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SUMMARY

Motivated by analysis of genetical genomics data, we introduce a sparse high-dimensional
multivariate regression model for studying conditional independence relationships among a set
of genes adjusting for possible genetic effects. The precision matrix in the model specifies a
covariate-adjusted Gaussian graph, which presents the conditional dependence structure of gene
expression after the confounding genetic effects on gene expression are taken into account. We
present a covariate-adjusted precision matrix estimation method using a constrained �1 minimiza-
tion, which can be easily implemented by linear programming. Asymptotic convergence rates in
various matrix norms and sign consistency are established for the estimators of the regression
coefficients and the precision matrix, allowing both the number of genes and the number of the
genetic variants to diverge. Simulation shows that the proposed method results in significant
improvements in both precision matrix estimation and graphical structure selection when com-
pared to the standard Gaussian graphical model assuming constant means. The proposed method
is applied to yeast genetical genomics data for the identification of the gene network among a
set of genes in the mitogen-activated protein kinase pathway.

Some key words: Constrained �1 penalization; Gaussian graphical model; High dimensionality; Multivariate
regression.
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1. INTRODUCTION

Genetical genomics experiments measure both genetic variants and gene expression data on
the same subjects. Such data have provided important insights into gene expression regulations
in both model organisms and humans (Brem & Kruglyak, 2005; Cheung & Spielman, 2002). For
a given gene, a typical analysis of such datasets is to identify the genetic loci or single nucleotide
polymorphisms that are linked or associated with the expression level of this gene. Depending on
the locations of the genetic variants, they are often classified as distal trans-linked loci or proxi-
mal cis-linked loci. However, the genetic architecture for many gene expressions may be complex
due to possible multiple genetic effects and gene-gene interactions, and poorly estimated genetic
architecture may compromise inference on the dependency structures of genes at the transcrip-
tional level. Although a single gene analysis can be effective in identifying the associated genetic
variants, gene expressions of many genes are highly correlated due either to shared genetic vari-
ants or to other unmeasured common regulators. One important biological problem is to study
the conditional independence among these genes at the expression level.

Gaussian graphical models have been applied to infer the relationship between genes at the
transcriptional level (Segal et al., 2005; Li & Gui, 2006; Peng et al., 2009a), where the precision
matrix for multivariate normal data has an interpretation of conditional dependence. Compared
with marginal dependence, conditional dependence can capture the direct link between two vari-
ables when other variables are conditioned on. Since the expression variation of a gene can usu-
ally be explained by a small subset of other genes, the precision matrix for gene expression data
is expected to be sparse. Estimation of high-dimensional Gaussian graphical models has been
an active area of research in recent years. Meinshausen & Bühlmann (2006) proposed a neigh-
bourhood selection procedure by identifying edges for each node in the graph using �1 penalized
regression. This approach reduces the graphical model estimation problem to a collection of sep-
arate high-dimensional variable selection problems that have been well studied. Estimation of
the precision matrix and the graphical structure can also be obtained through a penalized max-
imum likelihood approach; see, for example, Friedman et al. (2008), Rothman et al. (2008) and
Yuan & Lin (2007). Friedman et al. (2008) proposed a fast block coordinate descent algorithm to
solve the penalized likelihood maximization problem. Cai et al. (2011) proposed a constrained
�1 minimization estimator for precision matrix and obtained results on convergence rates and
sign consistency.

Although a direct application of the Gaussian graphical model to gene expression data alone
provides some insights into gene regulation at the expression level, it ignores the effects of genetic
variants on gene expression. One important observation from many genetical genomics experi-
ments is that the gene expression level of many genes is inheritable and can be partially explained
by genetic variation (Brem & Kruglyak, 2005; Cheung & Spielman, 2002). Since some genetic
variants have effects on the expression of multiple genes and therefore may serve as confounders
while detecting the association between the genes, ignoring the effects of genetic variants on the
gene expression levels can lead to both false positive and false negative associations in the gene
network graph. The effect of genetic variants on gene expression therefore needs to be adjusted
in estimating the high-dimensional precision matrix.

The problem can be formulated as joint estimation of multiple regression coefficients and
the precision matrix. Most of the available approaches use a groupwise regularization term
where the multiple regressions can be fitted jointly (Turlach et al., 2005; Peng et al., 2009b;
Obozinski et al., 2011). Rothman et al. (2010) focus on improving estimation of regression coef-
ficients by incorporating the covariance information. Similarly, Yin & Li (2011) proposed a
penalized estimation method for a sparse conditional Gaussian graphical model that iteratively
estimates the regression coefficients and precision matrix. Li et al. (2012) developed a method
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Covariate-adjusted precision matrix estimation 141

that is based on a combination of a kernel-based estimate of the means and a regularized estimate
of the precision matrix.

In this paper, we present a two-stage constrained �1 minimization approach for covariate-
adjusted precision matrix estimation, where we use a constrained �1 minimization approach
to first estimate the regression coefficient matrix and then estimate the precision matrix
using the estimated regression coefficients in the first stage. Different from the approaches of
Rothman et al. (2010) and Yin & Li (2011), our approach does not make the multivariate nor-
mal assumption on the error distribution. The method can be easily implemented by linear pro-
gramming. An R package (R Development Core Team, 2012) implementing our method has been
developed and is available on the CRAN website, http://cran.r-project.org/. We provide the rates
of convergence and the estimation bounds for the estimates of both the regression coefficient
matrix and the precision matrix in various matrix norms, allowing both the number of the covari-
ates and the number of the response variables to diverge as the sample size approaches infinity.
In addition, a simple thresholding on the estimated precision matrix is proposed to recover the
support of the covariate-adjusted precision matrix and is shown to provide consistent support
recovery.

