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Adaptive Thresholding for Sparse
Covariance Matrix Estimation

Tony CAI and Weidong LIU

In this article we consider estimation of sparse covariance matrices and propose a thresholding procedure that is adaptive to the variability
of individual entries. The estimators are fully data-driven and demonstrate excellent performance both theoretically and numerically. It
is shown that the estimators adaptively achieve the optimal rate of convergence over a large class of sparse covariance matrices under
the spectral norm. In contrast, the commonly used universal thresholding estimators are shown to be suboptimal over the same parameter
spaces. Support recovery is discussed as well. The adaptive thresholding estimators are easy to implement. The numerical performance
of the estimators is studied using both simulated and real data. Simulation results demonstrate that the adaptive thresholding estimators
uniformly outperform the universal thresholding estimators. The method is also illustrated in an analysis on a dataset from a small round
blue-cell tumor microarray experiment. A supplement to this article presenting additional technical proofs is available online.
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1. INTRODUCTION

Let X = (X1, . . . ,Xp)
T be a p-variate random vector with co-

variance matrix �0. Given an iid random sample {X1, . . . ,Xn}
from the distribution of X, we wish to estimate the covari-
ance matrix �0 under the spectral norm. This covariance ma-
trix estimation problem is of fundamental importance in multi-
variate analysis with a wide range of applications. The high-
dimensional setting, in which the dimension p can be much
larger than the sample size n, is of particular current interest.
In such a setting, conventional methods and results based on
fixed p and large n are no longer applicable, and thus new meth-
ods and theories are needed. In particular, the sample covari-
ance matrix

�n = (σ̂ij)p×p := 1

n − 1

n∑
k=1

(Xk − X̄)(Xk − X̄)T , (1)

where X̄ = n−1 ∑n
k=1 Xk, performs poorly in this setting, and

structural assumptions are required to estimate the covariance
matrix consistently.

In this article we focus on estimating sparse covariance ma-
trices. This problem has been considered in the literature. El
Karoui (2008) and Bickel and Levina (2008) proposed thresh-
olding of the sample covariance matrix �n and obtained rates
of convergence for the thresholding estimators. Rothman, Lev-
ina, and Zhu (2009) considered thresholding of the sample co-
variance matrix with more general thresholding functions. Cai
and Zhou (2009, 2010) established the minimax rates of conver-
gence under the matrix �1 norm and the spectral norm. Wang
and Zou (2010) considered estimation of volatility matrices
based on high-frequency financial data.

A common feature of the thresholding methods for sparse co-
variance matrix estimation proposed in the literature is that they
all belong to the class of “universal thresholding rules”; that
is, a single threshold level is used to threshold all the entries
of the sample covariance matrix. Universal thresholding rules
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were originally introduced by Donoho and Johnstone (1994,
1998) for estimating sparse normal mean vectors in the con-
text of wavelet function estimation (see also Antoniadis and Fan
2001). An important feature of the problems that those authors
considered is that noise is homoscedastic. In such a setting, uni-
versal thresholding has demonstrated considerable success in
nonparametric function estimation in terms of asymptotic opti-
mality and computational simplicity.

In contrast to the standard homoscedastic nonparametric re-
gression problems, sparse covariance matrix estimation is in-
trinsically a heteroscedastic problem, in the sense that the en-
tries of the sample covariance matrix could have a wide range
of variability. Although some universal thresholding rules have
been shown to have desirable asymptotic properties, this is re-
lated mainly to the fact that the parameter space considered
in the literature is relatively restrictive, which forces the co-
variance matrix estimation problem to be an essentially ho-
moscedastic problem.

To illustrate this point, it is helpful to consider an idealized
model in which

yi = μi + γizi, zi
iid∼ N(0,1),1 ≤ i ≤ p (2)

and one wishes to estimate the mean vector μ, which is as-
sumed to be sparse. If the noise levels γi are bounded, say by B,
then the universal thresholding rule μ̂i = yiI(|yi| ≥ B

√
2 log p)

performs well asymptotically over a standard �q ball �q(s0),
defined by

�q(s0) =
{

μ ∈ R
p :

p∑
j=1

|μj|q ≤ s0

}
. (3)

In particular, �0(s0) is a set of sparse vectors with at most s0

nonzero elements. Here the assumption that γi are bounded
by B is crucial. The universal thresholding rule simply treats
the heteroscedastic problem (2) as a homoscedastic one with
all noise levels γi = B. It is intuitively clear that this method
does not perform well when the range of γi is large, and that it
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fails completely without the uniform boundedness assumption
on the γi’s.

For sparse covariance matrix estimation, the following uni-
formity class of sparse matrices was considered by Bickel and
Levina (2008) and Rothman, Levina, and Zhu (2009):

Uq := Uq(s0(p))

=
{

� :� � 0, max
i

σii ≤ K, max
i

p∑
j=1

|σij|q ≤ s0(p)

}

for some 0 ≤ q < 1, where � � 0 means that � is positive def-
inite. Here each column of a covariance matrix in Uq(s0(p)) is
assumed to be in the �q ball �q(s0(p)). Define

θij := Var((Xi − μi)(Xj − μj)), (4)

where μi = EXi. It is easy to see that in the Gaussian case,
σiiσjj ≤ θij ≤ 2σiiσjj. The condition maxi σii ≤ K for all i en-
sures that the variances of the entries of the sample covariance
matrix is uniformly bounded. Bickel and Levina (2008) pro-
posed a universal thresholding estimator �̂u = (σ̂ u

ij ), where

σ̂ u
ij = σ̂ijI{σ̂ij ≥ λn}, (5)

and showed that with a proper choice of the threshold λn, the
estimator �̂u achieves a desirable rate of convergence under
the spectral norm. Rothman, Levina, and Zhu (2009) consid-
ered a class of universal thresholding rules with more general
thresholding functions than hard thresholding. Similar to the
idealized model (2) discussed earlier, here a key assumption is
that the variances σii are uniformly bounded by K, which is
crucial to make the universal thresholding rules well behaved.
A universal thresholding rule in this case essentially treats the
problem as if all σii = K when selecting the threshold λ.

For heteroscedastic problems, such as sparse covariance ma-
trix estimation, it is arguably more desirable to use thresholds
that capture the variability of individual variables instead of us-
ing a universal upper bound. This is particularly true when the
variances vary over a wide range or when no obvious upper
bound on the variances is known. A more natural and effec-
tive approach is to use thresholding rules with entry-dependent
thresholds that automatically adapt to the variability of the in-
dividual entries of the sample covariance matrix. The main goal
of the present work is to develop such an adaptive thresholding
estimator and study its properties.

In this article we introduce an adaptive thresholding estima-
tor �̂� = (σ̂ �

ij)p×p with

σ̂ �
ij = sλij(σ̂ij), (6)

where sλ(z) is a general thresholding function similar to those
used by Rothman, Levina, and Zhu (2009), which we specify
later. The individual thresholds λij are fully data-driven and
adapt to the variability of individual entries of the sample co-
variance matrix �n. We show that the adaptive thresholding
estimator �̂� has excellent properties, both asymptotically and
numerically. In particular, we consider the performance of the
estimator �̂� over a large class of sparse covariance matrices
defined by

U �
q := U �

q (s0(p))

=
{

� :� � 0, max
i

p∑
j=1

(σiiσjj)
(1−q)/2|σij|q ≤ s0(p)

}
(7)

for 0 ≤ q < 1. Compared with Uq(s0(p)), the columns of a co-
variance matrix in U �

q are required to be in a weighted �q ball
instead of a standard �q ball, with the weight determined by
the variance of the entries of the sample covariance matrix.
A particular feature of U �

q is that it no longer requires the
variances σii to be uniformly bounded and allows maxi σii →
∞. Note that Uq(s0(p)) ⊆ U �

q (K1−qs0(p)), so the parameter
space U �

q contains the uniformity class Uq as a subset. The pa-
rameter space U �

q also can be viewed as a weighted �q ball of
correlation coefficients; see Section 3.1 for more discussion.

