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Abstract

We consider a block thresholding and vaguelet–wavelet approach to certain statistical lin-
ear inverse problems. Based on an oracle inequality, an adaptive block thresholding estimator
for linear inverse problems is proposed and the asymptotic properties of the estimator are in-
vestigated. It is shown that the estimator enjoys a higher degree of adaptivity than the standard
term-by-term thresholding methods; it attains the exact optimal rates of convergence over a range
of Besov classes. The problem of estimating a derivative is considered in more detail as a test for
the general estimation procedure. We show that the derivative estimator is spatially adaptive; it
automatically adapts to the local smoothness of the function and attains the local adaptive min-
imax rate for estimating a derivative at a point.
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1. Introduction

Statistical linear inverse problems pertain to situations where one is interested in
estimating an unknown object f(t) based on noisy observations on (Kf)(t), where
K is a linear operator. Such problems arise in many scienti:c settings, from medical
imaging to astronomy. Suppose we observe

dY (t) = (Kf)(t) dt + dW (t); (1)

where W (t) is Brownian motion. Examples of the operator K in (1) include integration,
fractional integration, convolution, and Radon transform. We are interested in estimating
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the function f from the data Y and we measure the estimation accuracy by the mean
integrated square error

R(f̂; f) = E‖f̂ − f‖22: (2)

Traditional methods usually use regularization and the singular value decomposition
(SVD). See, e.g., Tikhonov and Arsenin (1977), O’Sullivan (1986), and Johnstone and
Silverman (1990). The SVD method expands the function f in a basis formed by the
eigenfunctions of the self-adjoint operator K∗K where K∗ is the adjoint of K . When
noisy data about (Kf)(t) are observed, the series is truncated and the coeEcients
of the eigenfunctions in the expansion are estimated from the data. Johnstone and
Silverman (1990) showed that a properly tuned SVD estimator attains the minimax
rate of convergence over some homogeneous function classes. The SVD method has
certain limitations, however. The basis functions are completely derived from the op-
erator K , not from the object of interest f. When the function f is of inhomogeneous
smoothness, the representation of f by the eigenfunctions of K∗K is often ineEcient
and the resulting estimator does not perform well.
Wavelet bases oFer eEcient representations for functions in a wide range of function

spaces and wavelet methods have demonstrated considerable success in nonparametric
function estimation in terms of spatial adaptivity and asymptotic optimality. A properly
chosen wavelet basis can simultaneously quasi-diagonalize both the operator K and the
functions in a range of function classes. Donoho (1995) proposed the wavelet–vaguelet
decomposition (WVD) method for linear inverse problems which works by expanding
the function f in a wavelet series and producing a corresponding vaguelet series for
Kf, and then estimating the wavelet coeEcients by thresholding the empirical vaguelet
coeEcients. Donoho (1995) showed that the estimator with optimal threshold attains
the minimax rate of convergence. Johnstone (1999) proposed a speci:c thresholding
rule and showed that the resulting estimator is adaptive and rate-optimal.
Abramovich and Silverman (1998) took another wavelet approach. They introduced

the vaguelet–wavelet decomposition (VWD) method which :rst expands Kf in a
wavelet series, then thresholds the noisy empirical wavelet coeEcients and :nally maps
back by K−1 to obtain an estimator of f in terms of a vaguelet series. The VWD es-
timator is a method of presmoothing the estimator. Abramovich and Silverman (1998)
used a standard term-by-term thresholding method for estimating the wavelet coeE-
cients of Kf and it is shown that the resulting VWD estimator is within a logarithmic
factor of the minimax risk.
The VWD approach is conceptually attractive. However, the term-by-term thresh-

olding method used in estimating the wavelet coeEcients of Kf has drawbacks. The
diEculty of term-by-term thresholding is caused by the relative inaccuracy in estimat-
ing the individual wavelet coeEcients. As a result, it creates a logarithmic penalty
in the mean squared error. The problem cannot be solved by simply :ne tuning the
universal threshold level.
Cai (1999) considered a local block thresholding rule, based on an oracle inequality,

for wavelet function estimation in the context of nonparametric regression and white
noise model. The estimator thresholds the empirical wavelet coeEcients in groups
rather than individually, making simultaneous decisions to retain or to discard all the
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coeEcients within a block. The aim is to increase estimation accuracy by utilizing
information about neighboring wavelet coeEcients. As shown in Cai (1999) the block
thresholding estimator achieves simultaneously three objectives: adaptivity, spatial adap-
tivity, and computational eEciency. The estimator enjoys a higher degree of adaptivity
than the standard term-by-term thresholding methods. Other block thresholding rules
have been considered by Hall et al. (1999) and Cai and Silverman (2001). In the
present paper, we demonstrate that the approach of block thresholding can be used for
linear inverse problems as well.
We :rst brieHy review the WVD approach of Donoho (1995) and Johnstone (1999)

and the VWD approach of Abramovich and Silverman (1998) in Section 2. After
Section 3.1 in which block thresholding method is introduced, we present in Section
3.2 an estimator for linear inverse problems using the VWD which incorporates the
block thresholding approach in Cai (1999). Here, the wavelet coeEcients of Kf are
divided into blocks and coeEcients within a block are estimated simultaneously. The
threshold is based on the block projection oracle inequality developed in Cai (1999).
The asymptotic properties of the estimator are investigated. We show in Section 4
that the estimator enjoys a high degree of adaptivity. Speci:cally, we prove that the
estimator simultaneously attains the exact optimal rate of convergence over a range
of the Besov classes with p¿ 2 without prior knowledge of the smoothness of the
underlying functions. Over the Besov classes with p¡ 2, the estimator simultaneously
achieves the optimal convergence rate within a logarithmic factor.
We consider in Section 5 the problem of estimating the derivative of a function g as a

test of our estimation procedure. This problem :ts into the framework of (1) by setting
K to be the integration operator. It is an important estimation problem. For example,
in growth studies the derivative of height or weight is important in determining growth
spurts and times at which height or weight are changing rapidly (see Gasser et al.,
1984). We study the local adaptivity of the estimator and the numerical implementation
of the procedure. We show that the estimator is spatially adaptive; it attains the local
adaptive minimax rate for estimating a derivative at a point. The block thresholding
method discussed in the present paper can be extended and generalized in various
ways. Section 6 discusses some variations of the method. All the proofs are contained
in Section 7.