2. TWO-STAGE COVARIATE-ADJUSTED PRECISION MATRIX ESTIMATION

2·1. Covariate-adjusted Gaussian graphical model

We consider a genetical genomics experiment. Let y = (y1, . . . , yp)
T denote the random vec-

tor of expression levels for p genes, and let x = (x1, . . . , xq)T denote the random vector of the
numerical values of q genetic markers. We consider the multivariate regression model

y = �0x + z, (1)

where �0 is a p × q unknown coefficient matrix, z is a p × 1 random vector with mean zero,
covariance matrix �0 = (σ 0

i j ) and precision matrix �0 = (ω0
i j ) = �−1

0 . We assume that x and
z are independent and that we have n independent identically distributed observations (xk, yk)

(k = 1, . . . , n) from (1).
In genetical genomics data, each row of �0 is assumed to be sparse, since each gene is expected

to have only a few genetic regulators. The precision matrix �0 is also expected to be sparse,
since typical genetic networks have limited links. If z follows a multivariate normal distribution,
the conditional independence of zi and z j is equivalent to ωi j = 0, and the matrix �0 has an
interpretation of conditional dependence and can be used to construct a conditional dependence
graph. To be more specific, let G = (V, E) be a graph representing conditional independence
relations between the components of y. The vertex set V has p components y1, . . . , yp and the
edge set E consists of pairs (i, j), where (i, j) ∈ E if there is an edge between yi and y j . The
edge between yi and y j is excluded from E if and only if zi and z j are independent given all
other zk (k |= i, j). We are interested in detecting the nonzero entries of �0 in order to construct
a conditional independence graph for y after the effects of the covariates x on y are removed.
Such a graphical model is called the covariate-adjusted Gaussian graphical model.

Estimation of �0 in (1) in high-dimensional settings, where p and q can be larger than n,
has been extensively studied. Most of the available approaches use a groupwise regulariza-
tion term where the p regressions can be fitted jointly (Turlach et al., 2005; Peng et al., 2009b;
Obozinski et al., 2011). Rothman et al. (2010) and Yin & Li (2011) developed �1-penalized esti-
mation methods that iteratively estimate �0 and �0. Rothman et al. (2010) focus on improving
estimation of �0 by incorporating �0. The work of Yin & Li (2011) aims to improve the estimate
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142 T. T. CAI, H. LI, W. LIU AND J. XIE

of �0 after the effects of the covariates on the means are taken into account, and this is also the
focus of the present paper.

2·2. Estimation of �0

When q = 1, many methods have been developed for estimation of �0, including those based
on �1 minimization (Tibshirani, 1996) and the Dantzig selector (Candès & Tao, 2007). We pro-
pose to develop a method for estimating �0 using a constrained �1 minimization that can be
treated as a multivariate extension of the Dantzig selector. For a matrix A = (ai j ) ∈ R

p×q ,
define the elementwise �1 norm by |A|1 =∑p

i=1

∑q
j=1|ai j | and the elementwise �∞ norm by

|A|∞ = maxi, j |ai j |.
Let ȳ = n−1∑n

k=1 yk , x̄ = n−1∑n
k=1 xk and z̄ = n−1∑n

k=1 zk . Then

yk − ȳ = �0(xk − x̄) + zk − z̄. (2)

Set Sxy = n−1∑n
k=1(yk − ȳ)(xk − x̄)T and Sxx = n−1∑n

k=1(xk − x̄)(xk − x̄)T. We propose to
estimate �0 by the solution to the optimization problem

�̂ ∈ arg min
�∈R p×q

{|�|1 : |Sxy − �Sxx |∞ � λn}, (3)

where λn is a tuning parameter. This is equivalent to the p optimization problems

min|γi |1, subject to |Sxy,i − γ T
i Sxx |∞ � λn (i = 1, . . . , p), (4)

where � = (γ1, . . . , γp)
T and Sxy = (Sxy,1, . . . , Sxy,p)

T. This is exactly the Dantzig selector for-
mulation in the usual regression analysis for the i th regression and its solution can therefore be
obtained by solving the corresponding linear programming problem. This simple observation is
useful for the implementation and technical analysis. In this paper and the R package we devel-
oped, the procedure is implemented by a linear programming optimization using the primal dual
and interior point algorithm.

2·3. Estimation of �0

After inserting the estimator �̂ given in (3) into equation (2), we can estimate �0 by the method
of constrained �1-minimization proposed in Cai et al. (2011). Let

Syy = 1

n

n∑
k=1

(yk − �̂xk)(yk − �̂xk)
T.

The precision matrix �0 is then estimated by the solution to the optimization problem

�̂1 ∈ arg min
�∈R p×p

{|�|1 : |Ip×p − Syy�|∞ � τn}, (5)

where τn is a tuning parameter. Let �̂1 = (ω̂1
i j ) be a solution to (5). This constrained �1 minimiza-

tion approach is the same as the one proposed in Cai et al. (2011), except that Syy depends on the
estimated coefficient matrix �̂. Since no symmetry condition on �̂1 is imposed, as a result, the
solution may not be symmetrical in general. The final estimator of �0, denoted by �̂ = (ω̂i j ), is
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Covariate-adjusted precision matrix estimation 143

obtained by symmetrizing the estimator as follows:

�̂ = (ω̂i j ), where ω̂i j = ω̂ j i = ω̂1
i j I (|ω̂1

i j | � |ω̂1
j i |) + ω̂1

j i I (|ω̂1
i j | > |ω̂1

j i |), (6)

where I (·) is the indicator function. As in (4), the problem (5) can be decomposed into p opti-
mization problems. For i = 1, . . . , p, let ω̂i be the solution of the convex optimization problem

min|ωi |1 subject to |ei − Syyωi |∞ � τn,

where ωi is a vector in R
p, ei is a standard unit vector in R

p with 1 in the i th coordinate and 0 in
all other coordinates. This can also be solved using the primal dual and interior point algorithm.