In Section 3 we show that �̂� achieves the optimal rate of
convergence,

s0(p)

(
log p

n

)(1−q)/2

,

over the parameter space U �
q (s0(p)). In comparison, we also

show that the best universal thresholding estimator can only
attain the rate s2−q

0 (p)(
log p

n )(1−q)/2 over U �
q (s0(p)), which is

clearly suboptimal when s0(p) → ∞, because q < 1.
The choice of regularization parameters is important in any

regularized estimation problem. The thresholds λij used in (6)
are based on an estimator of the variance of the entries σ̂ij of the
sample covariance matrix. More specifically, λij are of the form

λij = δ

√
θ̂ij log p

n
, (8)

where θ̂ij are estimates of θij defined in (4) and δ is a tuning
parameter. The value of δ can be taken as fixed at δ = 2 or can
be chosen empirically through cross-validation. We investigate
the theoretical properties of the resulting covariance matrix esti-
mators using both methods, and show that the estimators attain
the optimal rate of convergence under the spectral norm in both
cases. We also consider support recovery of a sparse covariance
matrix.

The adaptive thresholding estimators are easy to implement.
We investigate the numerical performance of the estimators us-
ing both simulated and real data. Our simulation results indi-
cate that the adaptive thresholding estimators perform favor-
ably compared with existing methods. In particular, they uni-
formly outperform the universal thresholding estimators in the
simulation studies. We also apply the procedure to analyze
a dataset from a small round blue-cell tumor microarray ex-
periment (Khan et al. 2001).

The article is organized as follows. Section 2 introduces the
adaptive thresholding procedure for sparse covariance matrix
estimation, and Section 3 considers asymptotic properties. It is
shown that the adaptive thresholding estimator is rate-optimal
over U �

q , whereas the best universal thresholding estimator is
proved to be suboptimal. Section 4 discusses data-driven se-
lection of the thresholds using cross-validation (CV) and es-
tablishes asymptotic optimality of the resulting estimator. Sec-
tion 5 investigates the numerical performance of the adaptive
thresholding estimators by simulations and by an application to
a dataset from a small round blue-cell tumor microarray exper-
iment. Section 6 discusses methods based on the sample corre-
lation matrix, and Section 7 provides proofs.
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2. ADAPTIVE THRESHOLDING FOR SPARSE
COVARIANCE MATRIX

In this section we introduce the adaptive thresholding method
for estimating sparse covariance matrices. To motivate our esti-
mator, consider again the sparse normal mean estimation prob-
lem (2). If the noise levels γi’s are known or can be well
estimated, then a good estimator of the mean vector is the
hard thresholding estimator μ̂i = yiI{|yi| ≥ γi

√
2 log p} or some

generalized thresholding estimator with the same thresholds,
γi

√
2 log p.

Similarly, for sparse covariance matrix estimation, a more ef-
fective thresholding rule than universal thresholding is one that
adapts to the variability of the individual entries of the sample
covariance matrix. Define θij as in (4). Then, roughly speak-
ing, sparse covariance matrix estimation is similar to the mean
vector estimation problem based on the observations

1

n

n∑
k=1

(Xki − μi)(Xkj − μj) = σij +
√

θij

n
zij, 1 ≤ i, j ≤ p,

(9)

with zij asymptotically standard normal. This analogy provides
a good motivation for our adaptive thresholding procedure. If
the θij were known, then a natural thresholding estimator would
be (σ̂ o

ij )p×p with

σ̂ o
ij = sλo

ij
(σ̂ij) with λo

ij = 2

√
θij log p

n
, (10)

where sλ(z) is a thresholding function. Compared with the uni-
versal thresholding rule of Bickel and Levina (2008), the vari-
ance factors θij in the thresholds make the thresholding rule
entry-dependent and lead to a more flexible estimator. In prac-
tice, θij are typically unknown but can be well estimated. We
propose the following estimator of θij:

θ̂ij = 1

n

n∑
k=1

[(Xki − X̄i)(Xkj − X̄j) − σ̂ij]2, X̄i = n−1
n∑

k=1

Xki.

This leads to our adaptive thresholding estimator of the covari-
ance matrix, �0,

�̂�(δ) = (σ̂ �
ij)p×p with σ̂ �

ij = sλij(σ̂ij), (11)

where

λij := λij(δ) = δ

√
θ̂ij log p

n
. (12)

Here δ > 0 is a regularization parameter that can be fixed at δ =
2 or chosen through CV. Good choices of δ will not affect the
rate of convergence, but will affect the numerical performance
of the resulting estimators. Selection of δ is thus of practical
importance, and is addressed in more detail later in the article.

The analogy between the sparse covariance estimation prob-
lem and the idealized mean estimation problem (9) gives good
motivation for the adaptive thresholding estimator defined in
(11) and (12). Of course the matrix estimation problem is not
exactly equivalent to the mean estimation problem (9) because
noise is not exactly normal or iid and the loss is the spectral
norm, not a vector norm or the Frobenius norm. We provide
a more precise technical analysis in Sections 3 and 7.

In this article we consider simultaneously a class of thresh-
olding functions sλ(z) that satisfy the following conditions:

(i) |sλ(z)| ≤ c|y| for all z, y satisfy |z − y| ≤ λ and some
c > 0

(ii) sλ(z) = 0 for |z| ≤ λ

(iii) |sλ(z) − z| ≤ λ, for all z ∈ R.

These three conditions are satisfied by, for example, the soft
thresholding rule sλ(z) = sgn(z)(z − λ)+ and the adaptive lasso
rule sλ(z) = z(1 − |λ/z|η)+ with η ≥ 1 (Rothman, Levina, and
Zhu 2009). We present a unified analysis of the adaptive thresh-
olding estimators with the thresholding function sλ(z) satisfy-
ing the foregoing three conditions. It should be noted that con-
dition (i) excludes the hard thresholding rule; however, all of
the theoretical results in this article hold for the hard thresh-
olding estimator under similar conditions. Here condition (i) is
provided only to make the technical analysis in Section 7 work
in a unified way for the class of thresholding rules. The results
for the hard thresholding rule require slightly different proofs.

Rothman, Levina, and Zhu (2009) proposed generalized uni-
versal thresholding estimators

�̂g = (σ̂
g
ij )p×p, where σ̂

g
ij = s̄λn(σ̂ij)

and s̄λ(z) satisfies (ii), (iii), and |s̄λ(z)| ≤ |z|, which is slightly
weaker than (i). Antoniadis and Fan (2001) introduced and
studied similar general universal thresholding rules in the con-
text of wavelet function estimation. We note that the general-
ized universal thresholding estimators �̂g suffer the same short-
comings as those of �̂u, and like �̂u they are suboptimal over
the class U �

q .

3. THEORETICAL PROPERTIES OF
ADAPTIVE THRESHOLDING

Here we consider the asymptotic properties of the adaptive
thresholding estimator �̂�(δ) defined in (11) and (12). We show
that the estimator �̂�(δ) adaptively attains the optimal rate of
convergence over the collection of parameter spaces U �

q (s0(p)).
We begin with some notation. Define the standardized vari-

ables

Yi = (Xi − μi)/(Var(Xi))
1/2,

where μi = EXi, and let Y = (Y1, . . . ,Yp)
T . Throughout, write

|a|2 =
√∑p

j=1 a2
j for the usual Euclidean norm of a vector

a = (a1, . . . ,ap)
T ∈ R

p. For a matrix A = (aij) ∈ R
p×q, de-

fine the spectral norm ‖A‖2 = sup|x|2≤1 |Ax|2, the matrix �1

norm ‖A‖L1 = max1≤j≤q
∑p

i=1 |ai,j|, and the Frobenius norm

‖A‖F =
√∑

i,j a2
ij. For two sequences of real numbers {an}

and {bn}, write an = O(bn) if there exists a constant C such
that |an| ≤ C|bn| holds for all sufficiently large n, and write
an = o(bn) if limn→∞ an/bn = 0.

