proba-
bility of Ef . By (64), we have

Pf

(
Ec

f

)
≤ Pf

(
∥f̂ĵ cb − fĵ cb∥∞ > ŵs

n

)
+ Pf (some H0,j l vs. H1,j l

was not tested correctly).

By Proposition 1 and the remark after it, we apply a union bound
to obtain

sup
$(β,M)

Pf

(
∥f̂ĵ cb − fĵ cb∥∞ > ŵs

n

)
≤
∑

j∈J
sup

f ∈$(β,M)

× Pf

(
∥f̂j − fj∥∞ > ŵs

n

)
≤ |J |α(1 + o(1))

|J |
= α + o(1).

In addition, the total number of H0,j l versus H1,j l tested are of
order O((log n)2). Thus, Proposition 2, together with the union
bound, implies that

sup
$(β,M)

Pf (some H0,j l vs. H1,j l was not tested correctly)

≤ C(log n)2(n− 1
2 + 2− jmin

2
)

= o(1).

The last three displays together imply that

lim
n→∞

sup
$(β,M)

Pf (Ef ) ≥ 1 − α. (73)

Together with (72), this completes the verification of (10).
3. Finally, we turn to the verification of (9). The proof strat-

egy is similar to the previous case. Fix any class $(β,M) ∈
A(β0,M0). Pick any f ∈ $(β,M). For ĵ cb, let (26) be satisfied
with β̂ and M̂ . For any l ≥ ĵ cb, let c̃ĵ cbl be defined in Proposition

3 with β and j replaced by β̂ and ĵ cb if j ≤ l ≤ j t. When l > j t,
let c̃ĵ cbl = cψM02−(β0+ 1

2 )l . Define the event

E′
f = {∥fĵ cb − f̂ĵ cb∥∞ ≤ ŵs

n,

and all H0,j l vs. H ′
1,j l are tested correctly}. (74)

Let the set of uncovered points be N (CB, f ). Note that if

ŵb
n ≥ τψ

∞∑

l>ĵ cb

2l/2c̃ĵ cbl , (75)

then on E′
f ,

µ(N (CB, f )) ≤
j t∑

l>ĵ cb

κĵ cbl . (76)

In what follows, we focus on verifying (75) and further bounding
the right side of (76). To this end, we decompose {l : l > ĵ cb} =
J1 ∪ J2 ∪ J3, where the Ji’s are given by (66).

For J1, we further divide it into two disjoint subsets J1 =
J10 ∪ J11, where

J10 = {l : 2−(β̂+ 1
2 )(l−ĵ cb) ∈ [(log n)−

1
2 , 1)},

J11 = {l : 2−(β̂+ 1
2 )(l−ĵ cb) ∈ [(log n)−1, (log n)−

1
2 )}.

On J10, we have γĵ cbl = (log n)−1/4, and so
∑

J10

2
l
2 c̃ĵ cbl = (1 + (log n)−

1
4 )
∑

J10

2
l
2 cĵ cbl .

On J11, Proposition 3 gives γĵ cbl = 2
1
2 β0(l−ĵ cb), which leads to

∑

J11

2
l
2 γĵ cblcĵ cbl ≤ Cω̂n

∑

J11

2−(β̂− 1
2 β0)(l−ĵ cb)

≤ Cω̂n

∑

J11

2− 1
2 β̂(l−ĵ cb) ≤ Cω̂n(log n)−

β̂

4β̂+2 .

Here, the second last inequality holds because β̂ ≥ β0. Putting
together both parts and noting that the rightmost side of the last
display achieves its maximum when β̂ = β0, we have

∑

J1

2
l
2 c̃ĵ cbl ≤

∑

J1

2
l
2 cĵ cbl + Cω̂n(log n)−

β0
4β0+2 . (77)

Turn to J2. Similar to the case of J11, we have∑
J2

2
l
2 γĵ cblcĵ cbl ≤ Cω̂n

∑
J2

2− 1
2 β̂(l−ĵ cb), and hence

∑

J2

2
l
2 c̃ĵ cbl ≤

∑

J2

2
l
2 cĵ cbl + Cω̂n(log n)−

β̂

2β̂+1

≤
∑

J2

2
l
2 cĵ cbl + Cω̂n(log n)−

β0
2β0+1 . (78)

For J3, we further decompose it into J3 = J30 ∪ J31, where
J30 = {l ∈ J3 : l ≤ j t}, and J31 = {l ∈ J3 : l > j t}. For each
l ∈ J30, we have

2
l
2 c̃ĵ cbl ≤Cσn(log n)

β0
2(4β0+1) 2

1
8 (j t+l)l

1
4 ≤Cσn(log n)

6β0+1
4(4β0+1) 2

1
8 (j t+l).