2. WVD and VWD

Wavelet series are generated from dilations and translations of a special function,
called the mother wavelet  :  j;k(t) = 2j=2 (2jt − k). The collection { j;k : j; k ∈Z}
forms an orthonormal basis in L2(R). Wavelets are well localized and oFer eEcient
representations for functions in a wide range of function spaces. See Meyer (1992) for
further details on data compression and localization properties of wavelets. The mother
wavelet can be chosen to be compactly supported. We will always use compactly
supported wavelets in the present paper.
We call a wavelet  r-regular if  has r continuous derivatives and vanishing

moments up to order r, i.e.,
∫
t‘ (t) dt = 0 for ‘ = 0; 1; : : : ; r. For a given mother
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wavelet  there is an associated father wavelet �. The father wavelet is also localized
with

∫
�(t) dt=1 and has the same degree of smoothness as  . Furthermore, the father

wavelet � can be chosen to have vanishing moments,
∫
t‘�(t) dt = 0 for ‘ = 1; : : : ; r.

Such wavelets are called coiHets (see Daubechies, 1992). The dilations and translations
of the father wavelet {�l;k(t)=2l=2�(2lt−k); k ∈Z} together with { j;k : j¿ l; k ∈Z}
form an inhomogeneous orthonormal wavelet basis; see, e.g., Daubechies (1992).
An orthonormal wavelet basis has an associated orthogonal discrete wavelet transform

(DWT) that is norm-preserving and transforms sampled data into the wavelet coeEcient
domain. See Daubechies (1992) and Strang (1992) for more on the wavelets and DWT.
Vaguelets are closely associated with wavelets. Like wavelets, vaguelets are localized

and oscillating; and vaguelets are “almost” orthogonal. Vaguelets are indexed in the
same way as the wavelets. For example, if  is a compactly supported mother wavelet
and is suEciently smooth, then {uj;k(t)=2j=2 ′(2jt−k); j; k ∈Z} constitutes a vaguelet
system. In particular, there exists some constant C ¿ 0 such that∣∣∣∣∣∣

∣∣∣∣∣∣
∑
j; k

aj;kuj;k(t)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

6C‖(aj;k)‖‘2 (3)

for every sequence (aj;k). Such a sequence {uj;k} satisfying (3) is called a Bessel
sequence (see Young, 1976). The readers are referred to Meyer and Coifman (1997,
p. 56) for the formal de:nition of vaguelets. See also Donoho (1995).

2.1. WVD

Donoho (1995) showed that, when the orthonormal wavelet basis ( j;k) is properly
chosen, for a special class of operators K there exist two associated biorthogonal
vaguelet systems (uj;k) and (vj;k) satisfying the following.

1. Quasi-singular value relations

K j;k = rjvj;k ; K∗uj;k = rj j;k (4)

with quasi-singular values (rj), depending on the resolution level j but not the spatial
index k.

2. Biorthogonality relations

〈uj;k ; vl;m〉= �j; l�k;m: (5)

3. Near-orthogonality relations

b‖(aj;k)‖‘26
∣∣∣∣∣∣
∣∣∣∣∣∣
∑
j; k

aj;kuj;k

∣∣∣∣∣∣
∣∣∣∣∣∣
2

6B‖(aj;k)‖‘2 ; (6)

b‖(aj;k)‖‘26
∣∣∣∣∣∣
∣∣∣∣∣∣
∑
j; k

aj;kvj;k

∣∣∣∣∣∣
∣∣∣∣∣∣
2

6B‖(aj;k)‖‘2 (7)

for every sequence (aj;k) where B¿b¿ 0 are some :xed constants.
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When this decomposition exists, the function f can be represented as a wavelet series
and correspondingly expands Kf in a vaguelet series:

f =
∑
j; k

〈f;  j;k〉 j;k ; and Kf =
∑
j; k

〈f;  j;k〉rjvj;k :

The wavelet coeEcients of f can be reproduced from Kf: 〈f;  j;k〉 = 〈Kf; uj;k〉r−1j .
This yields Kf =

∑
j; k〈Kf; uj;k〉vj;k and the following representation for f:

f =
∑
j; k

〈Kf; uj;k〉r−1j  j;k : (8)

It is clear that only special operators K satisfy (4)–(7). For example, the conditions
hold for homogeneous operators, which, satisfy K[f(at)]=a− (Kf)(at) for some con-
stant  , called the index of the operator. Examples of homogeneous operators include
integration, fractional integration and, in the two-dimensional case, the Radon trans-
form. For homogeneous operators with index  ; rj in (4) equals CK2−j where CK is a
constant. Properties (4)–(7) also hold for various convolution operators (see Donoho,
1995; Johnstone, 1999).
Based on representation (8), the problem of estimating f from noisy observations

of Kf is now transformed into the problem of estimating the vaguelet coeEcients
!j;k = 〈Kf; uj;k〉. Suppose we observe Y (t) as in (1). We can form the empirical
vaguelet coeEcients bj;k =

∫
uj;k(t) dY (t) and decompose it as

bj;k = !j;k + "j;k ;

where "j;k =
∫
uj;k(t) dW (t) are the vaguelet coeEcients of a Brownian motion. The

"j;k are normally distributed, but they are not independent since the vaguelets uj;k are
not orthogonal. One can then apply a term-by-term thresholding rule to the empirical
vaguelet coeEcients to obtain an estimate of the true vaguelet coeEcients

!̂j; k = #$(bj;k);

where #$(·) can be either the soft threshold function
#s$(x) = sgn(x)(|x| − $)+

or the hard threshold function

#h$(x) = xI(|x|¿$):

The WVD estimator f̂WVD is given by

f̂WVD =
∑
j; k

!̂j; k r−1j  j;k :