2·4. Tuning parameter selection

Two tuning parameters λn and τn need to be selected. We tune these two parameters together
via L-fold crossvalidation, where the Bregman divergence can be use to measure the model fit.
Specifically, we divide all the samples in the training dataset into L disjoint subgroups, also
known as folds, and denote the index of subjects in the lth fold by Tl for l = 1, . . . , L . The L-
fold crossvalidation score is defined as

CV(λn, τn) =
L∑

l=1

[log det{�̂−l(λn, τn)} − tr{Syyl�̂−l(λn, τn)}],

where nl is the size of the lth fold Tl and

Syyl = n−1
l

nl∑
k=1

{yk − �̂−l(λn)xk}{yk − �̂−l(λn)xk}T

with �̂−l(λn, τn) and �̂−l(λn) being the estimates of � and � based on the sample (
⋃L

l=1 Tl)\Tl

with λn and τn as the tuning parameters. Then, we choose (λ∗
n, τ

∗
n ) = argmax CV(λn, τn) as the

best tuning parameters, which are used to obtain the final estimates of the regression coefficients
and precision matrix based on the whole training set. Here the maximization of CV(λn, τn) with
respect to (λn, τn) is achieved via a grid search.

3. RATES OF CONVERGENCE OF THE ESTIMATORS

3·1. Convergence rates of �̂ − �0

In this section, we present theoretical properties of the estimators �̂ and �̂. We first introduce
the matrix norms used in the rest of the paper. For a matrix A = (ai j ) ∈ R

p×q , define the spectral
norm as ‖A‖2 = max|x |2=1|Ax |2, the matrix L∞ norm as ‖A‖L∞ = max1�i�p

∑q
j=1|ai j |, and

the Frobenius norm as ‖A‖F = (
∑

i, j a2
i j )

1/2. The notation A � 0 means that A is positive def-
inite. Write x = (x1, . . . , xq)T, z = (z1, . . . , z p)

T and u = zT�0 = (u1, . . . , u p). The following
conditions are needed for establishing the rate of convergence.

Condition 1. Let log(p ∨ q) = o(n). Suppose that there exist some η > 0 and K > 0 such that

E{exp(ηx2
i )} � K , E{exp(ηz2

j/σ
0
j j )} � K , E{exp(ηu2

j/ω
0
j j )} � K ,

for all i = 1, . . . , q and j = 1, . . . , p, and let max1� j�p σ 0
j j � K .
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144 T. T. CAI, H. LI, W. LIU AND J. XIE

Condition 2. The regression coefficient matrix �0 belongs to the following class with 0 �
δ1 < 1:

Vδ1 = Vδ1{s1(q)} =
⎧⎨
⎩� ∈ R

p×q : max
1�i�p

q∑
j=1

|γi j |δ1 � s1(q)

⎫⎬
⎭ .

Condition 3. The precision matrix �0 = (ω0
i j )p×q belongs to the following class with 0 �

δ2 < 1:

Uδ2 = Uδ2{s2(p)} =
⎧⎨
⎩� � 0 : ‖�‖L∞ � Mp, max

1�i�p

p∑
j=1

|ωi j |δ2 � s2(p),

λmax(�)/λmin(�) � C0

⎫⎬
⎭ .

Condition 4. There exists some Nq > 0 such that the matrix l∞ norm of �−1
x satisfies

‖�−1
x ‖L∞ � Nq , where �x = cov(x).

Condition 1 is a sub-Gaussian condition on x , z and zT�0, where the variance of u j is ω0
j j . The

dimensions p and q are of order exp{o(n)}. Conditions 2 and 3 assume the uniformity class of
matrices for the regression coefficient matrix and the precision matrix, where V0 and U0 are
classes of matrices with the sparsity measurements of s1(q) and s2(p), respectively. Similar
parameter spaces have also been used in Bickel & Levina (2008) and Cai et al. (2011). Con-
ditions 2 and 3 also bound the matrix L∞ norm of �0 and �0. Finally, Condition 4 bounds the
matrix L∞ norm of the inverse covariance matrix of x .

The estimation error �̂ − �0 can be measured by different matrix norms: the matrix L∞ norm,
the Frobenius norm and the entry-wise �∞ norm. The matrix L∞ norm measures the accuracy
of the estimation of �0. The Frobenius norm is also a reasonable measure on the accuracy of the
estimation of �0 and can be viewed as the sum of squared errors for estimating individual rows.
The elementwise �∞ norm can be used to recover the support of �0 by a further thresholding step.
We have the following rates of convergence for the estimator �̂ in matrix L∞ and the Frobenius
norm.

THEOREM 1. Suppose Conditions 1, 2 and 4 hold. Let �0 ∈ Vδ1 and λn = C1[{log(pq)}/n]1/2,
where C1 > 0 is a sufficiently large constant. If

s1(q) = o

[
N δ1−1

q

{
n

log(pq)

}(1−δ1)/2
]

, (7)

then with probability greater than 1 − O{(pq)−1}, we have

‖�̂ − �0‖L∞ � C N 1−δ1
q s1(q)

{
log(pq)

n

}(1−δ1)/2

(8)

and
1

p
‖�̂ − �0‖2

F � C N 2−δ1
q s1(q)

{
log(pq)

n

}1−δ1/2

(9)

for some constant C > 0.
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Covariate-adjusted precision matrix estimation 145

Theorem 1 shows that the regression coefficients matrix �0 can be estimated consistently
under the Frobenius norm if the sparsity s1(q) of �0 is of order o[N δ1−2

q {n/ log(pq)}1−δ1/2].
The requirement on the dimensions p and q is mild as they appear only in the logarithmic term.
To see this, if s1(q) = O(nr1) for some r1 < 1 − δ1/2 and Nq is bounded, then p and q can be as
large as exp(nr2) for some r2 < 1 − δ1/2 − r1.

THEOREM 2. Under the conditions of Theorem 1, with probability greater than 1 −
O{(pq)−1}, we have

|�̂ − �0|∞ � C0 Nq

{
log(pq)

n

}1/2

(10)

for some constant C0 > 0.