Note that the right side is geometrically increasing in l, and so
∑

J30

2
l
2 c̃ĵ cbl ≤Cσn(log n)

6β0+1
4(4β0+1) 2

1
4 j t ≤ CM

1
4β0+1

0 (log n)−
β0

2(4β0+1) ω̂n,
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where the last inequality relies on the fact that (σ 2 log n/

n)2β0/(4β0+1) ≤ Cω̂n.
On J31, c̃ĵ cbl = cψM02−(β0+ 1

2 )l , and so

∑

J31

2
l
2 c̃ĵ cbl ≤ M0

1 − 2−β0
2−β0j

t ≤ CM
1

4β0+1

0 (log n)−
β0

4β0+1 ω̂n,

where the last inequality also relies on (σ 2 log n/n)2β0/(4β0+1) ≤
Cω̂n. The last two displays jointly imply

∑

J3

2
l
2 c̃ĵ cbl ≤ CM

1
4β0+1

0 (log n)−
β0

2(4β0+1) ω̂n. (79)

Putting (77), (78), and (79) together, we obtain that for n ≥
n0(β0,M0, σ ),

τψ
∑

l>ĵ cb

2
l
2 c̃ĵ cbl ≤ τψ

[
1 + CM

1
4β0+1

0 (log n)−
β0

2(4β0+1)
] j t∑

l>ĵ cb

2
l
2 cĵ cbl

≤ ŵb
n,

that is, (75) is satisfied.
Given (75), we now bound the right side of (76) on the

event E′
f . To this end, note that {l : ĵ cb < l ≤ j t} = J10 ∪

J11 ∪ J2 ∪ J30. So we compute the sum over these four
sets separately. For J10, we have κĵ cbl ≤ Cσnc

−1
ĵ cbl

(log n)−
1
4 ≤

C(log n)−3/42(β̂+ 1
2 )(l−ĵ cb), and so

∑

J10

κĵ cbl ≤ C(log n)−
3
4

∑

J10

2(β̂+ 1
2 )(l−ĵ cb) ≤ C(log n)−

1
4 . (80)

On J11, κĵ cbl ≤ Cσn(cĵ cblγĵ cbl)
−1(log n)−

1
2 ≤ C2− 1

2 β0(l−ĵ cb),
which leads to
∑

J11

κĵ cbl ≤ C
∑

J11

2− 1
2 β0(l−ĵ cb) ≤ C(log n)−

β0
4β̂+2 ≤ C(log n)−

β0
8β0+2 .

(81)

The last inequality holds as β̂ ≤ 2β0. On J2, κĵ cbl = Cγ−1
ĵ cbl

, and
so
∑

J2

κĵ cbl ≤ C
∑

J2

2− 1
2 β0(l−ĵ cb) ≤ C(log n)−

β0
2β̂+1 ≤ C(log n)−

β0
4β0+1 .

(82)

Last but not least, on J30, we have κĵ cbl ≤ Cγ−1
ĵ cbl

≤

C(log n)−
β0

2(4β0+1) 2− 1
8 (j t−l), and so

∑

l∈J30

κĵ cb,l ≤ C(log n)−
β0

2(4β0+1)
∑

l∈J30

2− 1
8 (j t−l) ≤ C(log n)−

β0
2(4β0+1) .

(83)

Assembling (80), (81), (82), and (83), we further bound the
right side of (76) to obtain

µ(N (CB, f )) ≤ C(log n)−
β0

2(4β0+1) . (84)

In addition, a similar argument to that leading to (73) leads to

lim
n→∞

sup
$(β,M)

Pf (E′
f ) ≥ 1 − α. (85)

Together with (84), this completes the verification of (9) and
hence completes the proof of Theorem 1. !