3.1 Rate of Convergence

In the covariance matrix estimation literature, it is conven-
tional to divide the technical analysis into two cases according
the the moment conditions on X.
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(C1) (Exponential-type tails) Suppose that log p = o(n1/3)

and there exists some η > 0 such that

E exp(tY2
i ) ≤ K1 < ∞ for all |t| ≤ η and i. (13)

Furthermore, assume that for some τ0 > 0,

min
ij

Var(YiYj) ≥ τ0. (14)

(C2) (Polynomial-type tails) Suppose that for some γ, c1 >

0, p ≤ c1nγ , and for some ε > 0

E|Yi|4γ+4+ε ≤ K1 for all i. (15)

Furthermore, assume that (14) holds.

Remark 1. Note that (C1) holds with τ0 = 1 in the Gaus-
sian case where X ∼ N(μ,�0). To this end, let ρij be the
correlation coefficient of Yi and Yj. We can then write Yi =
ρijYj +

√
1 − ρ2

ijY , where Y ∼ N(0,1) is independent of Yj.

Thus we have Var(YiYj) = 1 + ρ2
ij ≥ 1, and (14) holds with

τ0 = 1.

The following theorem gives the rate of convergence over the
parameter space U �

q under the spectral norm for the thresholding

estimator �̂�(δ).

Theorem 1. Let δ ≥ 2 and 0 ≤ q < 1.

(i) Under (C1), we have, for some constant CK1,δ,c,q de-
pending only on δ, c, q and K1,

inf
�0∈U �

q

P
(

‖�̂�(δ) − �0‖2

≤ CK1,δ,c,qs0(p)

(
log p

n

)(1−q)/2)

≥ 1 − O
(
(log p)−1/2p−δ+2). (16)

(ii) Under (C2), (16) holds with probability greater than 1 −
O((log p)−1/2p−δ+2 + n−ε/8).

Although U �
q is larger than the uniformity class Uq, the rates

of convergence of �̂�(δ) over the two classes are of the same
order, s0(p)(log p/n)(1−q)/2.

Theorem 1 states the rate of convergence in terms of proba-
bility. The same rate of convergence holds in expectation with
some additional mild assumptions. By (16) and some long but
elementary calculations (see also the proof of Lemma 4), we
have the following result on the mean squared spectral norm:

Proposition 1. Under (C1) and p ≥ nξ for some ξ > 0, we
have for δ ≥ 7 + ξ−1, 0 ≤ q < 1, and some constant C > 0,

sup
�0∈U �

q

E‖�̂�(δ) − �0‖2
2 ≤ Cs2

0(p)

(
log p

n

)1−q

. (17)

Remark 2. Cai and Zhou (2010) established the minimax
rates of convergence under the spectral norm for sparse co-
variance matrix estimation over Uq. They showed that the opti-

mal rate over Uq is s0(p)(log p/n)(1−q)/2. Because Uq(s0(p)) ⊆
U �

q (K1−qs0(p)), this immediately implies that the convergence
rate attained by the adaptive thresholding estimator over U �

q in
Theorem 1 and (17) is optimal.

Remark 3. The estimator �̂�(δ) immediately yields an esti-
mate of the correlation matrix R0 = (rij)1≤i,j,≤p which is the
object of direct interest in some statistical applications. Denote
the corresponding estimator of R0 by R̂�(δ) = (r̂�

ij)1≤i,j,≤p, with

r̂�
ij = σ̂ �

ij/
√

σ̂iiσ̂jj. A parameter space for the correlation matrices
is the following �q ball:

R�
q := R�

q(s0(p))

=
{

R : R � 0, max
i

p∑
j=1

|rij|q ≤ s0(p)

}
. (18)

Then Theorem 1 holds for estimating the correlation matrix R0
by replacing �̂�(δ), �0, and U �

q with R̂�(δ), R0, and R�
q, re-

spectively.
Note that the covariance matrix �0 can be written as �0 =

D1/2R0D1/2, where D = diag(�0). Thus the covariance matrix
can be viewed as a weighted version of the correlation ma-
trix with weights {(σiiσjj)

1/2}. Correspondingly, the parameter
space U �

q in (7) can be viewed as the weighted version of R�
q

given in (18) with the same weights,

U �
q :=

{
� :� � 0, max

i

p∑
j=1

(σiiσjj)
1/2|rij|q ≤ s0(p)

}
.

3.2 Support Recovery

A closely related problem to estimating a sparse covariance
matrix under spectral norm is recovering the support of the co-
variance matrix. This problem has been considered by, for ex-
ample, Rothman, Levina, and Zhu (2009). For support recovery,
it is natural to consider the parameter space

Ū0 := Ū0(s0(p)) =
{

� : max
i

p∑
j=1

I{σij �= 0} ≤ s0(p)

}
,

which assumes that the covariance matrix has at most s0(p)

nonzero entries on each row.
Define the support of �0 = (σ 0

ij ) by � = {(i, j) :σ 0
ij �= 0}. The

following theorem shows that the adaptive thresholding estima-
tor �̂�(δ) recovers the support � exactly with high probability
when the magnitudes of nonzero entries rises above a certain
threshold.

Theorem 2. Suppose that �0 ∈ Ū0. Let δ ≥ 2 and

|σ 0
ij | > (2 + δ + γ )

√
θij log p

n

for all (i, j) ∈ � and some γ > 0. (19)

If either (C1) or (C2) holds, then we have

inf
�0∈Ū0

P
(
supp(�̂�(δ)) = supp(�0)

) → 1.

A similar support recovery result was established for the gen-
eralized universal thresholding estimator by Rothman, Levina,
and Zhu (2009) under the condition maxi σ

0
ii ≤ K and a lower

bound condition similar to (19). Note that in Theorem 2, we do
not require maxi σ

0
ii ≤ K.

Following Rothman, Levina, and Zhu (2009), we can eval-
uate the ability to recover the support via the true positive rate
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(TPR) in combination with the false positive rate (FPR), defined
respectively as

TPR = #{(i, j) : σ̂ �
ij �= 0 and σij �= 0}

#{(i, j) :σij �= 0} and

FPR = #{(i, j) : σ̂ �
ij �= 0 and σij = 0}

#{(i, j) :σij = 0} .

It directly follows from Theorem 2 that P(FPR = 0) → 1 and
P(TPR = 1) → 1 under the conditions of the theorem.

The next result shows that δ = 2 is the optimal choice for
support recovery in the sense that a thresholding estimator with
any smaller choice of δ would fail to recover the support of �0
exactly with probability going to 1. We assume that X satis-
fies the following condition, which is weaker than the Gaussian
assumption:

(C3) Suppose that

E[(Xi − μi)
2(Xj − μj)(Xk − μk)] = 0,

E[(Xi − μi)(Xj − μj)(Xk − μk)(Xl − μl)] = 0

if σ 0
j1j2

= 0 for all j1 �= j2 ∈ {i, j, k, l}.

Theorem 3. Let λij = τ

√
θ̂ij log p

n with 0 < τ < 2. Suppose
that (C1) or (C2) holds. Under (C3) and p = exp(o(n1/5)), if
s0(p) = O(p1−τ1) with some τ 2/4 < τ1 < 1 and p → ∞, then

inf
�0∈Ū0

P
(
supp(�̂�(τ )) �= supp(�0)

) → 1.

Remark 4. The condition p = exp(o(n1/5)) is used in the
proof to ensure that the covariances of the samples {Xn} can
be well approximated by normal vectors. It can be replaced by
p = exp(o(n1/3)) if X is a multivariate normal population.