Donoho (1995) showed that, if the threshold $ is optimally chosen level by level,
the WVD estimator attains the minimax rate. However, no speci:c rate-optimal WVD
estimator is provided in the paper.
Johnstone (1999) proposes a thresholding rule for estimating !j;k based on the Stein’s

unbiased risk estimate (SURE). At each resolution level j, the threshold $j is empir-
ically chosen to be the minimizer of the SURE. The resulting SURE estimator is
shown to be adaptive and attains the minimax rate of convergence over a range of
Besov classes.
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2.2. VWD

Abramovich and Silverman (1998) introduced an alternative method, called the
vaguelet–wavelet decomposition (VWD), which expands Kf rather than f in a wavelet
series. The method thresholds the wavelet coeEcients of the observed data Y to obtain
an estimate of the wavelet expansion of Kf and then maps back by K−1 to obtain
an estimate of f in terms of a vaguelet series. The VWD approach can be regarded
as a plug-in estimator or a presmoothing estimator. Here we :rst construct a wavelet
estimator of Kf and then apply K−1 to obtain an estimate f itself. The method is
straightforward and can be formally described as follows.
Assume the existence of constants 'j such that (7) holds for wj;k = K−1 j;k ='j. If

K is homogeneous of index  then 'j is proportional to 2 j. The function f can then
be written as

f =
∑
j; k

〈Kf;  j;k〉'jwj;k :

Now the problem of estimating f based on noisy observation of Kf becomes
the problem of estimating the wavelet coeEcients of Kf. Suppose Y (t) is observed
as in (1). We form the empirical wavelet coeEcients yj;k=

∫
 j;k dY (t) and decompose

it as

yj;k = *j;k + zj;k ; (9)

where *j;k = 〈Kf;  j;k〉 are the true wavelet coeEcients of Kf and zj;k =
∫
 j;k dW (t)

are the wavelet coeEcient of a Brownian motion. Now the noise zj;k are i.i.d. normal
since the wavelets  j;k are orthonormal.
Abramovich and Silverman (1998) apply a term-by-term thresholding rule to estimate

the wavelet coeEcients of Kf and map back by K−1 to yield the resulting VWD
estimator f̂ VWD:

f̂ VWD =
∑
j; k

#$(yj;k)'jwj;k :

With a properly chosen threshold, Abramovich and Silverman (1998) showed that the
estimator is within a logarithmic factor from the minimax risk.
The VWD estimator is numerically stable because wavelet thresholding has been

used. The estimate of Kf is a linear combination of only a small number of wavelets
 j;k . In cases where the K−1 j;k have to be numerically calculated, it is only necessary
to :nd those K−1 j;k that correspond to nonzero coeEcients. See Abramovich and
Silverman (1998) for more details.

3. The block thresholding and VWD approach

The VWD procedure presented in Abramovich and Silverman (1998) is concep-
tually appealing. However, the term-by-term thresholding method used in estimating
the wavelet coeEcients of Kf has drawbacks. The diEculty is mainly caused by the
relative ineEciency in estimating the wavelet coeEcients individually without using
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information about other coeEcients. The mean squared error of the resulting estimator
has a logarithmic penalty.
The estimation accuracy can be improved by using the block thresholding methods.

Block thresholding methods threshold the empirical wavelet coeEcients in groups rather
than individually, making simultaneous decisions to keep or discard all the coeEcients
within a block. These methods increase estimation precision by utilizing information
about neighboring wavelet coeEcients.

3.1. Block thresholding method

In the settings of nonparametric regression and the white noise model, Cai (1999)
introduced a block thresholding estimator, BlockJS, based on the block projection
oracle inequality. It is shown that the estimator achieves simultaneously three goals:
adaptivity, spatial adaptivity, and computational eEciency. The estimator enjoys a
higher degree of adaptivity than the standard term-by-term thresholding methods.
Suppose we observe a noisy sampled function g:

yi = g(i=n) + "zi; i = 1; 2; : : : ; n(=2J );

where the zi are i.i.d. and N (0; 1). We wish to recover the unknown function g based
on the sample. The BlockJS estimator can be described as follows.

1. Transform the data into the wavelet domain via the discrete wavelet transform.
2. At each resolution level j, group the empirical wavelet coeEcients (*̃j :) into disjoint
blocks bj

i of length L= log n. Let $=4:50524 and S2ji =
∑
( j; k)∈b j

i
*̃2j; k . Within each

block bj
i , estimate the coeEcients simultaneously via a shrinkage rule

*̂j; k = (1− $L12=S2ji)+*̃j; k for all (j; k)∈ bj
i :

3. Apply the inverse discrete wavelet transform to the denoised wavelet coeEcients to
yield the estimate of the function.

The block length L = log n is chosen based on the compromise of global and local
adaptivity. The threshold $ = 4:50524 is selected according to a block thresholding
oracle inequality and a minimax criterion. See Cai (1999) for further details.
The block thresholding approach, together with the VWD, can be applied to the

linear inverse problems. We will state in detail the estimation procedure in Section 3.2
below. As shown in Section 4 and Section 5.1, the estimator has some very attractive
properties.

3.2. The estimation procedure

A function g∈L2(R) can be expanded in an inhomogeneous orthonormal wavelet
basis:

g(t) =
∑
k

〈g; �l;k〉�l;k(t) +
∑
j¿l

∑
k

〈g;  j;k〉 j;k(t):
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The terms
∑

k 〈g; �l;k〉�l;k represent the gross structure of the function, and the terms∑
k 〈g;  j;k〉 j;k represent :ner and :ner detail structure of the function g as the reso-

lution level j increases.
Without loss of generality, let us assume that � and  have the same support with

length N . In this and later sections, we are interested in estimating functions supported
in a :xed :nite interval I ⊂ R. We shall chose the gross-structure index l such that
2−l ¡ |I |=(2N ). Since the wavelets � and  are compactly supported and the interval I
is :nite, there are only a :nite number of coeEcients at each resolution level j which
may be nonzero for functions supported in I . Let

hj =min{k: supp( j;k) ∩ I �= ∅} and Hj =max{k: supp( j;k) ∩ I �= ∅}:
It is easy to see that the number of possible nonzero coeEcients at level j is Hj −
hj + 1 ∼ 2j|I | + 2N (see also Donoho, 1995). Then if g is supported in I , we have
the expansion

g(t) =
Hl∑

k=hl

〈g; �l;k〉�l;k(t) +
∑
j¿l

Hj∑
k=hj

〈g;  j;k〉 j;k(t):