6.2 Proof of Theorem 3

Before we turn to the proof of the lower bounds given
in Theorem 3, we introduce a lemma that gives a bound
on the chi-squared distance between a Normal random vec-
tor and particular mixtures of such vectors. The proof of this
lemma is given in the supplement. Let n be a positive in-
teger and let {J1, J2, . . . , Jm} be a partition of the index set
{1, 2, . . . , n} with |Ji | = ki and

∑m
i=1 ki = n. Let B1, . . . , Bm

be independent and identically distributed Rademacher vari-
ables with P (B1 = −1) = P (B1 = 1) = 1

2 . For a fixed vector
γ = (γ1, . . . , γn) ∈ Rn, define the random vector θ ∈ Rn by
θJi

= BiγJi
for i = 1, 2, . . . k. Let y|θ ∼ Nn(θ, σ 2I ). Denote

the marginal distribution of y and its density function by P1 and
h1, respectively.

For a vector ξ ∈ Rd , denote the density of a d-variate normal
distribution Nd (ξ, σ 2I ) by φξ and set ψξ = 1

2φ−ξ + 1
2φξ . Then

it is easy to see that the marginal density h1 of y is given by
h1(y) =

∏m
i=1 ψγJi

(yJi
). Denote by P0 and h0, respectively, the

joint distribution and joint density of the normal distribution
Nn(0, σ 2I ).

Lemma 1. The chi-squared distance between P0 and P1,
χ (P0, P1), satisfies

χ2(P0, P1)≡Eh0

(
h1(y)
h0(y)

− 1
)2

≤ exp

(
1

2σ 4

m∑

i=1

∥γJi
∥4

2

)

− 1.

If
∑m

i=1 ∥γJi
∥4

2 ≤ 2σ 4 log(1 + ϵ2
0 ) and A is any event such that

P0(A) ≥ α, then

P1(A) ≥ α − 1
2
ϵ0. (86)

Now without loss of generality, we shall assume the noise
level σ = 1. Let g be an infinitely differentiable function sup-
ported on [0, 1] with g(t) > 0 for t ∈ (0, 1) and

∫ 1
0 g2(t)dt = 1.

For instance, one can set

g(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

cg

(
exp

(
−1

t
e− 1

1−t

)
t ∈ [0, 1],

+ exp
(

− 1
1 − t

e− 1
t

)
− 1

)
,

0, otherwise.

(87)

Here, the normalizing constant cg
.= 0.346. Suppose h ∈

$(β,M ′) with M ′ < M , Let m be a positive integer and let
B1, . . . , Bm be iid Rademacher variable with P (B1 = −1) =
P (B1 = 1) = 1

2 . Define the random function f by

f (t) = h(t) +
m∑

i=1

Bic0m
−βg(m(t − xi)), (88)

where xi = i−1
m

and c0 > 0 is a constant. It is easy to verify that,
when the constant c0 is chosen sufficiently small, all realizations
of f are in$(β,M). Set m = ⌈n

2
4β+1 ⌉. Without loss of generality,

we shall assume that n is divisible by m and let kn = n/m. Note
that the Riemann sum

Akn
≡ 1

kn

kn∑

j=1

g2
(

j

kn

)
→
∫ 1

0
g2(t)dt = 1

and so for all sufficiently large n, Akn
≤

√
2.
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Now consider the nonparametric regression model (1) with
the mean function f given in (88). Denote the joint marginal dis-
tribution of the y1, . . . , yn by P1. If the Bi Rademacher variables
are instead set equal to zero, denote the joint distribution of the
y1, . . . , yn by P0. It follows from Lemma 1 that the chi-squared
distance between P0 and P1 satisfies

χ2(P0, P1) ≤ exp

⎧
⎪⎨

⎪⎩
1
2
mc2

0m
−4β

⎛

⎝
kn∑

j=1

g2
(

j

kn

)⎞

⎠
2
⎫
⎪⎬

⎪⎭
− 1

= exp
{

1
2
mc2

0m
−4βk2

nA
2
kn

}
− 1

≤ ec2
0 − 1.

Set bn = bn
−2β
4β+1 and suppose that w(CB, h) ≤ bn

−2β
4β+1 , it follows

that

P0

(∫ 1

0
(U (t) − L(t))dt ≤ γ−1

1 bn

)
≥ 1 − γ1.