3.3 Comparison With Universal Thresholding

It is interesting to compare the asymptotic results for adap-
tive thresholding estimator �̂�(δ) with the known results for
universal thresholding estimators. We begin by comparing the
rate of convergence of �̂�(δ) with that of the universal thresh-
olding estimator �̂u introduced by Bickel and Levina (2008)
in the case of polynomial-type tails. Suppose that (C2) holds.
Bickel and Levina (2008) showed that

‖�̂u − �0‖2 = OP

(
s0(p)

(
p1/(1+γ+ε/2)

n1/2

)1−q)
(20)

for �0 ∈ Uq. Clearly, the convergence rate given in Theorem 1
for the adaptive thresholding estimator is significantly faster
than that in (20).

We next compare the rates over the class U �
q , 0 ≤ q < 1. For

brevity, we focus on the Gaussian case X ∼ N(μ,�0). The fol-
lowing theorem gives the lower bound of the universal thresh-
olding estimator.

Theorem 4. Assume that n5q ≤ p ≤ exp(o(n1/3)) and 8 ≤
s0(p) < min{p1/4,4(n/ log p)1/2}. As p → ∞, we have

inf
λn

sup
�0∈U �

q

P
(

‖�̂g − �0‖2 >
3

64
s2−q

0 (p)

(
log p

n

)(1−q)/2)

→ 1, (21)

and thus, for large n,

inf
λn

sup
�0∈U �

q

E‖�̂g − �0‖2
2 ≥ 1

512
s4−2q

0 (p)

(
log p

n

)1−q

. (22)

The rate in (21) is slower than the optimal rate s0(p) ×
(log p/n)(1−q)/2 given in (16) when s0(p) → ∞ as p →
∞. Therefore, no universal thresholding estimators can be
minimax-rate optimal under the spectral norm over U �

q if
s0(p) → ∞.

If we assume the mean of X is 0 and ignore the term X̄ in
�n, then the universal thresholding estimators given by Bickel
and Levina (2008) and Rothman, Levina, and Zhu (2009) use
the sample mean of the samples {XkiXkj;1 ≤ k ≤ n} to iden-
tify zero entries in the covariance matrix. The support of these
estimators depends on the quantities I{|σ̂ij| ≥ λn}. In the high-
dimensional setting, the sample mean is usually unstable for
non-Gaussian distributions with heavier tails. Non-Gaussian
data can often arise from many practical applications such as
in finance and genomics. For our estimator, instead of the sam-
ple mean, we use the Student t statistic σ̂ij/θ̂

1/2
ij to distinguish

zero and nonzero entries. Our support recovery depends on
the quantities I{|σ̂ij|/θ̂1/2

ij ≥ 2
√

log p/n}, which are more stable
than I{|σ̂ij| ≥ λn}, because the t statistic is much more stable
than the sample mean (see Shao 1999 for the theoretical justifi-
cation).

4. DATA–DRIVEN CHOICE OF δ

Section 3 analyzes the properties of the adaptive threshold-
ing estimator with a fixed value of δ. Alternatively, δ can be se-
lected empirically through CV. In the work of Bickel and Levina
(2008), the value of the universal thresholding level λn was not
fully specified, and the CV method was used to select λn em-
pirically. The authors obtained the convergence rate under the
Frobenius norm for an estimator based only on partial samples.
Theoretical analysis of the rate of convergence under the spec-
tral norm was lacking. In this section, we first briefly describe
the CV method for choosing δ and then derive the theoretical
properties of the resulting estimator under the spectral norm.

Divide the sample {Xk;1 ≤ k ≤ n} into two subsamples at
random. Let n1 and n2 = n − n1 be the two sample sizes for
the random split satisfying n1  n2  n, and let �̂v

1 and �̂v
2

be the two sample covariance matrices from the vth split, for
v = 1, . . . ,H, where H is a fixed integer. Let �̂�v

1 (δ) and �̂�v
2 (δ)

be defined as in (11) from the vth split and

R̂(δ) = 1

H

H∑
v=1

‖�̂�v
1 (δ) − �̂v

2‖2
F.

Let aj = j/N, 0 ≤ j ≤ 4N be 4N + 1 points in [0,4] and take

δ̂ = ĵ/N, where ĵ = arg min
0≤j≤4N

R̂(j/N),

where N > 0 is a fixed integer. If several j’s attain the minimum
value, then ĵ is chosen to be the smallest one. The final estimator
of the covariance matrix �0 is given by �̂�(δ̂).
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Theorem 5. Suppose that X ∼ N(μ,�0) with �0 ∈ U0 and
mini σ

0
ii ≥ τ0 for some τ0 > 0. Let s0(p) = O((log p)γ ) for some

γ < 1 and nξ ≤ p ≤ exp(o(n1/3)) for some ξ > 0. We then have

inf
�0∈U0

P
(

‖�̂�(δ̂) − �0‖2 ≤ Cs0(p)

(
log p

n

)1/2)
→ 1.

Remark 5. The assumption that N is fixed is not a stringent
condition, because we consider only δ belonging to the fixed
interval [0,4]. Moreover, we focus only on the matrices in U0,
due to the complexity of the proof. Extending to the case N →
∞ with certain rate and more general �0 is possible; however,
this requires a far more complicated proof and is not considered
further in this article.

Remark 6. The condition s0(p) = O((log p)γ ) in the theorem
is used purely for technical reasons, and we believe that it is
not essentially needed and can be weakened. This condition is
not stringent when p = exp(nα), and it becomes restrictive if
p = O(nα).

Similar to the fixed δ case, we also consider support recovery
with the estimator �̂�(δ̂).

Proposition 2. Suppose that the conditions in Theorem 5
hold. For �̂�(δ̂), we have

FPR = OP(s0(p)/p) → 0.

Moreover, because δ̂ ≤ 4, we have TPR = 1 with probability
tending to 1 if the lower bound in (19) holds, with 2+δ replaced
by 6.

5. NUMERICAL RESULTS

The adaptive thresholding procedure presented in Section 2
is easy to implement. In this section we study the numerical
performance of the proposed adaptive thresholding estimator
�̂�(δ) using Monte Carlo simulations. We consider both meth-
ods for choosing the regularization parameter δ and compare
their performance with that of universal thresholding estima-
tors. We illustrate the adaptive thresholding estimator in an
analysis on a dataset from a small round blue-cell tumor mi-
croarray experiment.

5.1 Simulation

Two types of sparse covariance matrices are considered in
the simulations to investigate the numerical properties of the
adaptive thresholding estimator �̂�(δ):

• Model 1 (banded matrix with ordering). �0 = diag(A1,

A2), where A1 = (σij)1≤i,j≤p/2, σij = (1 − |i−j|
10 )+, A2 =

4Ip/2×p/2. �0 is a two-block diagonal matrix, A1 is a band-
ed and sparse covariance matrix, and A2 is a diagonal ma-
trix with 4 along the diagonal.

• Model 2 (sparse matrix without ordering). �0 = diag(A1,
A2), where A2 = 4Ip/2×p/2, A1 = B + εIp/2×p/2, B =
(bij)p/2×p/2 with independent bij = unif(0.3,0.8)×Ber(1,

0.2). Here unif(0.3,0.8) is a random variable taking value
uniformly in [0.3,0.8]; Ber(1,0.2) is a Bernoulli random
variable that takes value 1 with probability 0.2 and value 0
with probability 0.8, and ε = max(−λmin(B),0) + 0.01 to
ensure that A1 is positive definite.

Under each model, n = 100 iid p-variate random vectors
are generated from the normal distribution with mean 0 and
covariance matrix �0, for p = 30,100,200. In each setting,
100 replications are used. We compare the numerical perfor-
mance between the adaptive thresholding estimators �̂�(δ̂) and
�̂�

2 ≡ �̂�(2) and with the universal thresholding estimator �̂g

of Rothman, Levina, and Zhu (2009). Here δ̂ is selected by
fivefold CV in Section 4, and �̂�

2 is the adaptive thresholding
estimator with fixed δ = 2. The thresholding level λn in �̂g

is selected by the fivefold CV method of Bickel and Levina
(2008). For each procedure, we consider two types of thresh-
olding functions, the hard thresholding and the adaptive lasso
thresholding sλ(z) = x(1 − |λ/x|η) with η = 4. The losses are
measured by three matrix norms: the spectral norm, the ma-
trix �1 norm, and the Frobenius norm. Tables 1 and 2 report
the means and standard errors of these losses. We also car-
ried out simulations with the SCAD thresholding function for
both universal thresholding and adaptive thresholding. The phe-
nomenon is very similar. The SCAD adaptive thresholding also
outperforms the SCAD universal thresholding. For reasons of
space, we do not report these results here.

