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Summary. This paper considers statistical inference for the explained variance βᵀΣβ
under the high-dimensional linear model Y = Xβ + ε in the semi-supervised setting,
where β is the regression vector and Σ is the design covariance matrix. A calibrated es-
timator, which efficiently integrates both labelled and unlabelled data, is proposed. It is
shown that the estimator achieves the minimax optimal rate of convergence in the gen-
eral semi-supervised framework. The optimality result characterizes how the unlabelled
data contributes to the estimation accuracy. Moreover, the limiting distribution for the pro-
posed estimator is established and the unlabelled data has also proven useful in reducing
the length of the confidence interval for the explained variance. The proposed method is
extended to the semi-supervised inference for the unweighted quadratic functional, ‖β‖22.
The obtained inference results are then applied to a range of high-dimensional statistical
problems, including signal detection and global testing, prediction accuracy evaluation,
and confidence ball construction. The numerical improvement of incorporating the un-
labelled data is demonstrated through simulation studies and an analysis of estimating
heritability for a yeast segregant data set with multiple traits.

Keywords: Unlabelled Data, Confidence set, Heritability, Prediction Accuracy, Signal
Detection, Minimaxity.

1. Introduction

High-dimensional linear models are ubiquitous in contemporary statistical modeling with
a wide range of applications in many scientific fields. The early focus has been mainly
on developing methods for the recovery of the whole regression vector via penalized or
constrained `1 minimization approaches. Examples include the Lasso [Tibshirani, 1996],
Dantzig Selector [Candès and Tao, 2007], MCP [Zhang, 2010], square-root Lasso [Belloni
et al., 2011], and scaled Lasso [Sun and Zhang, 2012]. There have been significant recent
interests in statistical inference for low-dimensional functionals, including confidence
intervals and hypothesis testing for individual regression coefficients [Zhang and Zhang,
2014, van de Geer et al., 2014, Javanmard and Montanari, 2014a,b], minimaxity and
adaptivity of confidence intervals for general linear functionals [Cai and Guo, 2017c],
estimation of the signal-to-noise-ratio [Verzelen and Gassiat, 2016, Janson et al., 2015],
inference for the `q accuracy of a given estimator [Cai and Guo, 2017a], and estimation
of quadratic functionals [Janson et al., 2015, Guo et al., 2017]. Motivated by a range
of applications, the present paper considers the semi-supervised inference problem in
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high dimensions, where the main statistical goal is to integrate both the labelled and
unlabelled data, and propose efficient point and interval estimators.

1.1. Problem Formulation and Motivations
We consider the high-dimensional linear model with a random design,

yi = Xᵀ
i·β + εi, for 1 ≤ i ≤ n (1)

where yi ∈ R and Xi· ∈ Rp denote respectively the outcome and the measured covariates
of the i-th observation, εi denotes the error and β ∈ Rp denotes the high-dimensional
regression vector. The covariates Xi· are i.i.d. p-dimensional random vectors with mean
0 and covariance matrix Σ and the errors {εi}1≤i≤n are i.i.d random variables with mean
0 and variance σ2 and independent of {Xi·}1≤i≤n. The explained variance under the
regression model (1) is represented by Q = Var(Xᵀ

i·β) = βᵀΣβ. We focus on the semi-
supervised setting, where the data is a combination of the labelled data {yi, Xi·}1≤i≤n in
the regression model (1) and the unlabelled data {Xi·}n+1≤i≤n+N . Here the measured
covariates of both the labelled and unlabelled data are assumed to be independent and
follow the same distribution. The more conventional supervised setting is treated as a
special case with no additional unlabelled data.

The setting of semi-supervised learning is commonly seen in applications where the
outcomes are more expensive to collect than the covariates. For example, in the analy-
sis of Electronic Health Records (EHR) databases, the covariates are easy to be au-
tomatically extracted while labelling of the outcomes is costly and time-consuming
[Chakrabortty and Cai, 2017, Gronsbell and Cai, 2017]. In addition, semi-supervised
learning naturally arises in the integrative analysis of multiple (genetics) data sets where
the covariates are the same across all data sets but the outcomes measured vary from
study to study due to the specific purposes of individual studies [van Iperen et al., 2017].
This can be naturally formulated as semi-supervised learning, where the pre-specified
outcome is only measured over one or several (but not all) data sets while the covariates
are measured across all data sets.

The construction of the optimal estimator and confidence intervals for Q = βᵀΣβ in
the semi-supervised and high-dimensional setting is not only of significant interest on its
own right, but is also closely connected to several other important statistical problems.

(a) Heritability. Heritability is among the most important genetics concepts. Under
the model (1) with the outcome normalized to have unit variance, βᵀΣβ is a mea-
sure of heritability, which quantifies the total variance explained by genetic variants
[Owen, 2012, Guo et al., 2017, Janson et al., 2015, Verzelen and Gassiat, 2016].

(b) Signal-to-Noise Ratio (SNR) and Proportion-of-Variance Explained (PVE).
SNR and PVE are important statistics concepts and are defined respectively as
βᵀΣβ/(βᵀΣβ + σ2) and βᵀΣβ/σ2 under model (1). Together with a good estima-
tor of σ2 [Sun and Zhang, 2012, Belloni et al., 2011], the results for βᵀΣβ established
in this paper are useful for inference of SNR and PVE.

(c) Signal Detection and Global Testing. Inference for the explained variance
can be applied to testing the global hypothesis H0 : β = βnull for βnull ∈ Rp,
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which includes signal detection as a special case with βnull = 0. The connection
is revealed in the adjusted linear model, yi − Xᵀ

i·β
null = Xᵀ

i·
(
β − βnull

)
+ εi for

1 ≤ i ≤ n, where testing for H0 : β = βnull is recast as testing the hypotheses
H0 :

(
β − βnull

)ᵀ
Σ
(
β − βnull

)
= 0 versus H1 :

(
β − βnull

)ᵀ
Σ
(
β − βnull

)
> 0.

(d) Prediction Accuracy Assessment. Accuracy assessment is of significant im-
portance in applications. Let β̌ denote a given estimator based on the training
data. We define the out-of-sample prediction accuracy for a given observation xnew

as Exnew

(
xᵀnew(β̌ − β)

)2
= (β̌ − β)ᵀΣ(β̌ − β). We introduce the following adjusted

linear model for the independent test data {Xi·, yi}1≤i≤n,

yi −Xᵀ
i· β̌ = Xᵀ

i·
(
β − β̌

)
+ εi for 1 ≤ i ≤ n. (2)

Inference results developed for the explained variance can be applied to (2) to

obtain the corresponding results for the prediction accuracy Exnew

(
xᵀnew(β̌ − β)

)2
.