Method: We will assume that we have the white noise observations

dY (t) = (Kf)(t) dt +
1√
n
dZ(t); t ∈R; (10)

where Z(t) is a standard Brownian motion and K is a homogeneous operator of index
 . We wish to recover f, a function known to be supported in a :nite interval I ⊂ R.
Our goal is to estimate f with “small” worst case risk supF E‖f̂ − f‖22, where F is
a suitable class of Besov spaces.
We :rst form the empirical wavelet coeEcients of Kf:

yj;k =
∫

�j;k(t) dY (t); hj6 k6Hj; j¿ l (11)

and

ỹ l; k =
∫

�l;k(t) dY (t); hl6 k6Hl: (12)

Then yj;k can be written as

yj;k = *j;k + 1n−1=2zj;k ; (13)

with *j;k = 〈Kf;  j;k〉 and zj;k
i:i:d:∼ N(0; 1), and similarly

ỹ l; k = 4l;k + 1n−1=2z̃l; k ; (14)

with 4l;k = 〈Kf;�j;k〉 and z̃l; k i:i:d: N(0; 1) and independent of zj;k ’s.
Let J = log2 n. At each resolution level j6 J , we group the empirical wavelet

coeEcients {yj;k ; hj6 k6Hj}, into nonoverlapping blocks bj
i of length L= log n:

bj
i = {(j; k) : (i − 1)L+ hj6 k6 iL+ hj − 1}:
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Let Sj; i ≡
∑
( j; k)∈b j

i
y2j; k denote the sum of squared empirical coeEcients in block bj

i .

We then apply a James–Stein type shrinkage rule to each block bj
i ,

*̂j; k = (1− $n−1L12=S2j; i)+yjk for (j; k)∈ bj
i ; (15)

where $ is the root of the equation $− log $− (3 + 4 ) = 0 (see Remark 2 below).
The “estimate” of Kf is given by

K̂f(t) =
Hl∑

k=hl

ỹ l; k�l;k(t) +
J∑

j¿l

Hj∑
k=hj

*̂j; k j;k(t): (16)

Mapping back by K−1 we obtain the estimate of f:

f̂n(t) =
Hl∑

k=hl

ỹ l; k(K−1�l;k)(t) +
J∑

j¿l

Hj∑
k=hj

*̂j; k'jwjk(t): (17)

Remark 1. If the number of possible nonzero coeEcients at level j; Hj−hj+1, is not
divisible by L, then one or both of the blocks at the boundary is shortened to ensure
all the blocks are nonoverlapping.

Remark 2. The block length L= log n is selected based on the compromise of global
and local adaptivity. The thresholding constant $ is chosen according to the block
projection oracle inequality derived in Cai (1999). With the given block length and
threshold level, the estimator achieves both global and local adaptivity simultaneously.
See Sections 4 and 5.1 for detailed results. The root $∗ of the equation $− log $−5=0
with 5¿ 1 can be written as

$∗ = 5+ log(5+ log(5+ log(5+ · · ·))):

Remark 3. The threshold used here is larger than the threshold $∗ = 4:505 : : : used in
Cai (1999) for estimating the regression function. This is similar to the case
of term-by-term threshold used in Abramovich and Silverman (1998). The universal
term-by-term threshold for estimating f is given as $ =

√
2(1 + 2 ) log n, which is

larger than the universal threshold for estimating Kf by a factor of
√
1 + 2 .

4. Asymptotic results

As is traditional in the wavelet literature, we investigate the adaptivity of estimator
(17) over Besov spaces B6

p;q. Roughly speaking, the Besov function norm ‖f‖B6
p; q
of a

function f∈B6
p;q quanti:es the size in an Lp sense of the derivative of f of order 6,

with q giving a :ner gradation; for a precise de:nition of the Besov function norm see
DeVore and Popov (1988). We will use an equivalent sequence norm for functions in
B6
p;q.
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Suppose 6¿ 0; 16p6∞; 16 q6∞ and suppose the mother wavelet  is r-
regular with r ¿6+ . Let 5l;k=〈f;�l;k〉 and dj;k=〈f;  j;k〉. Then the Besov sequence
norm of the wavelet coeEcients of a function f is de:ned by

‖5l·‖p +
∑

j¿l

(2js‖dj·‖p)q
1=q : (18)

where s= 6+1=2− 1=p. It is an important fact (Meyer, 1992) that the Besov function
norm ‖f‖B6

p; q
is equivalent to the sequence norm of the wavelet coeEcients of f. We

de:ne the Besov class B6
p;q(M) to be the set of all functions supported on the interval

I and whose Besov sequence norm is less than M . The special case of p = q =∞
corresponds to the traditional HTolder smoothness class.
Denote the minimax risk over a function class F by

R(F; n) = inf
f̂n

sup
f∈F

E‖f̂n − f‖22;

where f̂n are estimators based on the observations (10). Donoho (1995) showed
that the minimax risk for estimating f based on (10) over a Besov class B6

p;q(M) is
given by

R(B6
p;q(M); n) � n−26=(1+26+2 ); n → ∞:

If attention is restricted to linear estimates, the corresponding minimax rate of con-
vergence is n−;′ , with

;′ =
26+ (1=p− − 1=p)

6+  + 1=2 + (1=p− − 1=p) where p− =max(p; 2): (19)

So the minimax linear rate is strictly slower than the minimax rate when p¡ 2.
We will assume the following. The mother wavelet  is r-regular and the operator

K is linear and homogeneous with index  . The operator K−1 maps a function g
supported on an interval to another function K−1g supported on the same interval. Let
wj;k = K−1 j;k =2 j. There exists some constant A¿ 0 such that∣∣∣∣∣∣

∣∣∣∣∣∣
∑
j¿l

∑
k

aj;kwj;k(t)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

6A‖(aj;k)‖2‘2 :

We will call these conditions as conditions (C).
The following result shows that the estimator, without knowing the degree or amount

of smoothness of the underlying function, attains the exact optimal convergence rate
over a range of Besov classes that one could achieve knowing the regularity.