Table 1. Comparison of average matrix losses for Model 1 over 100 replications. The standard errors
are given in the parentheses

Adaptive lasso Hard

p �̂g �̂�(δ̂) �̂�
2 �̂g �̂�(δ̂) �̂�

2

Operator norm
30 3.53 (0.13) 1.72 (0.05) 2.39 (0.07) 3.50 (0.14) 1.77 (0.05) 1.77 (0.04)

100 7.94 (0.11) 2.72 (0.05) 4.68 (0.06) 8.64 (0.07) 2.57 (0.05) 3.04 (0.05)
200 8.95 (0.004) 3.23 (0.05) 5.70 (0.05) 8.95 (0.004) 3.02 (0.05) 3.77 (0.05)

Matrix �1 norm
30 5.29 (0.15) 2.57 (0.08) 3.34 (0.09) 5.71 (0.15) 2.60 (0.09) 2.70 (0.06)

100 9.03 (0.05) 4.15 (0.07) 6.39 (0.09) 9.24 (0.03) 4.17 (0.07) 4.87 (0.09)
200 9.35 (0.01) 4.90 (0.07) 7.64 (0.07) 9.35 (0.01) 4.89 (0.07) 5.97 (0.09)

Frobenius norm
30 5.97 (0.10) 3.15 (0.05) 3.68 (0.05) 6.58 (0.09) 3.29 (0.05) 3.29 (0.04)

100 15.93 (0.12) 6.57 (0.05) 8.92 (0.06) 16.88 (0.03) 6.79 (0.06) 7.53 (0.05)
200 24.23 (0.01) 9.62 (0.05) 14.20 (0.07) 24.24 (0.01) 9.97 (0.06) 11.68 (0.05)
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Table 2. Comparison of average matrix losses for Model 2 over 100 replications. The standard errors
are given in the parentheses

Adaptive lasso Hard

p �̂g �̂�(δ̂) �̂�
2 �̂g �̂�(δ̂) �̂�

2

Operator norm
30 1.48 (0.02) 1.24 (0.03) 1.19 (0.03) 1.50 (0.02) 1.25 (0.03) 1.21 (0.03)

100 5.31 (0.01) 2.82 (0.05) 4.71 (0.03) 5.31 (0.01) 2.69 (0.05) 3.97 (0.04)

200 10.74 (0.01) 6.78 (0.08) 10.52 (0.02) 10.74 (0.01) 6.58 (0.10) 10.04 (0.03)

Matrix �1 norm
30 1.70 (0.03) 1.33 (0.04) 1.22 (0.03) 1.70 (0.02) 1.32 (0.04) 1.24 (0.03)

100 6.16 (0.01) 4.10 (0.05) 5.52 (0.03) 6.16 (0.01) 4.20 (0.06) 5.22 (0.03)

200 12.70 (0.01) 9.81 (0.08) 12.31 (0.04) 12.70 (0.01) 10.06 (0.08) 12.06 (0.04)

Frobenius norm
30 4.08 (0.03) 2.52 (0.04) 2.57 (0.04) 4.10 (0.03) 2.50 (0.04) 2.45 (0.04)

100 12.77 (0.01) 7.57 (0.05) 10.96 (0.04) 12.78 (0.02) 8.07 (0.06) 10.00 (0.05)

200 25.51 (0.01) 16.94 (0.07) 24.67 (0.03) 25.52 (0.01) 18.69 (0.07) 24.05 (0.03)

Under models 1 and 2, both adaptive thresholding estimators
�̂�(δ̂) and �̂�

2 uniformly outperform the universal threshold-
ing rule �̂g significantly, regardless of the thresholding function
or loss function used. Between �̂�(δ̂) and �̂�

2, �̂�(δ̂) performs
better than �̂�

2 in general. Between the two thresholding func-
tions, the hard thresholding rule outperforms the adaptive lasso
thresholding rule for �̂�

2, whereas the difference is not signif-
icant for �̂�(δ̂). For both models, the hard and adaptive lasso
universal thresholding rules behave very similarly. They both
tend to “overthreshold” and remove many nonzero off-diagonal
entries of the covariance matrices.

For support recovery, again both �̂�(δ̂) and �̂�
2 outper-

form �̂g. The values of TPR and FPR based on the off-diagonal
entries are reported in Tables 3 and 4. For model 1, �̂g tends
to estimate many nonzero off-diagonal entries by 0 when p is
large. To better illustrate the recovery performance elementwise
of the two models, heat maps of the nonzeros identified out of
100 replications when p = 60 are shown in Figures 1 and 2.
These heat maps suggest that the sparsity patterns recovered by
�̂�(δ̂) and �̂�

2 have significantly closer resemblance to the true
model than �̂g.

5.2 Correlation Analysis on Real Data

We now apply the adaptive thresholding estimator �̂�(δ) to
a dataset from a small round blue-cell tumor (SRBC) microar-

Table 3. Comparison of support recovery for Model 1 over
100 replications

Adaptive lasso Hard

p �̂g �̂�(δ̂) �̂�
2 �̂g �̂�(δ̂) �̂�

2

30 TPR 0.57 0.84 0.72 0.46 0.79 0.72
FPR 0.07 0.01 0.00 0.05 0.003 0.00

100 TPR 0.15 0.76 0.57 0.01 0.69 0.57
FPR 0.01 0.01 0.00 0.00 0.00 0.00

200 TPR 0.00 0.73 0.51 0.00 0.65 0.51
FPR 0.00 0.00 0.00 0.00 0.00 0.00

ray experiment (Khan et al. 2001) and compare the ability of
support recovery with that of the universal thresholding estima-
tor �̂g. We do not consider the estimator �̂�

2 here, because the
simulation results in Section 5.1 show that �̂�(δ̂) outperforms
�̂�

2 when the sample size is not large. The SRBC dataset was
analyzed by Rothman, Levina and Zhu (2009), who considered
the universal thresholding rules. To make the results compara-
ble, we follow the same steps as done by Rothman, Levina and
Zhu (2009).

The SRBC dataset contains 63 training tissue samples, with
2308 gene expression values recorded for each sample. The
original dataset had 6567 genes and was reduced to 2308 genes
after an initial filtering (see Khan et al. 2001). The 63 tissue
samples contain four types of tumors (23 EWS, 8 BL-NHL,
12 NB, and 20 RMS). As done by Rothman, Levina, and Zhu
(2009), we first ranked the genes by the amount of discrimina-
tive information based on the F-statistic,

F = 1

k − 1

k∑
m=1

nm(x̄m − x̄)2
/(

1

n − k

k∑
m=1

(nm − 1)σ̂ 2
m

)
,

where n = 63 is the sample size, k = 4 is the number of classes,
nm, 1 ≤ m ≤ 4 are the sample sizes of the four types of tumors,
x̄m and σ̂m are the sample mean and sample variance of the
class m, and x̄ is the overall sample mean. Based on the F val-
ues, we chose the top 40 and bottom 160 genes. We also ordered

Table 4. Comparison of support recovery for Model 2 over
100 replications

Adaptive lasso Hard

p �̂g �̂�(δ̂) �̂�
2 �̂g �̂�(δ̂) �̂�

2

30 TPR 0.02 0.95 0.88 0.00 0.91 0.88
FPR 0.00 0.01 0.00 0.00 0.00 0.00

100 TPR 0.00 0.80 0.33 0.00 0.66 0.33
FPR 0.00 0.01 0.00 0.00 0.00 0.00

200 TPR 0.00 0.68 0.09 0.00 0.49 0.09
FPR 0.00 0.01 0.00 0.00 0.00 0.00
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Figure 1. Heat maps of the frequency of the 0s identified for each entry of the covariance matrix (when p = 60) out of 100 replications. White
indicates 100 0s identified out of 100 runs; black, 0/100.

the first 40 genes according to the ordering of Rothman, Lev-
ina, and Zhu (2009). Based on the 200 genes, we considered the
performance of the two estimators �̂�(δ̂) and �̂g. We selected
the tuning parameters δ̂ and λn by fivefold CV. To this end, we
needed to divide the 63 samples into five groups of nearly equal
size. Because there are four types of tumors in the samples, we
let the proportions of the four types of tumors in each group
be nearly equal, so that each fold was a good representative of
the whole. We also used threefold CV in this way and obtained
similar results.