For a given constant 0 < γ2 < 1, define the set S1 = {t ∈ [0, 1] :
U (t) − L(t) ≤ (γ1γ2)−1bn}. Then it follows that

P0 (µ(S1) ≥ 1 − γ2) ≥ P0

(∫ 1

0
(U (t) − L(t))dt ≤ γ−1

1 bn

)

≥ 1 − γ1.

where µ(·) is the Lebesgue measure. Define the set S2 = {t ∈
[0, 1] : h(t) ∈ [L(t), U (t)]}.

Suppose that

P0

(
µ(S2) ≥ 1

2
+ ϵ

)
≥ 1 − α.

Now set A = S1 ∩ S2. If µ(S1) ≥ 1 − γ2 and µ(S2) ≥ 1
2 + ϵ,

then µ(A) ≥ 1
2 + ϵ − γ2. Hence,

P0

(
µ(A) ≥ 1

2
+ ϵ − γ2

)
≥ 1 − α − γ1.

It now follows from Lemma 1 that

P1

(
µ(A) ≥ 1

2
+ ϵ − γ2

)
≥ 1 − α − γ1 − 1

2
ϵ0.

Note that for any function f (·) of the form (88) with m = ⌊n
2

4β+1 ⌋
and Bi ∈ {−1, 1}, for any c > 0, there is a b > 0 and d > 0 both
depending on c0 and γ1γ2 such that if dn = dn− 2β

4β+1 ,

µ(S3) ≥ 1 − c,

where S3 = {t : |f (t) − h(t)| ≥ dn}.
Note also that for t ∈ A, h(t) ∈ [L(t), U (t)], and U (t) −

L(t) ≤ (γ1γ2)−1bn, so |L(t) − h(t)| ≤ (γ1γ2)−1bn and |U (t) −
h(t)| ≤ (γ1γ2)−1bn. So under P1, for any f of the form (88),
the set of noncovered points N (CB, f ) satisfies under the event
µ(A) ≥ 1

2 + ϵ − γ2

µ(N (CB, f )) ≥ µ (A ∩ S3) ≥ 1
2

+ ϵ − γ2 − c.

Hence,

P1

(
µ(N (CB, f )) ≥ 1

2
+ ϵ − γ2 − c

)
≥ 1 − α − γ1 − 1

2
ϵ0.

By taking γ2 + c ≤ ϵ and selecting γ1 and ϵ0 such that 1 −
α − γ1 − 1

2ϵ0 > α yields

P1

(
µ(N (CB, f )) ≥ 1

2

)
> α.

Hence, there is an f for which

Pf

(
µ(N (CB, f )) ≤ 1

2

)
< 1 − α.

It thus follows that if a CB satisfies (49), then (51) must hold.
We shall now show that if (50) holds, then (51) must also

hold. Once again set bn = bn
−2β
4β+1 and suppose that w(CB, h) ≤

bn
−2β

4β+1 . Defining S1 as before note that

P0

(∫ 1

0
(U (t) − L(t))dt ≤ γ−1

1 bn, and µ(S1) ≥ 1 − γ2

)

≥ 1 − γ1.

Then for some 0 < γ3 < 1, define the set S ′
2 = {t ∈ [0, 1] :

U (t) − h(t) ≥ −γ−1
3 bn and L(t) − h(t) ≤ γ−1

3 bn}. On (S ′
2)c at

any point t, the true function is at least bn

γ3
away from the

band. Hence, the absolute excess is at least bn

γ3
(1 − µ(S ′

2)). Set
A′ = S1 ∩ S ′

2. Then the previous display and the discussion af-
terward implies

P0

(∫ 1

0
(U (t)−L(t))dt ≤γ−1

1 bn, and µ(A′) ≥ 1−γ2−
γ3

γ1
r

)

≥ 1 − α − γ1.

Moreover, Lemma 1 further implies

P1

(∫ 1

0
(U (t)−L(t))dt ≤γ−1

1 bn, and µ(A′) ≥ 1−γ2−
γ3

γ1
r

)

≥ 1 − α − γ1 − ϵ0.

For any function f (·) of the form (88) for any c > 0, there is
a b > 0 and c3 both depending on c0, γ1γ2 and γ3, and d =
(1 + c3)((γ1γ2)−1 + γ−1

3 )b ≤ c0 such that if dn = dn− 2β
4β+1 , we

have for the set S3

µ(S3) ≥ 1 − c.