The rate under the elementwise l∞ norm is critical to the support recovery. Define �̃thr = (γ̃i j )

with

γ̃i j = γ̂i j I

[
|γ̂i j | � C0 Nq

{
log(pq)

n

}1/2
]

,

where (γ̂i j ) = �̂. Let S(�0) = {(i, j) : γ 0
i j |= 0} be the true support of the coefficient matrix �0

and γmin = min(i, j)∈S(�0) |γi j |.
THEOREM 3. Suppose the conditions in Theorem 1 hold and

γmin � 2C0 Nq

{
log(pq)

n

}1/2

. (11)

Then with probability greater than 1 − O{(pq)−1}, we have S(�̃thr) = S(�0).

The lower bound condition (11) requires that the magnitude of the nonzero entries in �0 cannot
be too small in order to recover the support.

3·2. Convergence rates of �̂ − �0

We consider the rate of �̂ − �0 under the spectral norm and the elementwise l∞ norm. The
rate under the spectral norm is important because it can lead to the consistency of the estimation
of eigenvalues and eigenvectors and it is essentially needed in developing theoretical properties
for various statistical inference problems when the estimator of the precision matrix is used.

THEOREM 4. Suppose Conditions 1–4 and (7) hold. Let �0 ∈ Vδ1 , �0 ∈ Uδ2 and

s1(q) � C(1 + Mp)
−1 N−2+δ1

q

{
n

log(pq)

}(1−δ1)/2

. (12)

Let τn = C2[{log(pq)}/n]1/2, where C2 > 0 is a sufficiently large constant. Then with probability
greater than 1 − O{(pq)−1}, we have

‖�̂ − �0‖2 � C M1−δ2
p s2(p)

{
log(pq)

n

}(1−δ2)/2

(13)

for some constant C > 0.
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The condition (12) on the sparsity s1(q) of �0 ensures that �0 can be well estimated with a
certain rate so that y − �̂0x can be used to replace y − �0x . The convergence rate in (13) is
optimal. In fact, as shown in an unpublished 2010 technical report available from the first author,
even if �0 = 0 or is known in advance, the minimax optimal rate of estimation of �0 is still
O{M1−δ2

p s2(p)(log p/n)(1−δ2)/2}. If q = O(p), then the rate in (13) is the same as the oracle
optimal rate and thus is also optimal.

The next theorem shows the convergence rate under the elementwise l∞ norm, which is useful
for the recovery of the support of �.

THEOREM 5. If Conditions 1–4 and (7) hold, we have with probability greater than 1 −
O{(pq)−1} that,

|�̂ − �0|∞ � C Mp

{
log(pq)

n

}1/2

, (14)

where C > 0 is a constant.

The proofs of Theorems 4 and 5 are given in the Appendix. The key is to account for the
estimation error and uncertainty of �̂0 in evaluating the estimation error of �̂0. This is in contrast
to the estimation of �0 in Cai et al. (2011) when �0 is assumed to be zero. As shown in an
unpublished 2010 technical report available from the first author, the minimax optimal rate under
the elementwise l∞ norm for estimating the precision matrix is O{Mp(log p/n)1/2} when �0 = 0
or is known. Hence covariate-adjusted �1 minimization can achieve the same optimal rate as the
case that �0 is known.

4. GRAPHICAL MODEL SELECTION CONSISTENCY

When the error term z in (1) is assumed to follow N (0, �−1
0 ), recovery of the support of the

precision matrix �0 is closely related to the covariate-adjusted graphical model selection. When
�0 = 0, the problem reduces to Gaussian graphical model selection. We consider the setting when
�0 belongs to U0 and are interested in estimating the support of �0, S(�0) = {(i, j) : ω0

i j |= 0}
when �0 |= 0. Define θmin = min(i, j)∈S(�0) |ω0

i j |. As long as θmin � 2Mpτn , using the rate under
the elementwise �∞ norm given in Theorem 5, we have following result.

THEOREM 6. Suppose Conditions 1–4 and (7) hold. Further suppose that θmin > 2Mpτn. Then
for all ωi j |= 0, the probability of ω̂i j |= 0 tends to one.

Sign consistency can be achieved by further thresholding the entries of �̂. Let

�̂r = (ω̂r
i j ), ω̂r

i j = ω̂i j I (|ω̂i j | � τ ′
n),

where τ ′
n is a tuning parameter that will be specified later. Define � = {sign(ω0

i j ) : i =
1, . . . , p, j = 1, . . . , p} and let �̂ = {sign(ω̂r

i j ) : i = 1, . . . , p, j = 1, . . . , p} be the vector of
the signs of the elements of the true and the estimated precision matrix, where sign(t) is defined
as

sign(t) =

⎧⎪⎨
⎪⎩

1, t > 0,

0, t = 0,

−1, t < 0.
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Covariate-adjusted precision matrix estimation 147

Table 1. Four models and the parameters used in the simulations

Parameters

Model 1 p = 60, q = 30, n = 100, pr(�i j |= 0) = 5/q , pr(�i j |= 0 | i |= j) = 5/p
Model 2 p = 200, q = 200, n = 200, pr(�i j |= 0) = 30/q , pr(�i j |= 0 | i |= j) = 5/p
Model 3 p = 200, q = 200, n = 100, pr(�i j |= 0) = 30/q , pr(�i j |= 0 | i |= j) = 5/p
Model 4 p = 800, q = 300, n = 200, pr(�i j |= 0) = 30/q , pr(�i j |= 0 | i |= j) = 10/p

We have the following theorem on sign consistency of the estimator �̂, i.e., the estimator recovers
not only the sparsity pattern of �0, but also the signs of the nonzero elements.

THEOREM 7. Let τ ′
n = 4Mpτn. Suppose that θmin > 2τ ′

n. Then under the conditions of
Theorem 4, as n and p tend to infinity, �̂ = � with probability tending to one.

Theorem 7 shows that the support of �0 can be recovered exactly if the minimum of the
nonzero entries in �0 has a lower bound that is not too small. The lower bound condition is nec-
essary in order to recover the support exactly. In fact, as shown in an unpublished 2010 technical
report available from the first author, suppose that �0 = 0 or is known in advance, if θmin � cτ ′

n
for a sufficiently small constant c > 0, then for any estimator of �0, it is not possible to recover
the support exactly uniformly over the class of s2(p) sparse precision matrices.