(e) Confidence Ball for β. Construction of confidence balls for β is another impor-
tant application. Based on (2), a confidence interval (L(Z), U(Z)) for (β̌−β)ᵀΣ(β̌−
β) leads to a confidence ball for β centering at β̌,

{
β : ‖β − β̌‖22 ≤ U(Z)/λmin(Σ)

}
,

where λmin(Σ) denotes the smallest eigenvalue of Σ.

More detailed discussions about these statistical applications are present in Section 5.

1.2. Results and Contributions
A central question in semi-supervised learning is how to efficiently use both labelled and
unlabelled data [Chakrabortty and Cai, 2017, Gronsbell and Cai, 2017]. We introduce a
novel two-step estimator, Calibrated High-dimensional Inference for Variance Explained
(CHIVE), where the first step is to plug in the estimators of β and Σ, denoted by β̂ and

Σ̂, respectively, and the second step is to calibrate this plug-in estimator β̂ᵀΣ̂β̂ through
estimating a dominating term in its error decomposition. The second step is to rebalance
the bias and variance and improve the estimation accuracy. Different forms of β̂ and
Σ̂ can be taken as inputs of CHIVE method and this flexibility is useful in integrating
the unlabelled data to estimate Σ more accurately. This idea is then extended to semi-
supervised inference for the unweighted quadratic functional ‖β‖22, where the additional
unlabelled data facilitates the estimation of Σ−1.

Another important question is whether the unlabelled data has been efficiently uti-
lized in semi-supervised learning. We address this question by establishing the minimax
optimal rate of convergence for estimating βᵀΣβ, where the optimal rate is M/

√
n +

M2/
√
N + n + k log p/n, with p, n, N , k, and M denoting respectively the dimension,

the size of the labelled data, the size of the unlabelled data, the sparsity, and the `2
norm of β. The proposed CHIVE estimator achieves this optimal rate, which justifies
the efficient use of the unlabelled data. The optimal rate is not just achieved for the
case where there is a large amount of unlabelled data, but is also for any given amount
of unlabelled data. The minimax optimal rate characterizes the fundamental difficulty
of the inference problem in the semi-supervised setting and is independent of specific
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procedures. This minimax rate also reveals that the unlabelled data is most effective
when the signal strength ‖β‖2 is large.

We establish the limiting distribution of the CHIVE estimator and construct data-
driven confidence intervals for βᵀΣβ based on this estimator. The limiting distribution
is normal and its variance is scaled to the proportion of the labelled data, which is
unique to the semi-supervised setting. A larger amount of unlabelled data leads to a
smaller proportion of the labelled data and hence a smaller asymptotic variance, which
leads to a shorter confidence interval for βᵀΣβ. The effect of the unlabelled data is also
demonstrated in the numerical studies. Specifically, in comparison with the estimators
based only on the labelled data, the RMSE for estimation and the length of confidence
intervals can be reduced by as much as 70%. See details in Section 6.

The improvement in semi-supervised inference for ‖β‖22 is similar to that for βᵀΣβ
at a high level but different in technical details. Specifically, the estimation accuracy is
significantly improved in the strong signal regime, and the improvement is limited if the
signal strength ‖β‖22 is not large enough. Construction of confidence intervals for ‖β‖22
also gets easier in the sense that the condition for sample size and model complexity is
weakened by making use of the unlabelled data.

The inference results obtained in this paper are applied to (i) signal detection and
global testing, (ii) prediction accuracy evaluation, and (iii) confidence ball construction.
For signal detection, we control the type I error and characterize the type II error by
establishing the power function under a local alternative. The results can be easily
extended to the general global testing problem. For evaluation of out-of-sample predic-
tion accuracy of a given sparse estimator of β, both the point and interval estimators
are developed. We establish the estimation error bound for the point estimator of the
prediction accuracy and control the length of the corresponding confidence interval. A
confidence ball for the regression vector β with controlled radius is also constructed. We
stress that these procedures are data-driven and do not require a priori knowledge of the
design covariance matrix Σ or the noise level σ. See more details in Section 5.

1.3. Related Work
Estimation and inference for quadratic functionals have been studied in the literature
in a range of settings. In particular, minimax and adaptive estimation of quadratic
functionals plays an important role in nonparametric inference and has been well studied
in density estimation, nonparametric regression, and white noise with drift model. See,
for example, Bickel and Ritov [1988], Donoho and Nussbaum [1990], Efromovich and
Low [1996], Laurent and Massart [2000], Cai and Low [2005, 2006], Collier et al. [2015].

The most related works to the current paper are Verzelen and Gassiat [2016] and
Guo et al. [2017], which considered estimation of βᵀΣβ/σ2 and ‖β‖22, respectively, in
high-dimensional linear regression. The main difference between the current paper and
these two related works are two-fold: (a) Verzelen and Gassiat [2016] and Guo et al.
[2017] only considered the supervised setting instead of the semi-supervised setting. As
demonstrated in both theoretical and numerical justifications, a careful integration of
the unlabelled data proves useful in improving the estimation accuracy and reducing
the length of constructed confidence intervals. (b) The focus of Verzelen and Gassiat
[2016] and Guo et al. [2017] is about point estimation while the current paper studies
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the more challenging problem of uncertainty quantification and also related hypothesis
testing, in addition to point estimation. As is well known, uncertainty quantification in
high dimensions is significantly different from and more involved than point estimation
[Nickl and van de Geer, 2013, Cai and Guo, 2017c].

Another related paper, Janson et al. [2015], studied the construction of confidence
intervals for ‖β‖22 in the setting of Σ = I, moderate dimension where n/p → ξ ∈ (0, 1)
and no sparsity assumption on β. The inference problem considered in the current paper
is significantly different from the setting considered in Janson et al. [2015], mainly due
to the complicated geometry induced by the sparsity structure and the unknown design
covariance matrix Σ. Other works related to quadratic functional inference include con-
struction of confidence intervals for the `2 loss of the estimator considered in Cai and
Guo [2017a]. In addition, Javanmard and Lee [2017], Zhu and Bradic [2017] considered
hypothesis testing for high-dimensional linear regression. As another significant differ-
ence, the current paper studies how to efficiently integrate the labelled and unlabelled
data in the general semi-supervised setting while all the aforementioned works solely
focused on the supervised regression.