Figure 3 plots the heat maps of �̂�(δ̂) with hard threshold-
ing [�̂�(δ̂) Hard], �̂g with hard thresholding (�̂g Hard), �̂�(δ̂)

with adaptive lasso thresholding [�̂�(δ̂) AL], �̂g with adap-
tive lasso thresholding (�̂g AL). �̂g AL and �̂g Hard result in
very sparse estimators, with 97.88% zero elements in off di-
agonal positions. The estimator �̂�(δ̂) AL is the least sparse
with 69.78% 0s, whereas �̂�(δ̂) hard has 83.11% 0s. The over-
thresholding phenomenon in the real data analysis is consistent
with that observed in the simulations. The universal threshold-
ing rule removes many nonzero off diagonal entries and results
in an oversparse estimate, whereas adaptive thresholding with
different individual levels results in a clean but more informa-
tive estimate of the sparsity structure.

Figure 2. Heat maps of the frequency of the 0s identified for each entry of the covariance matrix (when p = 60) out of 100 replications. White
indicates 100 0s identified out of 100 runs; black, 0/100.



680 Journal of the American Statistical Association, June 2011

Figure 3. Heatmaps of the estimated supports.

6. DISCUSSION

This article introduces an adaptive entry-dependent thresh-
olding procedure for estimating sparse covariance matrices.
Our proposed estimator �̂�(δ) = (σ̂ �

ij) demonstrates excellent
performance both theoretically and numerically. In particular,
�̂�(δ) attains the optimal rate of convergence over U �

q given
in (7), whereas universal thresholding estimators are subopti-
mal. The main reason that universal thresholding does not per-
form well is that the sample covariances can have a wide range
of variability. A simple and natural way to deal with this het-
eroscedasticity is to first estimate the correlation matrix R0 and
then renormalize by the sample variances to obtain an estimate
of the covariance matrix. Here we discuss two approaches based
on this idea.

Denote the sample correlation matrix by R̂ = (r̂ij)1≤i,j≤p with
r̂i,j = σ̂ij/

√
σ̂iiσ̂jj. An estimate of the correlation matrix R0 can

be obtained by thresholding r̂ij. Define the universal threshold-
ing estimator of the correlation matrix by R̂(λn) = (r̂thr

ij )p×p
with

r̂thr
ij = r̂ijI{|r̂ij| ≥ λn}

and the corresponding estimator of the covariance matrix by
�̂R = D1/2

n R̂(λn)D
1/2
n , where Dn = diag(�n). It is easily seen

that a good choice of the threshold λn is λn = C
√

(log p)/n for
some constant C > 0. Choosing C is difficult, however, because
the choice depends on the unknown underlying distribution. As-
suming that the constant C is chosen sufficiently large, it can be
shown that the resulting estimator �̂R attains the same minimax
rate of convergence. However, the estimator �̂R is less efficient
than �̂�(δ) for support recovery. In fact, �̂R is unable to recover
the support of �0 exactly for a class of non-Gaussian distribu-
tions of X. Denote by V (γ, δ,K1) the class of distributions F of

X satisfying the conditions of Theorem 2. Then it can be shown
that for any γ > 0, δ ≥ 2, and some K1 = K1(γ ) > 0,

inf
λn

sup
F∈V (γ,δ,K1)

P(supp(�̂R) �= supp(�0)) → 1. (23)

The sample correlation coefficients r̂ij are not homoscedas-
tic, although its range of variability is smaller than that of sam-
ple covariances. This in fact is the main reason for the negative
result on support recovery given in Equation (23). A natural
approach to dealing with the heteroscedasticity of the sample
correlation coefficients is to first stabilize the variance by us-
ing Fisher’s z-transformation, then threshold, and finally obtain
the estimator by inverse transformation. Applying Fisher’s z-
transformation to each correlation coefficient yields

Ẑij = 1

2
ln

1 + r̂ij

1 − r̂ij
.

When X is multivariate normal, it is well known that Ẑij is
asymptotically normal with mean (1/2) ln((1 + rij)/(1 − rij))

and variance 1/(n−3). The behavior of Ẑij in the non-Gaussian
case is more complicated. In general, the asymptotic variance
of Ẑij depends on EX2

i X2
j even when rij = 0 (see Hawkins

1989). Similar to the method of thresholding the sample cor-
relation coefficients discussed earlier, universally thresholding
(Ẑij)p×p is unable to recover the support of �0 exactly for
a class of non-Gaussian distributions of X satisfying the con-
ditions in Theorem 2.

In conclusion, the two natural approaches based on the sam-
ple correlation matrix discussed above are not as efficient as
the entry-dependent thresholding method that we proposed in
Section 2. For reasons of space, we omit the proofs of the re-
sults stated in this section. We will explore these issues in detail
elsewhere.
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7. PROOFS

We begin by stating a few technical lemmas that are essential
for the proofs of the main results. The first lemma is an expo-
nential inequality on the partial sums of independent random
variables.

Lemma 1. Let ξ1, . . . , ξn be independent random variables
with mean 0. Suppose that there exists some η > 0 and B̄n such
that

∑n
k=1 Eξ2

k eη|ξk| ≤ B̄2
n. Then for 0 < x ≤ B̄n,

P

(
n∑

k=1

ξk ≥ CηB̄nx

)
≤ exp(−x2), (24)

where Cη = η + η−1.

Proof. By the inequality |es − 1 − s| ≤ s2es max(s,0), we have,
for any t ≥ 0,

P

(
n∑

k=1

ξk ≥ CηB̄nx

)
≤ exp(−tCηB̄nx)

n∏
k=1

E exp(tξk)

≤ exp(−tCηB̄nx)
n∏

k=1

(
1 + t2Eξ2

k et|ξk|)

≤ exp

(
−tCηB̄nx +

n∑
k=1

t2Eξ2
k et|ξk|

)
.

Take t = η(x/B̄n). It follows that

P

(
n∑

k=1

ξk ≥ CηB̄nx

)
≤ exp(−ηCηx2 + η2x2) = exp(−x2),

which completes the proof.

The second and third lemmas are on the asymptotic behaviors
of the largest entry of the sample covariance matrix and θ̂ij. The
proof of Lemma 2 is given in the supplementary material.

Lemma 2. (i) Under (C1), we have, for any δ ≥ 2, ε > 0, and
M > 0,

P
(

max
ij

|σ̂ij − σ 0
ij |/θ̂1/2

ij ≥ δ
√

log p/n
)

= O
(
(log p)−1/2p−δ+2), (25)

P
(

max
ij

|θ̂ij − θij|/σ 0
ii σ

0
jj ≥ ε

)
= O(p−M), (26)

and

P
(

max
i

|X̄i|/(σ 0
ii )

1/2 ≥ C
√

log p/n
)

= O(p−M) (27)

for some C > 0.
(ii) Under (C2), (25)–(27) still hold if we replace

O((log p)−1/2p−δ+2) and O(p−M) with O((log p)−1/2p−δ+2 +
n−ε/8) and O(n−ε/8) respectively.