In practice, since the estimator obtained from (6) is already sparse, we do not further threshold
the estimator. Although the sign consistency cannot be guaranteed, under weaker conditions, we
can still get an estimator with its properties stated in Theorem 6.

5. SIMULATION RESULTS

In this section simulation studies are carried out to evaluate the performance of the pro-
posed procedure and to compare it with other methods for precision matrix estimation and sup-
port recovery. Four models presented in Table 1 are considered. For each model, we generate a
p × q coefficient matrix � and a p × p precision matrix � with pr(�i j |= 0) and pr(�i j |= 0 |
i |= j) shown in Table 1. If �i j |= 0 or �i j |= 0 (i |= j), we generate �i j or �i j (i |= j) from
Unif([0·5, 1] ∪ [1, 0·5]). The diagonal of � is set to be a common value so that the condi-
tion number of � is equal to p. This is to make sure that � is positive definite and invertible.
Let � = �−1. We generate n × q design matrix X and an n × p random error matrix so that
Xi j and Zi j independently follow N (0, 1) distributions. The n × p outcome matrix is set to be
Y = X� + Z�1/2.

Model 1 has small values of p and q and is considered to mimic the applications on finding
small-scale gene regulatory pathways or constructing networks in social sciences. Models 2–4
have moderate or large p and q, simulating the settings in most genomic applications.

The performance of our proposed method is compared with several other methods, including
those of Cai et al. (2011) and Friedman et al. (2008) that ignore the covariate effects and that
of Yin & Li (2011). For all these estimators, the tuning parameters are chosen using five-fold
crossvalidation by maximizing the crossvalidated log-likelihood function,

log det(�) − tr(Syy�),

where Syy = n−1∑n
k=1(yk − ȳ)(yk − ȳ)T for the methods of Cai et al. (2011) and

Friedman et al. (2008), and Syy = n−1∑n
k=1(yk − �̂xk)(yk − �̂xk)

T for our method and
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Table 2. Simulation results: estimation errors of four different methods for the
precision matrix as measured by different matrix norms based on 50 replica-

tions. Numbers in parentheses are the simulation standard errors

(p, q, n) Method Spectral norm Frobenius norm Matrix �1 norm

Model 1 (60, 30, 100) CAPME 4·4 (0·2) 15·8 (0·2) 9·6 (0·4)
CLIME 4·7 (0·1) 16·2 (0·1) 11·2 (0·4)
cGGM 3·1 (0·2) 13·4 (0·1) 7·7 (0·5)
GLASSO 5·6 (0·1) 16·9 (0·0) 12·1 (0·2)

Model 2 (200, 200, 200) CAPME 10·5 (0·3) 30·2 (0·1) 24·8 (0·7)
CLIME 13·1 (0·0) 34·0 (0·0) 29·4 (0·1)
cGGM 11·4 (0·2) 33·0 (0·2) 26·4 (0·6)
GLASSO 6·9 (0·2) 41·0 (0·0) 13·9 (0·0)

Model 3 (200, 200, 100) CAPME 8·2 (0·5) 48·5 (1·7) 26·6 (1·8)
CLIME 8·8 (0·1) 48·8 (0·1) 19·4 (0·2)
cGGM 11·0 (5·2) 54·8 (3·2) 26·4 (0·6)
GLASSO 9·6 (0·0) 50·0 (0·0) 20·1 (0·0)

Model 4 (800, 300, 200) CAPME 14·2 (0·1) 69·5 (0·1) 31·6 (0·4)
CLIME 10·8 (0·6) 111·5 (2·5) 37·8 (0·9)
cGGM 14·4 (0·3) 69·1 (0·3) 37·3 (5·6)
GLASSO 15·4 (0·0) 82·4 (0·0) 34·2 (0·1)

CAPME, �1 constrained minimization adjusted for covariates; CLIME, the method of Cai et al.
(2011); cGGM, the method of Yin & Li (2011); GLASSO, the method of Friedman et al. (2008).

Table 3. Simulation results: variable selection performances as measured by
overall error rate, sensitivity, specificity and the Matthews correlation coeffi-
cient, for four different procedures, based on 50 replications. Numbers in paren-
theses are the simulation standard errors. All the values are multiplied by 100

Model (p, q, n) Method MISR SPE SEN MCC

Model 1 (60, 30, 100) CAPME 17 (0) 89 (1) 58 (3) 45 (3)
CLIME 29 (0) 77 (1) 37 (2) 12 (2)
cGGM 17 (0) 87 (1) 61 (2) 44 (2)
GLASSO 30 (0) 75 (1) 42 (3) 13 (2)

Model 2 (200, 200, 200) CAPME 6 (0) 97 (0) 36 (2) 35 (1)
CLIME 9 (0) 95 (0) 7 (1) 2 (1)
cGGM 9 (0) 94 (0) 38 (2) 24 (0)
GLASSO 20 (0) 83 (0) 19 (1) 1 (1)

Model 3 (200, 200, 100) CAPME 16 (0) 87 (0) 19 (1) 4 (1)
CLIME 16 (0) 95 (0) 5 (1) 1 (1)
cGGM 37 (0) 65 (1) 4 (2) 1 (1)
GLASSO 12 (0) 93 (0) 8 (1) 1 (1)

Model 4 (800, 300, 200) CAPME 3 (0) 1 (0) 8 (0) 1 (1)
CLIME 12 (0) 90 (0) 12 (0) 1 (0)
cGGM 3 (0) 99 (0) 3 (1) 4 (1)
GLASSO 32 (0) 69( 0) 33 (0) 1 (0)

CAPME, �1 constrained minimization adjusted for covariates; CLIME, the method of Cai et al.
(2011); cGGM, the method of Yin & Li (2011); GLASSO, the method of Friedman et al. (2008);
MISR, misspecification rate; SEN, sensitivity; SPE, specificity; MCC, Matthews correlation coeffi-
cient.
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Fig. 1. The average receiver operating characteristic curves obtained by varying the tuning parameter
τn . The upper left panel is for Model 1, the upper right panel is for Model 2, the bottom left panel is for
Model 3 and the bottom right panel is for Model 4. The solid, dotted, dashed and dashed-dotted curves
represent the methods of Friedman et al. (2008), Cai et al. (2011), Yin & Li (2011) and our method,

respectively. The solid and the dotted curves overlap in the bottom plots.

that of Yin & Li (2011), with �̂ computed from the training dataset. The final estimates are
obtained using the chosen tuning parameters on the full datasets. No extra thresholding is
applied to the estimators.