The statistical applications studied in this paper have also been considered separately
in the literature. Signal detection was studied in Ingster et al. [2010], Arias-Castro et al.
[2011] under the linear model (1) in a special setting where the design covariance matrix
Σ is equal to or closed to the identity matrix. In this setting, Ingster et al. [2010],
Arias-Castro et al. [2011] established optimal signal detection method and theory. The
results established in the present paper enable the study of signal detection under a
general setting where the design covariance matrix Σ is unknown. The confidence ball
construction for the whole regression vector was considered in Nickl and van de Geer
[2013] in the case of known σ and the optimal size and possibility of adaptive confidence
balls was also established. The results obtained in the current paper lead to a confidence
ball construction for β in the case of unknown σ. A problem related to prediction
accuracy is inference for the estimation accuracy, which was considered in Cai and Guo
[2017a], Janson et al. [2015]. However, inference for the prediction accuracy and that
for the estimation accuracy are different problems.

1.4. Organization of the Paper

The rest of the paper is organized as follows. In Section 2, we introduce in detail the
CHIVE estimator and establish its minimax rate optimality in the semi-supervised set-
ting. Section 3 focuses on quantifying the uncertainty of the CHIVE estimator and
construction of the confidence intervals for βᵀΣβ. In Section 4, we extend the method-
ology to the semi-supervised inference for ‖β‖22. We apply in Section 5 the developed
procedures to tackle three important problems, signal detection and global testing, pre-
diction accuracy evaluation and confidence ball construction. Simulation results are
given in Section 6 to illustrate the numerical improvement through incorporating the
unlabelled data. An analysis of a yeast data set is presented in Section 7. A discussion
is provided in Section 8. The proofs and the additional simulation results are presented
in the appendix.
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2. Semi-supervised Estimation of βᵀΣβ

In this section, we first introduce the calibration methodology for estimating the ex-
plained variance in the general semi-supervised framework and then establish the min-
imax convergence rate of estimating βᵀΣβ. A significant statistical gain is obtained by
carefully integrating the unlabelled data and the proposed estimator is shown to achieve
the optimal rate in the semi-supervised setting. The supervised setting and the setting
with known design covariance matrix are then discussed as special cases. We begin with
the notation that will be used in the rest of the paper.

For a matrix A, Ai·, A·j , and Ai,j denote respectively the i-th row, j-th column, and
(i, j) entry of the matrix A. The spectral norm of A is ‖A‖2 = sup‖x‖2=1 ‖Ax‖2 and the

matrix `1 norm is ‖A‖L1
= sup1≤j≤p

∑p
i=1 |Aij |. For a symmetric matrix A, λmin (A)

and λmax (A) denote respectively the smallest and largest eigenvalue of A. For a set S,
|S| denotes the cardinality of S. For a vector x ∈ Rp, supp(x) denotes the support of x

and the `q norm of x is defined as ‖x‖q = (
∑p

i=1 |xi|q)
1

q for q ≥ 0 with ‖x‖0 = |supp(x)|
and ‖x‖∞ = max1≤j≤p |xj |. For a ∈ R, a+ = max {a, 0}. We use c and C to denote
generic positive constants that may vary from place to place. For a sequence of random

variables Xn indexed by n, we use Xn
p→ X and Xn

d→ X to represent that Xn converges
to X in probability and in distribution, respectively. For a sequence of random variables
Xn and numbers an, we define Xn = op(an) if Xn/an converges to zero in probability.
For two positive sequences an and bn, an . bn means an ≤ Cbn for all n and an & bn
if bn . an and an � bn if an . bn and bn . an, and an � bn if limn→∞

an
bn

= 0 and
an � bn if bn � an. We define the signal-to-noise ratio (SNR) in the context of model
(1) as SNR = 1

σ

√
βᵀΣβ.

2.1. Calibration of Plug-in Estimators
In semi-supervised learning, we observe the labelled data (X1·, y1), · · · , (Xn·, yn) and
the unlabelled data Xn+1·, , · · · , Xn+N ·, where X1·, · · · , Xn·, Xn+1·, , · · · , Xn+N · are i.i.d

realizations of p-dimensional covariates. We use β̂ and Σ̂ to denote some estimators of β
and Σ, which will be specified later. A preliminary estimator of the quadratic functional
Q = βᵀΣβ is the plug-in estimator β̂ᵀΣ̂β̂, which has the following error decomposition,

β̂ᵀΣ̂β̂ − βᵀΣβ = 2β̂ᵀΣ̂(β̂ − β)− (β̂ − β)ᵀΣ̂(β̂ − β) + βᵀ(Σ̂− Σ)β. (3)

Since the first term 2β̂ᵀΣ̂(β̂ − β) on the right hand side can be estimated in a data-

dependent way, the corresponding estimation error of the preliminary estimator β̂ᵀΣ̂β̂
can be further reduced. We estimate the term 2β̂ᵀΣ̂(β̂−β) by −2β̂ᵀ 1

n

∑n
i=1Xi·(yi−Xi·β̂)

and propose the following calibrated estimator,

Q̂(β̂, Σ̂) = β̂ᵀΣ̂β̂ + 2β̂ᵀ 1

n

n∑
i=1

Xi·(yi −Xi·β̂). (4)

This estimator is referred to as the Calibrated High-dimensional Inference for Variance
Explained (CHIVE) estimator. The calibration step in (4) is essentially to improve the

plug-in estimator β̂ᵀΣ̂β̂ through re-balancing the bias and variance.



Semi-supervised Inference for Explained Variance 7

The CHIVE estimator requires three inputs, the initial estimators β̂ and Σ̂ and the
data (X, y). With this machinery, we have the flexibility of choosing the initial estimators

β̂ (and also σ̂2) and Σ̂ based on the observed data. We begin with the estimator for β
and σ2 and then move on to the estimator for Σ. Throughout the paper, we assume
that the estimators β̂ and σ̂2 satisfy the following conditions.

(B1) With probability larger than 1− γ(n) where γ(n)→ 0, the estimator β̂ satisfies

max{ 1

n

n∑
i=1

[Xᵀ
i·(β̂ − β)]2, ‖β̂ − β‖22} .

k log p

n
σ, ‖(β̂ − β)Sc‖1 ≤ C0‖(β̂ − β)S‖1

where S = supp(β) and C0 > 0 is some positive constant.