Theorem 1. Suppose we observe Y (t) as in (10) and suppose the wavelet  and the
operator K satisfy conditions (C). Let the estimator f̂n be de6ned as in (15) and
(17). Then

sup
f∈B6

p;q(M)
E‖f̂n − f‖226Cn−26=1+26+2 (20)

for all 0¡6¡r −  ; 0¡M ¡∞; 26p6∞ and 16 q6∞.
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The next theorem addresses the case of p¡ 2, and shows that the estimator achieves
advantages over linear methods even at the level of rates.

Theorem 2. Suppose the wavelet  and the operator K satisfy conditions (C). The
estimator is simultaneously within a logarithmic factor of minimax for p¡ 2:

sup
f∈B6

p;q(M)
E‖f̂n − f‖26Cn−26=(1+26+2 )(log n)(2=p−1)=(1+26+2 −(4 =p)) (21)

for all 0¡M ¡∞; max{1=p; (1=p − 1=2)(1 + 2 )}¡6¡r −  ; 16p¡ 2, and
16 q6∞.

In addition to the global estimation properties, the block thresholding estimator enjoys
an interesting denoising property. The estimator, with high probability, removes pure
noise completely.

Theorem 3. If the target function is the zero function f ≡ 0, then, with probability
tending to 1 as n → ∞, the estimator is also the zero function, i.e., there exist
universal constants Pn such that

P(f̂n ≡ 0)¿Pn → 1; as n → ∞: (22)

The proofs of these theorems are given in Section 7.

5. Estimating a derivative

In this section we consider the problem of estimating the derivative of a function g.
This :ts into the inverse problems framework of (10) by setting K to be the integration
operator, i.e., Kf(t) =

∫ t
−∞ f(x) dx, and g= Kf.

The object of interest is f, the derivative of g= Kf. In this case, the index of the
operator K is  = 1 and the threshold $= 7 + log(7 + log(7 + log(7 + · · ·))) := 9:221.
Now K−1 is the diFerentiation operator, so K−1g = g′. The vaguelets (wj;k) are

obtained from dilations and translations of the function  ′:

wj;k(t) = 2j=2 ′(2jt − k):

Let (vj;k) be obtained from the function − (−1)(=− ∫ t
−∞  (x) dx):

vj;k(t) =−2j=2 (−1)(2jt − k):

It is shown in Lee (1997) that, when  is r-regular with r ¿ 3=2; (uj;k) and (vj;k) are
two collections of biorthogonal vaguelets. See also Donoho (1995). Hence, (uj;k) form
a Riesz basis and so is “almost” orthonormal. That is, there exist constants B¿b¿ 0
such that

b‖(aj;k)‖‘26
∣∣∣∣∣∣∑ aj;kuj;k

∣∣∣∣∣∣
2
6B‖(aj;k)‖‘2

for every sequence (aj;k). It is easy to verify that conditions (C) hold.
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In this case, besides the global adaptivity discussed in Section 4, the derivative
estimator f̂n, given in (15) and (17), also enjoys local adaptivity for estimating the
function at a point.

5.1. Local adaptation

For functions of spatial inhomogeneity, the local smoothness of the functions varies
signi:cantly from point to point. Global risk measures such as (2) cannot wholly reHect
the local adaptivity of the estimators. It is more appropriate to use the expected loss
at the point for spatial adaptivity,

R(f̂(t0); f(t0)) = E(f̂(t0)− f(t0))2: (23)

We measure the local smoothness of a function at a point by its local HTolder smooth-
ness index. Let us de:ne the local HTolder class >6(M; t0; �) as follows:

>6(M; t0; �) = {f : |f(�6�)(t)− f(�6�)(t0)|6M |t − t0|6′ t ∈ (t0 − �; t0 + �)};
where �6� is the largest integer less than 6 and 6′ = 6− �6�.
It is well known that for global estimation, it is possible to achieve complete adap-

tation for free in terms of the convergence rate across a range of function classes. For
instance, as shown in Theorem 1, the estimator attains the optimal rate of convergence
simultaneously over a range of function classes. For estimation at a point, however,
one must pay a price for not knowing the smoothness of the underlying function.
Lepski (1990) and Brown and Low (1996) show that, in the case of estimating a

drift function (i.e., g= Kf in (10)) at a point, it is impossible to achieve adaption to
unknown smoothness without loss of eEciency, even when the function is known to
belong to one of the two HTolder classes. Therefore, local adaptation cannot be achieved
“for free”. The minimum loss of eEciency is a logarithmic factor for estimating a
function of unknown degree of local HTolder smoothness at a point. See Lepski (1990)
and Brown and Low (1996). See also Donoho and Johnstone (1995).
A similar result holds for estimating a derivative at a point. Denote the minimax

risk for estimating functions at a point t0 over a function class F by

Rn(F; t0) = inf
f
sup
F

E(f̂(t0)− f(t0))2:

The minimax rate of convergence for estimating f(t0) based on (10) with 6 known is
n−; where ; = 26=(3 + 26). One may use the proof in Brown and Low (1996) with
only minor changes to show that the risk for adaptively estimating f at a point based
on (10) is at least of order (n−1 log n)26=(3+26) for f∈>6(M; t0; �) with 6 unknown.
We call (n−1 log n)26=(3+26) the local adaptive minimax rate for estimating f at a point.
The following theorem shows that the estimator given in (17) achieves the local

adaptive minimax rate over a range of local HTolder classes.

Theorem 4. Suppose the wavelet  is r-regular with r ¿ 3
2 and r¿ 6 + 1. Let t0 be

a 6xed interior point of I. Then the estimator f̂n given in (15) and (17) satis6es

sup
f∈>6(M;t0 ;�)

E{f̂n(t0)− f(t0)}26C(n−1 log n)26=(3+26): (24)
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Remark 3. In general, if a linear operator K satis:es conditions (C), then it can be
shown that the estimator f̂n satis:es

sup
f∈>6(M;t0 ;�)

E{f̂n(t0)− f(t0)}26C(n−1 log n)26=(1+26+2 ): (25)

Remark 4. The choice of L= log n is important for achieving the optimal local adap-
tivity. The result does not hold if L= (log n)1+�; �¿ 0.