Several different measures are used to compare the performance of these estimators. The esti-
mation error �̂ − � is evaluated in terms of the spectral norm, Frobenius norm and �1 norm.
The graph structure recovery is evaluated by the misspecification rate, specificity, sensitivity
and Matthews correlation coefficient, which are defined as:

MISR(�0, �̂) = FN + FP

p(p − 1)
, SPE = TN

TN + FP
, SEN = TP

TP + FN
,

MCC = TP × TN − FP × FN

{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}1/2
.

Here, TP, TN, FP, FN are the numbers of true positives, true negatives, false positives and false
negatives, respectively, where true positives are the nonzero entries of the nondiagonal elements
of �. The performances over 50 replications are reported in Tables 2 and 3.
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For the estimation error, see Table 2, when log(pq)/n is small or moderate as in Models 1
and 2, the performance of our method is comparable to that of the method in Yin & Li (2011).
As log(pq)/n increases, the proposed estimator has the smallest estimation errors. In terms of
graph structure recovery, see Table 3, adjusting for covariates yields better performance in general
as shown by the proposed method and the method of Yin & Li (2011). Our procedure performs
better than the other methods for Models 2–4, and it has a performance comparable to the method
of Yin & Li (2011) for Model 1.

The results presented in Tables 2 and 3 depend on the tuning parameters, which are selected
by five-fold crossvalidation for all the estimators. To further compare the performance on graph
structure recovery, we obtain the receiver operating characteristic curve for each simulated
dataset by varying the turning parameter τn . The tuning parameter for the regression coeffi-
cients, λn , for our method and that of Yin & Li (2011) is fixed at the value selected by the
crossvalidation. Figure 1 shows the receiver operating characteristic curves averaged over 50
replications. Our method has a comparable performance with that of Yin & Li (2011) for Model
1 and has better performance in the other models. Figure 1 also demonstrates that without
adjusting for the covariate effects, existing precision matrix estimation methods perform poorly
in terms of support recovery. The value of log(pq)/n is the key factor that determines the
performance of these methods. When it is large as in Model 3, all the methods perform rather
poorly. In Model 4, the dimension of the parameters p2 + pq is eleven times that of Model 3
and the sample size is only twice as large. However, since Model 4 has a smaller log(pq)/n
ratio, all methods have better performance than for Model 3.

6. ANALYSIS OF YEAST DATA

We illustrate our method using the yeast genetical genomics data set generated by
Brem & Kruglyak (2005). The dataset contains 112 yeast segregants grown from a cross
involving BY4716 and wild isolate RM11-1a. The RNA was isolated and cDNA was hybridized
to microarrays with 6216 yeast genes assayed on each array. Each of the 112 segregants were
individually genotyped at 2956 marker positions. Due to the small sample size and limited per-
turbation to the biological system, it is not possible to construct a gene network for all 6216 genes.
We instead focused our analysis on two sets of genes that are biologically relevant: the first set of
54 genes that belong to the yeast mitogen-activated protein kinase signalling pathway provided
by the Kyoto Encyclopedia of Genes and Genomes database (Kanehisa et al., 2010), another set
of 1207 genes of the protein-protein interaction network obtained from a previously compiled
set by Steffen et al. (2002) combined with protein physical interactions deposited in the Munich
Information center for Protein Sequences (Mewes et al., 2002).

The first set of genes includes 54 genes that belong to the yeast mitogen-activated protein
kinase signalling pathway. Figure 2 displays the illustrative pathway structure, showing how yeast
genes respond to different cellular signals. Some gene nodes such as Ste20, Ste11 and Ste7 appear
in multiple locations on this pathway. This directed signalling pathway explains how yeast cells
respond to different cellular signals.

To apply our method, we first select the genetic markers based on simple screening. There
are 188 markers that are marginally associated with at least two of the 54 genes with a p-value
less than or equal to 0·01. A total of 702 such associations are observed, suggesting there is a
large pool of possible confounders. We apply our method to this set of 54 genes and 188 mark-
ers and use five-fold crossvalidation to choose the tuning parameters as λ = 0·15 and τ = 0·24.
The covariate-adjusted estimation results in selecting 51 links among the 54 genes. In addition,
the method identifies 597 nonzero entries for the coefficient matrix, indicating that many gene
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Fig. 2. The yeast mitogen-activated protein kinase signalling pathway, illustrating the signalling paths in
responses to different signals. Some genes appear in multiple paths. The figure is downloaded from

http://www.wikipathways.org/index.php/Pathway:WP510 (Kelder et al., 2012).
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Fig. 3. Covariate-adjusted conditional independence graph constructed
based on the estimated covariate-adjusted precision matrix for the 54
genes on the yeast mitogen-activated protein kinase signalling pathway.

expression levels are affected by genetic variants. There are 528 pairs of genes sharing at least
one common genetic variant. Figure 3 shows the graph constructed by our method based on
the estimated precision matrix. While we do not expect that the estimated conditional Gaussian
graph can fully recover the true mitogen-activated protein kinase signalling pathway, we observe
that the estimated undirected graph indeed has biological meanings. For example, Fus1, Fus3,
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Ste12, Ste20, Ste18, Ste11, Dig2 and Cdc42 are linked together, suggesting a strong interaction
mechanism between these genes. These genes are all involved in the yeast pheromone and mating
process. In contrast, genes Sho1, Ste20, Ste11, Ctt1, Glo1, Ypd1 and Msn4 are linked since they
all participate in osmolyte synthesis. Finally, genes Swi4, Bni1, Bck1 and Fks1 are linked due to
their interaction in the cell wall remodelling process.