(B2) σ̂2 is a consistent estimator of σ2, that is,
∣∣σ̂2/σ2 − 1

∣∣ p→ 0.

One of the key assumptions for the general penalized estimators satisfying (B1) and (B2)
is the following restricted eigenvalue condition on the population covariance matrix Σ,

κ(k,C0,Σ) = min
S∈{1,··· ,p}, |S|≤k

min
v 6=0,‖vSc‖1≤C0‖vS‖1

‖Σ
1

2 v‖2
‖vS‖2

≥ c,

for some positive constant c > 0. This population version restricted eigenvalue condition
implies the sample version restricted eigenvalue condition introduced in Bickel et al.
[2009], under the assumption that the covariates Xi· are in a certain broad family of
sub-gaussian random vectors and the sparsity k satisfies k . n/ log p; See Zhou [2009],
Raskutti et al. [2010] for the exact statement.

Estimators satisfying (B1) and (B2). The scaled lasso estimator {β̂, σ̂} defined by

{β̂, σ̂} = arg min
β∈Rp,σ∈R+

‖y −Xβ‖22
2nσ

+
σ

2
+

√
2.01 log p

n

p∑
j=1

‖X·j‖2√
n
|βj | (5)

has been shown in Sun and Zhang [2012] to satisfy (B1) and (B2) under regularity
conditions. See also Lemma 1 in Guo et al. [2017] for more details. Since the square
root lasso estimator [Belloni et al., 2011] is numerically the same with the scaled Lasso
estimator, the square root lasso estimators of β and σ also satisfy (B1) and (B2). In
addition, with a prior knowledge of σ, the Lasso estimator of β and other variants are
also shown to satisfy the above condition (B1); see Candès and Tao [2007], Zhang [2010],
Ye and Zhang [2010] for more details.

Now, we turn to the estimators of Σ. This is exactly the place where we make use of
the unlabelled data. Specifically, we pool the information contained in both the labelled
and unlabelled data and estimate Σ by Σ̂S = 1

n+N

∑n+N
i=1 Xi·X

ᵀ
i· . Then we use β̂ and Σ̂S

as inputs and utilize the calibration idea introduced in (4),

Q̂(β̂, Σ̂S) = β̂ᵀΣ̂S β̂ + 2β̂ᵀ 1

n

n∑
i=1

Xi·(yi −Xᵀ
i· β̂). (6)

When there is no confusion, we use Q̂ to denote the estimator proposed in (6). We
introduce the following regularity conditions and then establish the convergence rate of
the proposed estimator in (6) in Theorem 1.
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(A1) The regression vector β is assumed to be k-sparse; The errors {εi}1≤i≤n are indepen-
dent of {Xi·}1≤i≤n+N and follow i.i.d sub-gaussian random variable with mean zero
and variance σ2; The rows Xi· are i.i.d. p-dimensional random vectors and can be
expressed in the form of Xi· = Σ

1

2Zi· where Zi· ∈ Rp is a subgaussian random vec-
tor of mean 0 and identity covariance matrix and Σ has a bounded restricted largest
eigenvalue ρmax(k,Σ), which is defined as ρmax(k,Σ) = max‖v‖2=1, ‖v‖0≤k v

ᵀΣv.

(A2)
√
E (βᵀX1·X

ᵀ
1·β − βᵀΣβ)2 ≥ c0β

ᵀΣβ. for some positive constant c0 > 0.

Assumption (A1) requires that the restricted largest eigenvalue ρmax(k,Σ) is upper
bounded, where the “restricted” here means that the maximum in the definition of
ρmax(k,Σ) is taken with respect to k-sparse vectors. Note that the restricted (smallest)
eigenvalue condition is not required for the theoretical analysis of the proposed estimator
Q̂ as long as the estimator β̂ of β satisfies the condition (B1). Define U = Xᵀ

i·β/
√
βᵀΣβ,

where E(U) = 0 and E(U2) = 1. Assumption (A2) is placed on this random variable U
such that Var(U2) is not vanishing. This assumption is imposed such that Var(U2) can
be well estimated and this type of assumption has been introduced in covariance matrix
estimation literature [Cai and Liu, 2011] for the same purpose.

Theorem 1. Suppose that Condition (A1) holds and k ≤ cn/ log p for some constant

c > 0. For any estimator β̂ satisfying Condition (B1), with probability at least 1−γ(n)−
C(p−c + exp(−cN) + e−ct

2

), the estimator Q̂ = Q̂(β̂, Σ̂S) defined in (6) satisfies∣∣∣Q̂−Q
∣∣∣ . t

σ‖Σ
1

2β‖2√
n

+ t
βᵀΣβ√
N + n

+ (1 +
‖Σ

1

2β‖2
σ

N

n+N
)
k log p

n
σ2. (7)

Under the additional assumptions k �
√
n/log p and SNR� k log p/

√
n,

√
n
(

Q̂−Q
)

√
4σ2βᵀΣβ + ρE (βᵀX1·X

ᵀ
1·β − βᵀΣβ)2

d→ N(0, 1) (8)

where ρ = limn→∞
n

N+n .

As a remark, the probability 1− γ(n)− C(p−c + exp(−cN) + e−ct
2

) holds for the finite
sample n and finite dimension p and also any non-negative constant t ≥ 0. However,
the established result is more interesting over the regime min{p, n} → ∞ and t → ∞
as in this scenario, the corresponding probability 1− γ(n)−C(p−c + exp(−cN) + e−ct

2

)

approaches 1. Since Q ≥ 0, the convergence rate (7) also holds for Q̂+, the positive part

of Q̂. To keep the notation simpler, we only present the results for Q̂ in this paper.
The rate of convergence in (7) reveals the effect of the unlabelled data. The sample

size of the unlabelled data, N , appears only in the second term t β
ᵀΣβ√
N+n

. An inter-

esting observation is that the usefulness of the unlabelled data varies across different
signal strengths. If the signal is strong in the sense that SNR & max{1, k log p/

√
n},

in which case the term t β
ᵀΣβ√
N+n

is dominant in (7), then the additional unlabelled data
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reduces the estimation error significantly; if the signal is weak in the sense that SNR�
max{1, k log p/

√
n}, then the impact of the additional unlabelled data is limited.