5.2. Discrete data

In practice one observes discrete data instead of a continuous-time white noise pro-
cess (10). Similar to wavelets, a system of vaguelets has a corresponding discrete
vaguelet transform (DVT). The transform is no longer orthogonal and the correspond-
ing DVT varies for diFerent operators K in inverse problems. Kolaczyk (1996) provides
eEcient algorithms for the DVT and its inverse for the Radon transform, each requiring
O(n log n) operations. In the general case, performing the DVT and its inverse may be
computationally expensive.
In this section, we discuss the numerical implementation of the block thresholding

derivative estimator when sampled data are observed. Suppose that f is a function of
interest and we observe noisy data

yi =
∫ i=n

0
f(t) dt + 1zi; i = 1; : : : ; n; (26)

where n = 2J for some positive integer J and zi
i:i:d:∼ N(0; 1). Again, denote g(t) =∫ t

0 f(x) dx, so f = g′. To avoid complications caused by boundary eFects, we as-
sume here that f(0) = f(1) and g(0) = g(1). We shall use the periodic DWT and
coiHets with regularity exceeding 3

2 .
We begin with an approximation problem where no noise is present. Suppose a

sampled function gs; n=(g(1=n); g(2=n); : : : ; g(n=n)), where n=2J , is given. We wish to
have a fast wavelet algorithm to approximate fs; n = (f(1=n); f(2=n); : : : ; f(n=n)). Our
numerical algorithm is based on the following approximation results.

Theorem 5. Suppose the wavelets {�;  } are a pair of r-regular coi:ets. Let

fn(t) =
n∑

k=1

n∑
i=1

n−1=2g(i=n)〈�Ji;−(�Jk)′〉�Jk(t) (27)

and let f̃ s; n = D · gs; n where D is a n × n matrix with entries Dk; i = 〈�Ji;−(�Jk)′〉.
Then

sup
f∈>6(M)

‖fn − f‖226Cn−26; (28)

sup
f∈>6(M)

‖f̃s; n − fs; n‖∞6Cn−6; (29)

for all 0¡66 r and M ¿ 0.
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Interestingly, the values of the approximation f̃s; n can be computed in O(n) opera-
tions via a fast algorithm. We :rst note that

Dki = 〈�Ji;−(�Jk)′〉=−2J
∫

�′(t)�(t − (i − k)) dt:

Denote cm=
∫
�′(t)�(t−m) dt, so Dk; i=−2J ci−k . Suppose � is supported on [0; B+1]

and satis:es the dilation equation

�(t) =
B+1∑
i=0

hi

√
2�(2t − i):

It follows that cm, which is nonvanishing only if |m|6B, satis:es the equation

cm = 2
B+1∑
i; j=0

hihjc2m+i−j = 2
B∑

k=−B

B+1∑
j=0

hjhk−2m+j

 ck :

The cm are thus the eigenvector with eigenvalue 1/2 of the matrix H with entries

Hm;k =
B+1∑
j=0

hjhk−2m+j

for |m|; |k|6B. If  has two vanishing moments, then the matrix H does have the
eigenvalue 1/2 and it is nondegenerate (Daubechies, 1994). Moreover, Beylkin (1992)
proves that∑

mcm =−1: (30)

This :xes the normalization of the cm, so that they are uniquely determined. The values
of the cm need only be computed once directly from the hk and stored in a look-up
table. The values of f̃s; n can then be computed by a sequence of :nite length :ltering
on gs; n which requires O(n) operations.
Now we are ready to state the numerical algorithm implementing the block thresh-

olding estimator. The algorithm consists of four steps and the total complexity is O(n).

1. Transform the data y given in (26) into wavelet domain via the DWT.
2. At each resolution level j, group the empirical wavelet coeEcients into disjoint
blocks bj

i of length L = log n. Let $∗ = 9:221. Within each block bj
i , estimate the

coeEcients simultaneously via a shrinkage rule

*̂j; k = (1− $∗L12=S2j; i)+yjk : (31)

3. Apply the inverse DWT to the denoised wavelet coeEcients to get the “estimate”
ĝ(i=n) of g(i=n) =

∫ i=n
0 f(x) dx.

4. Obtain the estimate of f at the sample points by a sequence of :nite length :ltering
on ĝ(i=n) with the :lter coeEcients (−ncm):

f̂(k=n) =−n
∑

i

ci−k ĝ(i=n):
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6. Concluding remarks

Block thresholding serves as a bridge between the traditional shrinkage estimators
in normal decision theory and the more recent wavelet function estimation. This con-
nection enables us to develop a class of near-optimal wavelet estimators all of which
may be useful in diFerent estimation situations. We have focused on the James–Stein
shrinkage rule in the present paper. Other shrinkage rules can be used as well. For
example, a “hard” thresholding rule can be used for estimating *j;k within a block bj

i :

*̂j; k = yj;k · I(S2j; i ¿ $n−1L12) for (j; k)∈ bj
i :

Other blocking rules can also be used. For example, the method of Cai and Silverman
(1999) can be modi:ed for the use in linear inverse problems.
The block thresholding estimator can also be modi:ed by averaging over diFerent

block centers. In the case of nonparametric regression, the averaged estimator often
has superior numerical performance, at the cost of higher computational complexity.
See Cai (1999) and Hall et al. (1997).