For comparison we also obtain the Gaussian graph estimated by constrained �1 penalization
of Cai et al. (2011) and the estimation of Friedman et al. (2008) without adjusting for the genetic
effects on gene expressions. We use five-fold crossvalidation to choose the tuning parameter for
both methods, resulting in λ = 0·20 and λ = 0·15, respectively. The method of Cai et al. (2011)
identifies 146 links and the method of Friedman et al. (2008) identified 543 links. Both graphs
include too many links and are hard to interpret biologically.

For the second dataset, we analyse genes that belong to the yeast protein-protein interaction
network (Steffen et al., 2002). We select 1207 genes with variance greater than 0·05. Five-fold
crossvalidation chooses the tuning parameters as λ = 0·15 and τ = 0·20, leading to an estimated
covariate-adjusted Gaussian graph with 3588 links out of 727 821 possible links. In contrast,
the method of Friedman et al. (2008) identifies 25 117 links with an optimal tuning parameter
λ = 0·23, and the method of Cai et al. (2011) identifies 5983 links with the selected tuning
parameter λ = 0·18. Again, it seems that the covariate-adjusted Gaussian graphical model gives
a sparser graph than the standard Gaussian graphical model when the genetic effects on gene
expressions are ignored.

7. EXTENSION

The two-stage procedure introduced in this paper can be extended to yield an iterative proce-
dure. For fixed tuning parameters λn and τn , given the current estimate of �0, say �̂0, one can
estimate �0 by solving the optimization problem

�̂ ∈ arg min
�∈R p×q

{|�|1 : |Sx�̂0 y − �Sx�̂0x |∞ � λn},

where Sx�̂0 y = n−1∑n
k=1(yk − ȳ)�̂−1

0 (xk − x̄)T and Sx�̂0x = n−1∑n
k=1(xk − x̄)�̂−1

0 (xk − x̄)T.
One can then iteratively update �0 and �0 until convergence. This however increases the com-
putational time dramatically.
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APPENDIX

Proofs of the theorems

The first lemma is an exponential inequality from Cai & Liu (2011) on the partial sums of independent
random variables.

LEMMA A1. Let ξ1, . . . , ξn be independent random variables with mean zero. Suppose that there exists
some t > 0 and B̄n such that

∑n
k=1 E{ξ 2

k et |ξk |} � B̄2
n . Then uniformly for 0 < x � B̄n,

pr

(
n∑

k=1

ξk � Ct B̄n x

)
� exp(−x2),

where Ct = t + t−1.
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Proof of Theorems 1 and 2. Without loss of generality, we assume that E(x) = 0. Recall that E(z) = 0.
We show that with probability greater than 1 − O{(pq)−1},

|Sxy − �0Sxx |∞ � λn. (A1)

To prove (A1), it suffices to show that∣∣∣∣1n
n∑

k=1

(zk − z̄)(xk − x̄)T

∣∣∣∣
∞

� λn. (A2)

Taking ξk = zki xk j in Lemma A1 and noting that maxi, j E exp(t |zki xk j |) � K for all |t | � min(η, η/K ),
we have

max
i, j

pr

(
n−1

∣∣∣∣∣
n∑

k=1

zki xk j

∣∣∣∣∣� λn/2

)
� 2(pq)−2.

By Lemma A1, we have

max
j

pr[|x̄ j | � C{log(pq)/n}1/2] � 2(pq)−2, max
i

pr[|z̄i | � C{log(pq)/n}1/2] � 2(pq)−2

for some constant C > 0. This implies (A2). Let �̂ = (γ̂i j ) = (γ̂1, . . . , γ̂p)
T be the solution of (3).

Then by (A1), we have |(�̂ − �0)Sxx | � 2λn . Moreover, by the equivalence between (3) and (4), we
have

∑q
j=1|γ̂i j | �

∑q
j=1|γ 0

i j | for all i = 1, . . . , p. Set ‖�0‖L∞ = max1�i�p
∑q

j=1|γ 0
i j |. We have ‖�̂‖L∞ �

‖�0‖L∞ . Also by Lemma A1, we have

pr[|�x − Sxx |∞ � C{log(pq)/n}1/2] � 2(pq)−1

for some constant C > 0. Then, with probability greater than 1 − O{(pq)−1}, we have

|(�̂ − �0)�x |∞ � |(�̂ − �0)Sxx |∞ + |(�̂ − �0)(�x − Sxx )|∞
� 2λn + C‖�̂ − �0‖L∞{log(pq)/n}1/2.

It follows that

|�̂ − �0|∞ � |(�̂ − �0)�x |∞‖�−1
x ‖L1

� 2‖�−1
x |L1λn + C |�−1

x ‖L1‖�̂ − �0‖L∞{log(pq)/n}1/2. (A3)

Let tn = |�̂ − �0|∞. Define h j = (h j1, . . . , h jq)
T = γ̂ j − γ 0

j , h1
j = (γ̂ j i I {|γ̂ j i | � 2tn} : 1 � i � q)T − γ 0

j

and h2
j = h j − h1

j . Then |h2
j |1 − |h1

j |1 + |γ 0
j |1 � |h2

j |1 + |h1
j + γ 0

j |1 = |h j + γ 0
j |1 � |γ 0

j |1. So we have
|h j |1 � 2|h1

j |1. It suffices to estimate |h1
j |1. We have

|h1
j |1 =

q∑
i=1

|γ̂ j i I {|γ̂ j i | � 2tn} − γ 0
j i |

=
q∑

i=1

|γ̂ j i − γ 0
j i |I {|γ̂ j i | � 2tn} +

q∑
i=1

|γ 0
j i |I {|γ̂ j i | < 2tn}

�
q∑

i=1

tn I {|γ 0
j i | � tn} +

q∑
i=1

|γ 0
j i |I {|γ 0

j i | < 3tn}

� t1−δ1
n

q∑
i=1

|γ 0
j i |δ1 + (3tn)

1−δ1

q∑
i=1

|γ 0
j i |δ1 .