To demonstrate the effect of calibration, we note that an upper bound for the term
β̂ᵀΣ̂(β̂− β) in (3) is at the order of magnitude σ‖Σ

1

2β‖2
√
k log p/n while the remaining

error after the calibration step is tσ‖Σ
1
2 β‖2√
n

+(1+ ‖Σ
1
2 β‖2
σ

N
n+N )k log p

n σ2, as shown in (7). By

comparing these upper bounds, we note that the calibration step is useful in reducing
the upper bound for the rate of convergence. This reduction of estimation error has
also been numerically demonstrated in Section 6.2. The terms t β

ᵀΣβ√
N+n

+ k log p
n σ2 in (7)

capture the convergence rate of the last two terms in (3).
The distributional result in (8) is established under the additional assumptions k �√
n/log p and SNR� k log p/

√
n. These additional assumptions are imposed to ensure

that the variance component tσ‖Σ
1
2 β‖2√
n

+ t β
ᵀΣβ√
N+n

, captured by the normal limiting distri-

bution after re-scaling, dominates the bias component (1 + ‖Σ 1
2 β‖2
σ

N
n+N )k log p

n σ2. Since
the bias term is hard to characterize, we impose these sufficient conditions such that the
variance term is the dominating term. The normal limiting distribution in (8) can be
used in Section 3 to construct confidence intervals for βᵀΣβ.

Another interesting phenomenon is that the limiting distribution established in (8)
depends on the proportion of the labelled data, which is unique in the semi-supervised
inference problem. If the amount of unlabelled data dominates that of labelled data (that

is, ρ = 0), then the limiting distribution in (8) is simplified to
√
n(Q̂−Q)√
4σ2βᵀΣβ

d→ N(0, 1). Theo-

rem 1 demonstrates that the CHIVE estimator integrating the unlabelled data improves
the rate of convergence in estimating the explained variance. The lower bound given in
the next subsection shows that CHIVE is optimal in terms of the rate of convergence.

2.2. Optimal Estimation in the Semi-supervised Setting
In this section, we further investigate the fundamental limit for estimating Q = βᵀΣβ
in the general semi-supervised setting over the following specific parameter space,

Θ (k,M) =

{
θ = (β,Σ, σ) : ‖β‖0 ≤ k, M/2 ≤ ‖β‖2 ≤M,

1

M1
≤ λmin (Σ) ≤ λmax (Σ) ≤M1, σ ≤M2

}
,

where M1 ≥ 1 and M2 > 0 are positive constants. Here k quantifies the sparsity of β
and M quantifies the signal strength of the true signal β in terms of its `2 norm. Both
k and M are allowed to grow with n and p. The other conditions 1/M1 ≤ λmin (Σ) ≤
λmax (Σ) ≤M1 and σ ≤M2 are regularity conditions. The following theorem establishes
the minimax lower bounds for estimating Q over the parameter space Θ(k,M).

Theorem 2. Suppose k ≤ cmin {n/ log p, pν} for some constants c > 0 and 0 ≤ ν <
1
2 . Then

inf
Q̃

sup
θ∈Θ(k,M)

P
(∣∣∣Q̃−Q

∣∣∣ & M2

√
N + n

+ min

{
M√
n

+
k log p

n
,M2

})
≥ 1

4
. (9)

One interesting observation of the above theorem is that only the first term in the lower
bound is involved with the amount of the unlabelled data. Theorems 1 and 2 together
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show that the estimator proposed in Section 2.1 is minimax rate optimal under regularity
conditions.

Corollary 1. Suppose that Condition (A1) holds and k ≤ cmin {n/ log p, pν} for

some constants c > 0 and 0 ≤ ν < 1
2 . For any estimator β̂ satisfying Condition (B1), the

estimator Q̂ defined in (6) is minimax rate optimal over Θ(k,M) where
√
k log p/n .

M ≤ C for some constant C > 0, that is,

sup
θ∈Θ(k,M)

P
(∣∣∣Q̂−Q

∣∣∣ & t
M2

√
n+N

+
M√
n

+
k log p

n

)
≤ C(p−c + exp(−cN) + e−ct

2

) + γ(n)

(10)

The CHIVE estimator attains the optimal convergence rate when the `2 norm of β is
relatively strong, that is, M is bounded away from zero by

√
k log p/n. As shown in

Theorem 2, for the case where M �
√
k log p/n, the lower bound of estimating βᵀΣβ

is M2. This optimal convergence rate can be achieved by a trivial estimator 0.
In Corollary 1, the lower bound (9) is only matched for the regime where M ≤ C for

some constant C > 0. For theoretical interest, we will modify the proposed estimator Q̂
defined in (6) such that the modified version achieves the lower bound (9) over the regime

M &
√
k log p/n. We randomly split the data (y,X) into two subsamples

(
y(1), X(1)

)
with sample size n1 and

(
y(2), X(2)

)
with sample size n2, where n1 � n2. Let β̂ denote an

estimator which is produced by the first sub-sample
(
y(1), X(1)

)
and satisfies Condition

(A1). One example of such an estimator is the scaled Lasso estimator (5) applied to the
subsample

(
y(1), X(1)

)
. We propose the following estimator of Q,

Q̂(β̂, Σ̂(2)) = β̂ᵀΣ̂(2)β̂ + 2β̂ᵀ 1

n2

n∑
i=n1+1

Xᵀ
i·(yi −Xi·β̂), (11)

where Σ̂(2) = 1
n+N−n1

∑n+N
i=n1+1Xi·X

ᵀ
i· . The following theorem establishes the conver-

gence rate of Q̂(β̂, Σ̂(2)) and shows that this estimator achieves the optimal convergence

rate of estimating Q for M &
√
k log p/n.

Theorem 3. Suppose that Condition (B1) holds and k ≤ cn/ log p for some constant

c > 0. Let β̂ be an estimator depending on the first half sample
(
y(1), X(1)

)
and satisfying

Condition (A1). Then with probability larger than 1−γ(n)−C(p−c+exp(−cN)+e−ct
2

),

the estimator Q̂(β̂, Σ̂(2)) defined in (11) satisfies∣∣∣Q̂(β̂, Σ̂(2))−Q
∣∣∣ . (t+ 1)

σ‖Σ
1

2β‖2√
n

+ t
βᵀΣβ√
N + n

+
k log p

n
σ2. (12)

Hence, the estimator Q̂(β̂, Σ̂(2)) defined in (11) achieves the optimal estimation rate over
Θ(k,M) in the sense of (10) over the regime k ≤ cmin {n/ log p, pν} for some constants

c > 0 and 0 ≤ ν < 1
2 and M &

√
k log p/n.