7. Proofs

Assume that the mother wavelet  and the operator K satisfy conditions (C). Then
the function f can be written as

f(t) =
Hl∑

k=hl

4l;k(K−1�l;k)(t) +
∞∑
j=l

Hj∑
k=hj

*j;k2 jwj;k(t); (32)

where 4l;k = 〈Kf;�l;k〉; wj;k are the vaguelets and *j;k = 〈Kf;  j;k〉 are the wavelet
coeEcients of Kf. Under the assumptions of Theorem 1, the function f is supported
on the interval I and is in Besov class B6

p;q(M). So, ∞∑
j=l

2js
 Hj∑

k=hj

|dj;k |p
1=p


q

1=q

6M; (33)

where dj;k = 〈f;  j;k〉 and s= 6 + 1=2− 1=p. As noted in Abramovich and Silverman
(1998, p. 128), the operator K maps a Besov space B6

p;q to another Besov space B6+ 
p;q

and there exists a constant M1¿ 0 such that ∞∑
j=l

2js′
 Hj∑

k=hj

|*j;k |p
1=p


q

1=q

6M1 (34)

for every function f satisfying (33) where *j;k = 〈Kf;  j;k〉 and s′ = s+  .
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7.1. Proof of Theorems 1 and 2

We :rst state a result which follows directly from the block projection oracle
inequality and Lemma 2 in Cai (1999).

Lemma 1. Let xi = Ai + "zi; i=1; : : : ; L(=log n), and let Âi = (1− $L"2=S2)+xi, where
S2 = ‖x‖2 and $ is the root of the equation $− log $− (3 + 4 ) = 0. Then

E‖*̂− *‖226 $(‖A‖2 ∧ L"2) + 2"2n−(1+2 ):

The following elementary inequalities concerning diFerent norms are also needed.

Lemma 2. Let x∈Rm, and 0¡p16p26∞. Then the following inequalities hold:

‖x‖p26 ‖x‖p16m(1=p1)−1=p2‖x‖p2 : (35)

Let yj;k ; *̂j; k and f̂n be given as in (13), (15) and (17), respectively. It follows
from the triangle inequality and the fact that wj;k are vaguelets that

E‖f̂n − f‖226 2E

∣∣∣∣∣∣
∣∣∣∣∣∣

Hl∑
k=hl

(ỹ j; k − 4j;k)(K−1�l;k)(t)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

+ 2A
J∑

j=l

Hj∑
k=hj

22 j(*̂j; k − *j;k)2 + 2A
∞∑

j=J+1

Hj∑
k=hj

22 j*2j; k

≡ T1 + T2 + T3: (36)

Since E(ỹ j; k − 4j;k)2 = 12n−1 and Hl − hl + 1 is :xed and :nite, it follows from the
triangle inequality that T1 = O(n−1). We now bound the other two terms and divide
into two cases: p¿ 2 and p¡ 2.

The case p¿ 2: It follows from the Besov norm constraint (34) that 2js
′
(
∑Hj

k=hj

×|*jk |p)1=p6M1. Lemma 2 yields that for p¿ 2;
∑Hj

k=hj |*jk |26M 2
1 2

−j2(6+ ). Denote
by C a generic constant that may vary from place to place. Then

T3 =
∞∑

j=J+1

2 j
Hj∑

k=hj

*2jk 6
∞∑

j=J+1

M 2
1 2

−j266Cn−26 = o(n−26=(1+26+2 )): (37)

Now consider the term T2. Denote by Q2j; i =
∑
k∈b j

i

*2j; k the sum of squared coeEcients

within the block bj
i and let J1 be an integer satisfying 2

J1 � n1=(1+26+2 ). With "=n−1=21,
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Lemma 1 together with the fact that Hj − hj + 1 ∼ 2j|I |+ 2N yield

T2 =
J∑

j=l

Hj∑
k=hj

22 jE(*̂jk − *jk)26 $
J∑

j=l

22 j
∑

i

(Q2j; i ∧ Ln−112) + Cn−112

6 $
J1−1∑
j=l

22 j
∑

i

Ln−112 + $
J∑

j=J1

∑
i

Q2j; i + Cn−1126Cn−26=(1+26+2 ): (38)

Putting together the three terms T1; T2 and T3, we have

sup
f∈B6

p;q(M)
E‖f̂n − f‖226Cn−26=(1+26+2 ) for p¿ 2:

The case p¡ 2: Since * satis:es the condition (34), Lemma 2 yields
∑Hj

k=hj |*jk |2
6M 2

1 2
−2s′j. The assumption 6¿ 1=p implies that T3 is of higher order:

T3 =
∞∑

j=J+1

22 j
Hj∑

k=hj

*2jk 6
∞∑

j=J+1

M 2
1 2

−2s′j+2 j6Cn−26−1+2=p

= o(n−26=(1+26+2 )): (39)

Now consider the term T2. We state the following lemma.

Lemma 3. Let 0¡p¡ 1 and S = {x∈Rk :
∑k

i=1 x
p
i 6B; xi¿ 0; i = 1; : : : ; k}. Then

for A¿ 0,

sup
x∈S

k∑
i=1

(x1 ∧ A)6B · A1−p:

The proof of Lemma 3 is straightforward since
k∑

i=1

(xi ∧ A) = A
k∑

i=1

((xi=A) ∧ 1)6A
k∑

i=1

((xi=A)p ∧ 1)6BA1−p:

Back to the case p¡ 2. Again denote Q2j; i =
∑

k∈b j
i
*2jk . Lemma (1) yields

T2 =
J∑

j=l

22 j
Hj∑

k=hj

E(*̂jk − *jk)26 $
J∑

j=l

22 j
∑

i

(Q2j; i ∧ Ln−112) + Cn−112: (40)

Let J2 be an integer satisfying 2J2 � n1=(1+26+2 )(log n)(2=p−1)=(1+26+2 −(4 =p)). Then

$
J2−1∑
j=l

22 j
∑

i

(Q2j; i ∧ Ln−112)6 $
J∑

j=l

22 j
∑

i

Ln−112

6Cn−26=(1+26+2 )(log n)(2=p−1)=(1+26+2 −(4 =p)):
(41)
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Note that
∑

i(Q
2
j; i)

p=26
∑

k(*
2
j; k)

p=26M12−js′p. Lemma 3 yields

$
J∑

j=J2

22 j
∑

i

(Q2j; i ∧ Ln−112)6Cn−26=(1+26+2 )(log n)(2=p−1)=(1+26+2 −(4 =p)): (42)

We :nish the proof for p¡ 2 by combining the three terms,

sup
f∈B6

p;q(M)
E‖f̂n − f‖226Cn−26=(1+26+2 )(log n)(2=p−1)=(1+26+2 −(4 =p)):