Lemma 3. Let X = (X1, . . . ,Xp)
T be a mean-0 random vec-

tor. Suppose that Cov(X) = Ip×p, (C3) holds and p → ∞.
Then, under (C1) or (C2), we have, for any δ > 0,

P

(
max

1≤i<j≤p
(nθij)

−1

∣∣∣∣∣
n∑

k=1

XkiXkj

∣∣∣∣∣
2

≥ (4 − δ) log p

)
→ 1.

Proof. We arrange the two dimensional indices {(i, j) : 1 ≤
i < j ≤ p} in any order and set them as {(im, jm) : 1 ≤ m ≤ p(p −
1)/2 =: L}. Let

Ykm = θ
−1/2
ij XkimXkjm , Sm = n−1/2

n∑
k=1

Ykm,

Am = {|Sm| ≥ √
(4 − δ) log p}, 1 ≤ m ≤ L.

Define Ȳkm = YkmI{|Ykm| ≤ δn

√
n/(log p)3} and Ŷkm = Ȳkm −

EȲkm, where δn → 0 sufficiently slow. Then, by (C1) or (C2)
when n is large, we have

P

(
max

1≤i<j≤p
(nθij)

−1

∣∣∣∣∣
n∑

k=1

XkiXkj

∣∣∣∣∣
2

≥ (4 − δ) log p

)

≥ P

(
max

1≤m≤L
n−1

∣∣∣∣∣
n∑

k=1

Ŷkm

∣∣∣∣∣
2

≥ (4 − 2δ) log p

)

− O
(
p−M + n−ε/8)

≥ P

(
max

1≤m≤L
n−1

∣∣∣∣∣
n∑

k=1

Ŷkm

∣∣∣∣∣
2

≥ 4 log p − log log p + x

)

− O
(
p−M + n−ε/8) (28)

for any M > 0 and x < 0. Set yn = √
4 log p − log log p + x and

Âm =
{

n−1/2

∣∣∣∣∣
n∑

k=1

Ŷkm

∣∣∣∣∣ ≥ yn

}
.

Then, by Bonferroni’s inequality, for any fixed l, we have

P

(
max

1≤m≤L
n−1

∣∣∣∣∣
n∑

k=1

Ŷkm

∣∣∣∣∣
2

≥ y2
n

)

≥
2l∑

d=1

(−1)d−1
∑

1≤i1<···<id≤L

P

(
d⋂

j=1

Âij

)
. (29)

Write

Ŷk = (
Ŷki1, . . . , Ŷkid

)T
, 1 ≤ k ≤ n.

By theorem 1 of Zaitsev (1987), we have

P
(|N̂|d,∞ ≥ yn − δ1/2

n (log p)−1/2) + c1 exp
(−c2δ

−1/2
n log p

)
≥ P

(∣∣∣∣∣n−1/2
n∑

k=1

Ŷk

∣∣∣∣∣
d,∞

≥ yn

)

≥ P
(|N̂|d,∞ ≥ yn + δ1/2

n (log p)−1/2)
− c1 exp

(−c2δ
−1/2
n log p

)
, (30)

where c1 and c2 are positive constant depending only on d, | ·
|d,∞ means |a|d,∞ = min1≤i≤d |ai| for a = (a1, . . . ,ad)

T , and
N̂ is a d-dimensional normal random vector with mean 0 and
covariance matrix Cov(Ŷk). Set

B̂±
i1,...,id

= {|N̂|d,∞ ≥ yn ∓ δ1/2
n (log p)−1/2}.
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We can check that ‖Cov(N̂k) − Id×d‖2 = O(1/(log p)8). Let Z
be a standard d-dimensional normal vector. Then we have

P
(
B̂+

i1,...,id

) ≤ P
(|Z|d,∞ ≥ yn − 2δ1/2

n (log p)−1/2)
+ P

(‖Cov(N̂k) − Id×d‖2|Z|2 ≥ δ1/2
n (log p)−1/2)

= (1 + o(1))

(
1√
2π

p−2 exp(−x/2)

)d

+ O
(
exp(−C(log p)2)

)
. (31)

Similarly, we can get

P
(
B̂−

i1,...,id

) ≥ (1 − o(1))

(
1√
2π

p−2 exp(−x/2)

)d

− O
(
exp(−C(log p)2)

)
. (32)

Submitting (30)–(32) into (29), we can get

lim inf
n→∞ P

(
max

1≤m≤L
n−1

∣∣∣∣∣
n∑

k=1

Ŷkm

∣∣∣∣∣
2

≥ y2
n

)

≥
2l∑

d=1

(−1)d−1

(
1√
8π

exp(−x/2)

)d/
d!

→ 1 − exp

(
− 1√

8π
exp(−x/2)

)
(33)

as l → ∞. Letting x → −∞, we prove the lemma by (28) and
(33).

Proof of Theorem 1. By (C1) or (C2), we have θij ≤
CK1σ

0
ii σ

0
jj . In the event that {|σ̂ij − σ 0

ij | ≤ λij for all i, j} ∩ {θ̂ij ≤
2θij for all i, j}, we have, by conditions (i)–(iii) on sλ(z), that

p∑
j=1

∣∣sλij(σ̂ij) − σ 0
ij

∣∣

=
p∑

j=1

∣∣sλij(σ̂ij) − σ 0
ij

∣∣I{|σ̂ij| ≥ λij} +
p∑

j=1

|σ 0
ij |I{|σ̂ij| < λij}

≤ 2
p∑

j=1

λijI{|σ 0
ij | ≥ λij}

+
p∑

j=1

|sλij(σ̂ij) − σ 0
ij |I{|σ̂ij| ≥ λij, |σ 0

ij | < λij}

+
p∑

j=1

|σ 0
ij |I{|σ 0

ij | < 2λij}

≤ 2
p∑

j=1

λ
1−q
ij |σ 0

ij |q + (1 + c)
p∑

j=1

|σ 0
ij |I{|σ 0

ij | < λij}

+
p∑

j=1

|σ 0
ij |I{|σ 0

ij | < 2λij}

≤ Cq,c

p∑
j=1

λ
1−q
ij |σ 0

ij |q

≤ CK1,δ,c,qs0(p)

(
log p

n

)(1−q)/2

.

The proof follows from Lemma 2 and the fact ‖A‖2 ≤ ‖A‖L1

for any symmetric matrix.

Proof of Theorems 2 and 3. Theorem 2 follows immediately
from Lemma 2. We now prove Theorem 3. For each 1 ≤ i ≤ p,
let A1 be the largest subset of {1, . . . ,p} such that Xi is uncor-
related with {Xk, k ∈ A1}. Let i1 = arg min{|j − i| : j ∈ A1}. We
then have |i1 − i| ≤ s. Also, Card(A1) ≥ p − s. Similarly, let
Al be the largest subset of Al−1 such that Xil−1 is uncorrelated
with {Xk, k ∈ Al} and il = arg min{|j − il−1| : j ∈ Al}. We can see
that |il − i| ≤ ls and Card(Al) ≥ Card(Al−1) − s ≥ p − sl. Take
l = [pτ2] with τ 2/4 < τ2 < min(τ 2/3, τ1). Then Xi0 , . . . ,Xil are
pairwise uncorrelated random variables, where we set i0 = i.
Clearly, i1, . . . , il ∈ Bi = {j :σ 0

ij = 0; j �= i}. Without loss of gen-
erality, we assume that X1, . . . ,Xl are pairwise uncorrelated.
Note that |sλ(z)| ≥ |z| − λ. It suffices to show that for some
ε0 > 0,

P

(
max

1≤i<j≤l
{λ−1

nij |σ̂ij|} > 1 + ε0

)
→ 1. (34)

Clearly, we can assume EX = 0 and Var(Xi) = 1 for 1 ≤ i ≤ l.
By Lemma 2 and (14), we have minij λnij > 0 with probability
tending to 1. By Lemma 2 it suffices to show that for any 0 <

τ < 2,

An := P

(
max

1≤i<j≤l

{
(nθij)

−1/2

∣∣∣∣∣
n∑

k=1

XkiXkj

∣∣∣∣∣
}

≥ τ
√

log p

)

→ 1. (35)

Because τ 2 log p ≤ (4 − δ) log l for 0 < δ < 4 − τ 2/τ2 and
large n, (35) follows from Lemma 3.