2.3. Two Special Cases
We now turn to two important special cases, the inference in the supervised setting and
the setting with known design covariance matrix.
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2.3.1. Case I: Supervised Inference

In the supervised setting without any additional unlabelled data, Σ is estimated by
Σ̂L = 1

n

∑n
i=1Xi·X

ᵀ
i· . The following corollary establishes the convergence rate of the

estimator Q̂ = Q̂(β̂, Σ̂L), which is a special case of the estimator (6) with N = 0.

Corollary 2. Suppose that Condition (A1) holds and k ≤ cn/ log p for some con-

stant c > 0. For any estimator β̂ satisfying (B1), with probability larger than 1− γ(n)−
C(p−c + exp(−ct2)), Q̂(β̂, Σ̂L) proposed in (4) with Σ̂L = 1

n

∑n
i=1Xi·X

ᵀ
i· satisfies

∣∣∣Q̂(β̂, Σ̂L)−Q
∣∣∣ . t

σ‖Σ
1

2β‖2 + βᵀΣβ√
n

+
k log p

n
σ2. (13)

Under the additional assumption (A2) and SNR� min
{
k log p/

√
n, (k log p/

√
n)

1/2
}

,

√
n
(

Q̂(β̂, Σ̂L)−Q
)

√
4σ2βᵀΣβ + E (βᵀX1·X

ᵀ
1·β − βᵀΣβ)2

d→ N(0, 1) (14)

Corollary 2 basically follows from Theorem 1 withN = 0 except for some technical dif-
ference. By comparing Corollary 2 with Theorems 1 and 3, we observe that the unlabelled
data leads to a faster convergence rate by reducing βᵀΣβ/

√
n in (13) to βᵀΣβ/

√
N + n

in (7) and (12); the unlabelled data does not affect other terms in the convergence rate.
The effect of the unlabelled data is also revealed in the limiting distribution in (14),

where the exact variance level is reduced from [4σ2βᵀΣβ + E (βᵀX1·X
ᵀ
1·β − βᵀΣβ)2]/n

in (14) to [4σ2βᵀΣβ + ρE (βᵀX1·X
ᵀ
1·β − βᵀΣβ)2]/n in (8) for ρ = limn→∞

n
N+n ∈ [0, 1].

The following corollary further establishes the minimax rate for estimating βᵀΣβ in the
supervised setting.

Corollary 3. Suppose that Condition (A1) holds and k ≤ cmin {n/ log p, pν} for

some constants c > 0 and 0 ≤ ν < 1
2 . For any estimator β̂ satisfying Condition (B1), the

estimator Q̂ = Q̂(β̂, Σ̂L) defined in (4) with Σ̂L = 1
n

∑n
i=1Xi·X

ᵀ
i· achieves the optimal

estimation rate over Θ(k,M) for M &
√
k log p/n, that is, Q̂(β̂, Σ̂L) satisfies

sup
θ∈Θ(k,M)

P
(∣∣∣Q̂(β̂, Σ̂L)−Q

∣∣∣ & t
M2

√
n

+
M√
n

+
k log p

n

)
≤ C(p−c + e−ct

2

) + γ(n). (15)

Remark 1. In the supervised setting, [Guo et al., 2017] established that the optimal

rate of estimating ‖β‖22 over Θ(k,M) for M &
√
k log p/n is M/

√
n+ (M + 1)k log p/n.

In contrast to (15), we can see that neither of these two problems is easier than the other,
where there is an additional term M2/

√
n in (15) and an additional term Mk log p/n in

the optimal convergence rate of estimating ‖β‖22.
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Inference for βᵀΣβ in the supervised setting is closely connected to Sun and Zhang
[2012], Verzelen and Gassiat [2016], where Sun and Zhang [2012] studied the inference
problem for σ2 and Verzelen and Gassiat [2016] studied the estimation of βᵀΣβ/σ2. In
particular, Sun and Zhang [2012] proposed the scaled lasso estimator σ̂2 in (5) to estimate
σ2 and Verzelen and Gassiat [2016] proposed to estimate βᵀΣβ by

(
1
n‖y‖

2
2 − σ̂2

)
+

as an

intermediate step of estimating βᵀΣβ/σ2. For the estimator Q̂(β̂, Σ̂L) defined in (4), if

β̂ is taken as the scaled Lasso estimator, then Q̂(β̂, Σ̂L) is reduced to being the same as
the estimator proposed in Verzelen and Gassiat [2016], where the equivalence is shown
by the following expression,

β̂ᵀΣ̂Lβ̂ + 2β̂ᵀ 1

n

n∑
i=1

Xi·(yi −Xi·β̂) =
1

n

(
‖y‖22 − ‖y −Xβ̂‖22

)
=

1

n
‖y‖22 − σ̂2. (16)

As a remark, in the supervised setting, the calibration idea in (4) provides a completely
new perspective on estimation of βᵀΣβ, where instead of using the expression Q =
E(y2

i ) − σ2 and estimating σ2 first, we estimate Q directly by calibrating the plug-in
estimator. This new perspective establishes a general machinery taking reasonable good
initial estimators of β and Σ as inputs. As shown in (6), the flexibility of the calibrated
estimator has proven useful in efficiently pooling additional information on Σ while the
estimation method introduced in Verzelen and Gassiat [2016] cannot be directly extended
to integrating the unlabelled data in the semi-supervised setting.

In the numerical studies, we have demonstrated that the effect of including unlabelled
data is of great practical significance, where in the case of dense Σ, the RMSE of the new
proposed CHIVE estimator is 60% to 70% smaller than the estimators in (16) without
using the unlabelled data. See Table 1 in Section 6 for details.

Additionally, Verzelen and Gassiat [2016] focused on the estimation problem instead
of confidence interval construction and hypothesis testing problems. In terms of technical
details on estimation optimality, the results in Verzelen and Gassiat [2016] allowed for a
more general regime k ≥ √p than Corollary 3 but did not handle the optimality in the
semi-supervised setting and did not allow the signal strength M to grow with n, p.