7.2. Proof of Theorem 3

The function Kf is estimated by zero if and only if all the coeEcients are estimated
by zero. When *jk ≡ 0, then from (13) and (15) the probability that a block is
estimated by zero is P(

∑
k∈b j

i
z2jk 6 $L). The total number of blocks is Cn=L for some

:xed constant C ¿ 0. Therefore, the probability of f̂n ≡ 0 is

P(f̂∗ ≡ 0) = P(K̂f ≡ 0) =
P
∑

k∈b j
i

z2jk 6 $L

Cn=L

=

1− P

∑
k∈b j

i

z2jk ¿$L

n=L

¿
[(
1− 1

n1+2 

)n]C=L

:

The last inequality follows from Lemma 2 in Cai (1999) on the tail probability of a
chi-square distribution. Let Pn = [(1 − 1=n1+2 )n]C=L. Since (1 − 1=n1+2 )n tends to 1
when  ¿ 0 and to e−1 when  = 0, and C=L → 0, so Pn → 1 as n → ∞.

7.3. Proof of Theorem 4

For simplicity, we give the proof for HTolder classes >6(M) instead of local HTolder
classes >6(M; t0; �). For HTolder classes >6(M) there exists a constant M2¿ 0 such that

|dj;k |= |〈f;  j;k〉|6C2−j(1=2+6) all f∈>6(M): (43)

We also note that when K is the integration operator,  = 1 and f∈>6(M) implies
Kf∈>1+6(M). So,

|*j;k |= |〈Kf;  j;k〉|6C2−j(3=2+6) all f∈>6(M): (44)

The proof of the theorem makes use of the following elementary inequality.

Lemma 4. Let Xi be random variables, i = 1; : : : ; n. Then

E

(
n∑

i=1

Xi

)2
6

(
n∑

i=1

(EX 2i )
1=2

)2
: (45)
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Now applying inequality (45), we have

E(f̂n(t0)− f(t0))2

=E

 Hl∑
k=hl

(ỹ l; k − 4l;k)(K−1�l;k)(t0) +
J∑

j=l

Hj∑
k=hj

2j(*̂jk − *jk)wjk(t0)

+
∞∑

j=J+1

Hj∑
k=hj

2j*jkwjk(t0)

2

6

∑
k

|(K−1�l;k)(t0)|(E(ỹ l; k − 4l;k)2)1=2

+
J∑

j=l

∑
k

2j|wjk(t0)|(E(*̂jk − *jk)2)1=2 +
∞∑

j=J+1

∑
k

2j|*jkwjk(t0)|
2

≡ (Q1 + Q2 + Q3)2:

Since the vaguelets are of compact support, so there are at most N vaguelets wjk at
each resolution level j that are nonvanishing at t0, where N is the length of the support
of the vaguelet w=  ′. Denote K(j; t0) = {k: wj;k(t0) �= 0}. Then |K(j; t0)|6N . It is
easy to see that both Q1 and Q3 are small:

Q1 =
∑
k

|(K−1�l;k)(t0)|(E(ỹ l; k − 4l;k)2)1=2 = O(n−1); (46)

Q3 =
∞∑

j=J+1

∑
k∈K( j;t0)

|*jk‖wjk(t0)|6
∞∑
j=J

2jN‖ ′‖∞2j=2C2−j(3=2+6)6Cn−6: (47)

We now consider the second term Q2. Applying Lemma 1 and using (44), we have

Q26
J∑

j=l

∑
k∈K( j;t0)

2j2j=2‖ ′‖∞(E(*̂jk − *jk)2)1=2

6C
J∑

j=l

23j=2[(2−j(3+26) ∧ Ln−1"2) + Ln−412]1=26C(n−1 log n)6=(3+26): (48)

Combining (46), (47) and (48), we have E(f̂n(t0)−f(t0))26C(n−1 log n)26=(3+26).

7.4. Proof of Theorem 5

Throughout the proof we assume that the wavelets {�;  } are a pair of r-regular
coiHets, n=2J ; f∈>6(M) with f(0) =f(1) and 0¡66 r − 1, and g(t) = (Kf)(t)=
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0 f(x) dx with g(0)=g(1). We :rst state the following lemma which is a consequence
of the vanishing moments conditions on the wavelets {�;  }.

Lemma 5. Let h∈>!(M) with 0¡!6 r. Then there exists a constant A¿ 0, inde-
pendent of h, such that

|n−1=2h(k=n)− 〈h; �Jk〉|6A · n−(1=2+!) and |〈h;  jk〉|6A · 2−j(1=2+!): (49)

Consequently, if we let hn(t) =
∑n

i=1 n−1=2h(i=n)�J; i(t), then

sup
h∈>!(M)

‖hn − h‖∞6Cn−! and sup
h∈>!(M)

‖hn − h‖226Cn−2! (50)

for all 0¡!6 r and M ¿ 0.

Since �Jk is compactly supported in [0; 1], using integration by parts and the fact
that g(0) = g(1), one has

5Jk ≡ 〈f;�Jk〉= 〈g;−(�Jk)′〉:
Let gn(t) =

∑n
i=1 n−1=2g(i=n)�J; i(t). The assumption f∈>6(M) implies g∈>1+6(M).

Lemma 5 yields

|5Jk − 〈gn;−(�Jk)′〉|6 〈|gn − g|; |(�Jk)′|〉6Cn−(1=2+6): (51)

Rewrite fn in (27) as fn=
∑

k〈gn;−(�Jk)′〉�j;k , then (28) follows from (49) and (51).
Some algebra and (49) and (51) also yield

sup
f∈>6(M)

‖fn − f‖∞6Cn−6: (52)

The approximation of f at the sample point k=n is given by

f̃ s; n(k) =
n∑

i=1

g(i=n)〈�Ji;−(�Jk)′〉: (53)

Noting f̃ s; n(k) = n1=2〈fn; �Jk〉, the approximation error is bounded as follows:
|f̃ s; n(k)− f(k=n)|6 n1=2(|5Jk − n−1=2f(k=n)|+ |〈fn − f;�Jk〉|)6Cn−6: (54)

The last inequality follows from (49) and (52). Now (54) yields (29).
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