Lemmas 4 and 5, proved in the supplementary material, are
needed to prove Theorems 4 and 5.

Lemma 4. Suppose that X ∼ N(μ,�0) with �0 ∈ Ū0. Let
s0(p) = O((log p)γ ) for some γ < 1 and nξ ≤ p ≤ exp(o(n1/3))

for some ξ > 0. Let δ >
√

2. Then there are at most O(s0(p))

nonzero elements in each row of �̂�(δ). Furthermore,

inf
�0∈Ū0

P
(

‖�̂�(δ) − �0‖2

≤ Cγ,δ,M max
i

σ 0
ii s0(p)

(
log p

n

)1/2)
≥ 1 − O(p−M) (36)

for any M > 0, where Cγ,δ,M is a constant depending only on
γ, δ,M, and

sup
�0∈U0

E‖�̂�(δ) − �0‖2
2 ≤ Cs2

0(p)
log p

n
(37)

for some constant C > 0.

Lemma 5. Let λij = τ

√
θ̂ij log p

n with 0 < τ <
√

2. Under the
conditions of Lemma 4,

P
(

min
i

∑
j∈Bi

I{|σ̂ij| ≥ λnij(τ )} ≥ p2ε0

)
→ 1 (38)
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with any ε0 < (1 − τ 2/2)/2, where Bi = {j :σ 0
ij = 0; j �= i}.

Thus, for some constant C > 0,

inf
�0∈Ū0

P
(

‖�̂�(τ ) − �0‖2 ≥ C min
i

σ 0
ii p

ε0/2s0(p)

(
log p

n

)1/2)

→ 1.

Proof of Theorem 4. To simplify notation, we write s0
for s0(p). We construct a matrix �0 ∈ U �

q . Let s1 = [(s0 −
1)1−q(log p/n)−q/2]+1 and (X1, . . . ,Xs1), Xs1+1, . . . ,Xp be in-
dependent. Let σ 0

ii = s0 for all i > s1, σ 0
ii = 1 for 1 ≤ i ≤ s1, and

σ 0
ij = 4−1s0

√
log p/n for 1 ≤ i �= j ≤ s1. Note that σ 0

ij = 0 for
i �= j > s1. Because s0 < 4

√
n/ log p, �0 is a positive definite

covariance matrix belonging to U �
q . Set Mn = (σ 0

ij )1≤i,j≤s1 . We

first suppose that λn ≤ 3−1σ 0
pp

√
2 log p/n. Lemma 5 yields

P

( p∑
j=s1+1

I

{
|σ̂pj| ≥

√
2

2
σ 0

pp

√
log p

n

}
≥ p2ε0

)
→ 1,

with any ε0 < 3/8. Take ε0 = 7/20, and note that p1/4 ≥ s0,
p1/10 ≥ nq/2. By the inequality |sλ(z)| ≥ z − λ,

inf
λn≤3−1σ 0

pp
√

2 log p/n
sup

U �
q

P
(

‖�̂g − �0‖2

>

√
2

6
s2

0(p)

(
log p

n

)(1−q)/2)
→ 1. (39)

We next consider the case λn > 3−1σ 0
pp

√
2 log p/n. We have

‖�̂g − �0‖2 ≥ ‖M̂n − Mn‖2,

where M̂n = (σ̂
g
ij )1≤i,j≤s1 . As in Lemma 2, for any γ > 0, we

can get

P
(

max
1≤i,j≤s1

|σ̂ij − σ 0
ij | ≥

√
2γ log p/n

)
≤ Cs2

1(log p)−1/2p−γ .

Taking γ = 1, we have, with probability tending to 1,
max1<i<j≤s1 |σ̂ij| ≤ (4−1s0 + √

2)
√

log p/n, which implies that
σ̂

g
ij = 0 for 1 ≤ i �= j ≤ s1. Thus, with probability tending to 1,

‖M̂n − Mn‖2 ≥ (4−1 − √
2s−1

0 )s1s0

√
log p

n

≥ 3

64
s2−q

0

(
log p

n

)(1−q)/2

.

This and (39) together imply (21).

Proof of Theorem 5 and Proposition 2. For brevity, we con-
sider only the case where H = 1. The proof for general H is
similar. We first show that for any ε > 0,

P(δ̂ ≥ √
2 − ε) → 1. (40)

Because the random split is independent with the sample
{X1, . . . ,Xn}, we can assume that the two samples are {X1, . . . ,

Xn1} and {Xn1+1, . . . ,Xn}. Let �̂2 be the sample covariance
matrix from {Xn1+1, . . . ,Xn}, and let �̂�

1(δ) be defined as in
(11) from {X1, . . . ,Xn1}. Define

δ̂o = ĵo/N, where ĵo = arg min0≤j≤4N ‖�̂�
1(j/N) − �0‖2

F.

Set an = p−1‖�̂�
1(δ̂) − �0‖2

F and rn = p−1‖�̂�
1(δ̂o) − �0‖2

F .
By the proof of Theorem 1, we have P(‖�̂�

1(2) − �0‖L1 ≤
C1s0(p)(log p/n)1/2) → 1 for some C1 > 0. Using the inequal-
ity p−1‖A‖2

F ≤ |A|∞‖A‖L1 for any p × p symmetric matrix A
and the definition of δ̂o, we have P(rn ≤ C2s0(p) log p/n) → 1
for some C2 > 0. Note that

E|(V, �̂2 − �0)|2 ≤ Cn−1

for any p × 1 vector V with ‖V‖F = 1. By the proof of theo-
rem 3 of Bickel and Levina (2008) and the assumption that N is
fixed, we can see that

an ≤ OP

(
1

n1/2

)
a1/2

n + OP

(
1

n1/2

)
r1/2

n + rn. (41)

Thus, for some C3 > 0,

P(an ≤ C3s0(p) log p/n) → 1. (42)

Note that by applying Lemma 5 to the samples {X1, . . . ,Xn1},
P(an ≤ C3s0(p) log p/n, δ̂ <

√
2 − ε) = o(1).

This, together with (42), shows that

P(δ̂ <
√

2 − ε) ≤ P(δ̂ <
√

2 − ε,an ≤ C3s0(p) log p/n) + o(1)

= o(1),

and thus (40) holds. Because N is fixed, we have |σ̂ −√
2| ≥ ε0

for some fixed ε0 > 0 that depends on N. This, together with
(40), implies that

P(δ̂ ≥ √
2 + ε) → 1 (43)

for some ε > 0. By Lemma 4, we see that with probability tend-
ing to 1, for each i, there are at most O(s0(p)) nonzero num-
bers of {|sλij(σ̂ij)|; j ∈ Bi}, and by Lemma 2, these are of order

O(maxi σ
0
ii
√

log p/n). Let �i = {j :σ 0
ij �= 0} and �̂i = {j : σ̂ �

ij �=
0}. Then, by the conditions on sλ(z), we have

‖�̂�(δ̂) − �0‖L1 ≤ max
i

∑
j∈�i∪�̂i

|sλij(σ̂ij) − σ 0
ij |

≤ C max
i

σ 0
ii s0(p)

(
log p

n

)1/2

(44)

with probability tending to 1. The proof of Theorem 5 is com-
pleted. Finally, Proposition 2 is proved by (43) and Lemmas 2
and 4.

SUPPLEMENTARY MATERIALS

Additional proofs: A supplement to the main article contains
additional technical arguments including the proofs of Lem-
mas 2, 4, and 5. (Supplement.pdf)

[Received September 2010. Revised January 2011.]
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