2.4. Case II: Known Σ
The general semi-supervised results also shed light on another interesting setting where
the design covariance Σ is known. In the semi-supervised setting, the unlabelled data is
used for estimating Σ, so the case of known Σ is an extreme case of the semi-supervised
setting with N taken as infinity. The estimator (11) can be modified as Q̂(β̂,Σ, Z(2)) =

β̂ᵀΣβ̂+2β̂ᵀ 1
n2

∑n
i=n1+1X

ᵀ
i·(yi−Xi·β̂). Similarly, the estimator proposed in (6) is changed

to Q̂(β̂,Σ) = β̂ᵀΣβ̂ + 2β̂ᵀ 1
n

∑n
i=1Xi·(yi −Xᵀ

i· β̂).

Corollary 4. Suppose that Condition (A1) holds and k ≤ cn/ log p for some con-
stant c > 0.

(a) For any estimator β̂ depending on the first half sample
(
y(1), X(1)

)
and satisfying

Condition (B1), then with probability larger than 1− γ(n)− C(p−c + exp(−ct2)),∣∣∣Q̂(β̂,Σ, Z(2))−Q
∣∣∣ . (t+ 1)

σ‖Σ
1

2β‖2√
n

+
k log p

n
σ2. (17)
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(b) For any estimator β̂ satisfying Condition (B1), then with probability larger than
1− γ(n)− C(p−c + exp(−ct2)),∣∣∣Q̂(β̂,Σ)−Q

∣∣∣ . t
‖Σ

1

2β‖2√
n

+ (
‖Σ

1

2β‖2
σ

+ 1)
k log p

n
σ2. (18)

Through comparing (17) with (12) and (18) with (7), the uncertainty of estimating the
design covariance matrix leads to the additional term βᵀΣβ/

√
N + n. By applying The-

orem 2, it can be shown that the upper bound in (17) leads to the optimal convergence
rate M/

√
n + k log p/n. The term M2/

√
N + n disappears due to the known design

covariance matrix Σ.

3. Semi-supervised Confidence Intervals for βᵀΣβ

In this section, we quantify the uncertainty of the CHIVE estimator proposed in Section
2 and then construct confidence intervals for βᵀΣβ in the semi-supervised setting.

3.1. Confidence Interval Construction
The main next step of confidence interval construction for Q is to consistently es-

timate the standard error
√

4σ2βᵀΣβ + ρE (βᵀX1·X
ᵀ
1·β − βᵀΣβ)2/

√
n of the limiting

distribution established in (8). Specifically, we estimate 4σ2βᵀΣβ by φ̂1, ρ by ρ̂ =

n/(N + n) and E (βᵀX1·X
ᵀ
1·β − βᵀΣβ)2 by φ̂2, where φ̂1 = σ̂2β̂ᵀΣ̂S β̂ and φ̂2 =

1
n+N

∑n+N
i=1

(
β̂ᵀXi·X

ᵀ
i· β̂ − β̂ᵀΣ̂S β̂

)2
, with Σ̂S defined in (6). Then we propose the fol-

lowing confidence interval centered at Q̂,

CI(Z) = [(Q̂− zα/2φ̂)+, Q̂ + zα/2φ̂], where φ̂ =

√
(4φ̂1 + ρ̂φ̂2)/n, (19)

where zα/2 is the upper α/2 quantile of standard normal distribution. The following
theorem establishes the coverage and precision properties of CI(Z), where the length of
the interval CI(Z) = (L(Z), U(Z)) is defined as L(CI(Z)) = U(Z)− L(Z).

Theorem 4. Suppose that Conditions (A1) and (A2) hold, k � min{n/(log(N +

n) log p),
√
n/log p} and SNR � k log p/

√
n. For β̂ and σ̂2 satisfying Conditions (B1)

and (B2), respectively, the confidence interval given in (19) satisfies,

lim
n→∞

P (βᵀΣβ ∈ CI(Z)) ≥ 1− α (20)

lim
n→∞

P
(

L(CI(Z)) ≥ (1 + δ0)

√
4σ2βᵀΣβ/n+ E (βᵀX1·X

ᵀ
1·β − βᵀΣβ)2/(N + n)

)
= 0

(21)
for any positive constant δ0 > 0.
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The effect of the unlabelled data on the length of confidence interval is carefully char-
acterized in (21), where the unlabelled data shrinks part of the length of confidence

interval, E (βᵀX1·X
ᵀ
1·β − βᵀΣβ)2/(N + n). This term corresponds to the uncertainty of

estimating βᵀΣβ in the oracle setting of known β. The most effective regime of inte-

grating the unlabelled data is when the ratio E(βᵀX1·X
ᵀ
1·β−βᵀΣβ)2

σ2βᵀΣβ is not vanishing to zero.

Otherwise, the dominating term in the length of (21) is 4σ2βᵀΣβ/n and the additional
unlabelled data is not helpful in this regime. In the numerical studies, we investigate
how much shorter confidence intervals can be after integrating the unlabelled data. The
lengths of CIs in the semi-supervised setting can be reduced to being as short as 30% to
40% of those in the supervised setting. See Table 1 for details.

The upper bound for CI length established in (21) is further upper bounded by

σ‖Σ
1

2β‖2/
√
n+ βᵀΣβ/

√
N + n, which matches the optimal convergence rate of estima-

tion M/
√
n + M2/

√
N + n over the parameter space Θ(k,M) for k �

√
n/log p and

M � k log p/
√
n.

As shown in Theorem 4, the validity of the proposed confidence interval (19) requires
the condition that SNR is bounded away from zero by k log p/

√
n. Although k log p/

√
n

converges to zero over the extreme sparse regime k �
√
n/log p, it reveals the difficulty of

constructing stable confidence intervals for βᵀΣβ when SNR is at a local neighborhood
of zero. The next section will address the inference problem when SNR is at a local
neighborhood of 0.

3.2. Inference for Weak Signals
As discussed in the introduction, uncertainty quantification of Q = βᵀΣβ is closely
connected to other important statistical problems, including (1) signal detection and
global testing; (2) prediction accuracy evaluation and (3) confidence ball construction.
These applications provide a strong motivation for studying the inference problem for the
explained variance under the settings of weak signals (that is, SNR . k log p/

√
n). The

main goal of this section is to discuss extensions of the proposed procedure to conduct
statistical inference uniformly over different levels of signal strength, measured by SNR.