Therefore,
‖�̂ − �0‖L∞ � Cs1(q)N 1−δ1

q λ1−δ1
n + C‖�̂ − �0‖1−δ1

L∞ s1(q)N 1−δ1
q λ1−δ1

n .
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If ‖�̂ − �0‖L∞ � 1, then we have ‖�̂ − �0‖L∞ � Cs1(q)N 1−δ1
q λ1−δ1

n . If ‖�̂ − �0‖L∞ > 1, then by (7), we
have for large n,

‖�̂ − �0‖L∞ � Cs1(q)N 1−δ1
q λ1−δ1

n + 1

2
‖�̂ − �0‖L∞ .

Thus (8) holds with probability greater than 1 − O{(pq)−1}. By (8) and (7), we have ‖�̂ − �0‖L∞ � 1
with probability greater than 1 − O{(pq)−1}. This, together with (A3), implies (10). Finally, (9) follows
from (8), (10) and the inequality p−1‖�̂ − �0‖2

F � |�̂ − �0|∞‖�̂ − �0‖L∞ . �

Proof of Theorems 4 and 5. Recall that E(z) = 0. Set

�̂z = 1

n

n∑
k=1

zk zT
k .

We suppose that

|(Syy − �̂z)�0|∞ � τn (A4)

and

|(�̂z − �0)�0|∞ � τn. (A5)

Then we have |Ip×p − Syy�0|∞ = |(Syy − �0)�0|∞ � 2τn . It follows that |�̂1 − �0|∞ � |(Ip×p −
�0Syy)�̂1|∞ + |�0(Ip×p − Sxx�̂1)|∞ � 2‖�0‖L1τn. This proves Theorem 5. Following the arguments as
the proof of Theorem 1, we can get Theorem 4.

It remains to prove (A4) and (A5). Write �n = �̂ − �0. Then we have

Sxx = 1

n

n∑
k=1

(zk − �n xk)(zk − �n xk)
T.

We now prove that with probability greater than 1 − O{(pq)−1},∣∣∣∣∣1n
n∑

k=1

zk xT
k�

T
n

∣∣∣∣∣
∞

� C M−1
p

{
log(pq)

n

}1/2

(A6)

and ∣∣∣∣∣1n
n∑

k=1

�n xk xT
k�

T
n

∣∣∣∣∣
∞

� C M−1
p

{
log(pq)

n

}1/2

. (A7)

First, recall that

max
i, j

pr

(
n−1

∣∣∣∣∣
n∑

k=1

zki xk j

∣∣∣∣∣� λn/2

)
� C(pq)−2. (A8)

Write �n = (δi j ), xk = (xk1, . . . , xkq)
T and zk = (zk1, . . . , zkp)

T. To prove (A6), we need to show only that
with probability greater than 1 − O{(pq)−1},

max
i,l

∣∣∣∣∣1n
n∑

k=1

(zki xk1δl1 + · · · + zki xkqδlq)

∣∣∣∣∣� C

{
log(pq)

n

}1/2

.
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By (8), (12) and (A8),

max
i,l

∣∣∣∣∣∣
1

n

n∑
k=1

q∑
j=1

zki xk jδl j

∣∣∣∣∣∣� ‖�̂ − �0‖l∞ max
i, j

∣∣∣∣∣1n
n∑

k=1

zki xk j

∣∣∣∣∣
� C M−1

p max
i, j

∣∣∣∣∣1n
n∑

k=1

zki xk j

∣∣∣∣∣
� C M−1

p {log(pq)/n}1/2.

Thus (A6) holds. It remains to show (A7), which is equivalent to show that with probability greater than
1 − O{(pq)−1},

max
i,l

∣∣∣∣∣∣
1

n

n∑
k=1

q∑
j=1

δi j xk j

q∑
j=1

δl j xk j

∣∣∣∣∣∣� C M−1
p

{
log(pq)

n

}1/2

. (A9)

By Lemma A1, we can get

max
j

pr

(
1

n

n∑
k=1

x2
k j � C

)
= O{(pq)−2}

for some constant C > 0. By (10), (8) and (12),

max
i

1

n

n∑
k=1

⎛
⎝ q∑

j=1

δi j xk j

⎞
⎠

2

� max
i

q∑
j=1

δ2
i j

1

n

n∑
k=1

x2
k j � C M−1

p

{
log(pq)

n

}1/2

with probability greater than 1 − O{(pq)−1}. This implies (A9).
We next prove (A5). Write

(�̂z − �0)�0 = 1

n

n∑
k=1

(zk zT
k�0 − Ezk zT

k�0).

Note that var(zki ) = σ 0
i i and var{(zT

k�0) j } = ω0
j j . By assumption (A2), maxi σ 0

i i max j ω0
j j � C0.

By Lemma A1, we have

max
i, j

pr

[∣∣∣∣∣1n
n∑

k=1

(zki (z
T
k�0) j − Ezki (z

T
k�0) j )

∣∣∣∣∣� C

{
log(pq)

n

}1/2
]

� C(pq)−2.

for some bounded constant C depending only on C0, η and K . This yields (A5). �

REFERENCES

BICKEL, P. & LEVINA, L. (2008). Covariance regularization by thresholding. Ann. Statist. 6, 2577–604.
BREM, R. & KRUGLYAK, L. (2005). The landscape of genetic complexity across 5,700 gene expression traits in yeast.

Proc. Nat. Acad. Sci. 102, 1572–7.
CAI, T. & LIU, W. (2011). Adaptive thresholding for sparse covariance matrix estimation. J. Am. Statist. Assoc. 106,

672–84.
CAI, T., LIU, W. & LUO, X. (2011). A constrained �1 minimization approach to sparse precision matrix estimation. J.

Am. Statist. Assoc. 106, 594–607.
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