On the set A′, we have |U (t) − h(t)| ≤ ((γ1γ2)−1 + γ−1
3 )bn and

|L(t) − h(t)| ≤ ((γ1γ2)−1 + γ−1
3 )bn. So, we have

∫ 1

0
ef (t)dt ≥

∫

A′∩S3

(
dn −

(
(γ1γ2)−1 + γ−1

3

)
bn

)
dt

≥ c3
(
(γ1γ2)−1 + γ−1

3

)
bn µ(A′ ∩ S3).

So, on the event {
∫ 1

0 (U (t) − L(t))dt ≤ γ−1
1 bn, and µ(A′) ≥

1 − γ2 − γ3
γ1

r}, the last display leads to

RE(CB, f ) ≥ c3
(
γ−1

2 + γ1γ
−1
3

) (
1 − γ2 − γ3

γ1
r − c

)
.

Therefore,

P1

(
RE(CB, h) ≥ c3

(
γ−1

2 + γ1γ
−1
3

) (
1 − γ2 − γ3

γ1
r − c

))

≥ 1 − α − γ1 − ϵ0 > α

!
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SUPPLEMENTARY MATERIALS

The supplement contains the proofs of Theorem 2, Proposi-
tions 2 and 3, Lemma 1 and Eq. (14).

[Received October 2012. Revised May 2013.]

REFERENCES
Bickel, P. J., and Rosenblatt, M. (1973), “On Some Global Measures of the

Deviations of Density Function Estimates,” The Annals of Statistics, 1,
1071–1095. [1058]

Brown, L. D., Cai, T., Zhang, R., Zhao, L., and Zhou, H. (2010), “The Root-
Unroot Algorithm for Density Estimation as Implemented via Wavelet
Block Thresholding,” Probability Theory and Related Fields, 146, 401–433.
[1062,1064]

Brown, L. D., Cai, T., and Zhou, H. (2008), “Robust Nonparametric Estimation
via Wavelet Median Regression,” The Annals of Statistics, 36, 2055–2084.
[1064]

——— (2010), “Nonparametric Regression in Exponential Families,” The An-
nals of Statistics, 38, 2005–2046. [1064]

Brown, L. D., Gans, N., Mandelbaum, A., Sakov, A., Shen, H., Zeltyn, S., and
Zhao, L. H. (2005), “Statistical Analysis of a Telephone Call Center: A
Queueing Science Perspective,” Journal of the American Statistical Associ-
ation, 100, 36–50. [1062]

Bull, A. D. (2012), “Honest Adaptive Confidence Bands and Self-
Similar Functions,” Electronic Journal of Statistics, 6, 1490–1516.
[1055,1058,1060]

——— (2013), “A Smirnov-Bickel-Rosenblatt Theorem for Compactly-
Supported Wavelets,” Constructive Approximation, 37, 295–309. [1058]

Cai, T., and Low, M. G. (2006a), “Adaptive Confidence Balls,” The Annals of
Statistics, 34, 202–228. [1061,1062,1064]

——— (2006b), “Optimal Adaptive Estimation of a Quadratic Functional,” The
Annals of Statistics, 34, 2298–2325. [1061]

Cai, T., and Zhou, H. (2009), “Asymptotic Equivalence and Adaptive Estima-
tion for Robust Nonparametric Regression,” The Annals of Statistics, 37,
3204–3235. [1064]

——— (2010), “Nonparametric Regression in Natural Exponential Families,”
in Borrowing Strength: Theory Powering Applications – A Festschrift for
Lawrence D. Brown (Vol. 6), eds. J. O. Berger, T. T. Cai, and I. M. Johnstone.
Beachwood, Ohio: Institute of Mathematical Statistics, pp. 199–215. [1064]

Cohen, A., Daubechies, I., Jawerth, B., and Vial, P. (1993), “Multiresolution
Analysis, Wavelets, and Fast Algorithms on an Interval,” Comptes Rendus
de l’Acadmie des Sciences Paris (A), 316, 417–421. [1064]

Donoho, D., and Johnstone, I. (1994), “Ideal Spatial Adaptation by Wavelet
Shrinkage,” Biometrika, 81, 425–455. [1062]

Genovese, C., and Wasserman, L. (2008), “Adaptive Confidence Bands,” The
Annals of Statistics, 36, 875–905. [1055]
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