To begin with, we recall the reasoning for the non-uniformity assumption SNR �
k log p/

√
n. This assumption is imposed such that the variance component of the CHIVE

estimator dominates the bias component and in this case an asymptotic limiting distribu-
tion for the variance component is used to construct confidence interval for the explained
variance. Specifically, we discuss two possible solutions to remove this stringent assump-
tion, a) to enlarge the confidence interval by an upper bound for the bias in Section
3.2.1; b) to increase the variance level by randomized calibration in Section 3.2.2.

3.2.1. Bound the bias term
One way to construct confidence intervals uniformly over all SNR is to enlarge the
estimated variance level defined in (19) to

φ̂E = φ̂E(y,X, τ0) =

√√√√ 1

n
4σ̂2

(
β̂ᵀΣ̂S β̂ + τ2

0

)
+

1

(n+N)2

n+N∑
i=1

(
β̂ᵀXi·X

ᵀ
i· β̂ − β̂ᵀΣ̂S β̂

)2
,

(22)
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for some positive constant τ0 > 0. Then we construct the confidence interval as

CIE(Z) = [(Q̂− zα/2φ̂E)+, Q̂ + zα/2φ̂
E ], (23)

where zα/2 is the upper α/2 quantile of standard normal distribution. The reason for

adding the term 1
n4σ̂2τ2

0 in the width (22) is that this additional term is an upper bound
for the bias term in the regime k �

√
n/ log p. The following corollary establishes the

coverage and the precision property of the enlarged confidence interval, CIE(Z).

Corollary 5. Suppose that Conditions (A1) and (A2) hold, k � min{n/(log(N +

n) log p),
√
n/log p} and τ0 > 0 is a positive constant. For β̂ and σ̂2 satisfying Conditions

(B1) and (B2), respectively, then the confidence interval defined in (23) satisfies,

lim
n→∞

P
(
βᵀΣβ ∈ CIE(Z)

)
≥ 1− α (24)

lim
n→∞

P
(

L(CIE(Z)) ≥ (1 + δ0)

√
4σ2

(
βᵀΣβ + τ2

0

)
/n+ E (βᵀX1·X

ᵀ
1·β − βᵀΣβ)2/(N + n)

)
= 0

(25)
for any positive constant δ0 > 0.

In contrast to the length of confidence interval in (21), the length in (25) is enlarged by
the exact amount 4σ2τ2

0 /n. In contrast to Theorem 4, the inference is uniform over all
levels of SNR at the expense of a slightly longer confidence interval.

3.2.2. Randomized Calibration
The construction in (23) still uses the CHIVE estimator as the center and enlarges
the constructed confidence interval. We introduce a randomized version of the CHIVE
estimator as the new center, where the main intuition is to increase the variance level
through randomization such that the variance of this randomized estimator dominates

its bias level. We generate random variables ui
iid∼ N(0, τ2

0 ) for 1 ≤ i ≤ n, independent
of the observed data Z and propose the following randomized calibrated estimator,

Q̂R = Q̂R(β̂, Σ̂S , u) = β̂ᵀΣ̂S β̂ + 2
1

n

n∑
i=1

(Xᵀ
i· β̂ + ui)(yi −Xᵀ

i· β̂). (26)

When there is no confusion, we use Q̂R to denote the estimator proposed in (26).
In contrast to (6), the calibration step in (26) is involved with an additional term

2 1
n

∑n
i=1 ui(yi −X

ᵀ
i· β̂). If ui is zero instead of being generated as normal random vari-

ables in (26), the estimator Q̂R(β̂, Σ̂S , 0) is reduced to being exactly the same as Q̂(β̂, Σ̂S)
defined in (6). Since ui in (26) is randomly generated normal random variables, this ad-
ditional term approximately follows a normal distribution with mean zero and variance
4σ2τ2

0 /n. Even in the presence of weak signals, this additional term further enlarges the
variance level of the calibrated estimator such that the bias level of the calibrated estima-
tor is dominated by the corresponding variance level. The following theorem establishes
the limiting distribution of the estimator Q̂R after randomized calibration.
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Theorem 5. Suppose that Condition (A1) holds, k �
√
n/ log p and τ0 > 0 is a

positive constant. For any estimator β̂ satisfying Condition (B1), then

√
n

Q̂R −Q√
4σ2

(
βᵀΣβ + τ2

0

)
+ ρE (βᵀX1·X

ᵀ
1·β − βᵀΣβ)2

d→ N (0, 1) (27)

where ρ = lim n
n+N .

In comparison to the limiting distribution (8) in Theorem 1, Theorem 5 requires no
condition on SNR to establish the asymptotic limiting distribution while the variance
level of the established normal distribution is enlarged by the amount 4σ2τ2

0 /n. This
additional variance term is a side effect of the randomized calibration. However, it
enables a uniform inference procedure over all levels of SNR. Then we propose the

following confidence interval, CIR(Z) =
[
(Q̂R − zα/2φ̂E)+, Q̂R + zα/2φ̂

E
]
, where φ̂E is

defined in (22). This confidence interval has the same length as that of (23) but different

centers. The proposed estimator Q̂R enjoys the advantage of having an asymptotic
normal distribution but it suffers from the disadvantage as all randomized procedure,
where the output is random even given the same data set. The following corollary
characterizes the coverage and precision properties of CIR(Z).

Corollary 6. Under the same conditions as Corollary 5, the coverage property in
(24) and precision property in (25) hold for the confidence interval CIR(Z).

Algorithm 1 summarizes the uncertainty quantification methods for βᵀΣβ.

Algorithm 1: Semi-supervised Uncertainty Quantification for βᵀΣβ

Input : Labelled data {yi, Xi·}1≤i≤n and unlabelled data {Xi·}n+1≤i≤n+N ;
τ0 > 0

Output: Point estimator Q̂ = Q̂(y,X), Q̂R = Q̂R(y,X, τ0) and variance

estimator φ̂E = φ̂E(y,X, τ0)

1 Initialization: Construct point estimator β̂ and σ̂2 satisfying (B1) and (B2);

Estimate Σ by Σ̂S defined in (6);

2 Calibration: Estimate Q by the CHIVE estimator Q̂ in (4) or its randomized

version Q̂R in (26).

3 Uncertainty Quantification: Quantify the error of the proposed estimator by φ̂E

defined in (22).

We conclude this section with some additional comments. Compared to point estima-
tion, construction of confidence intervals for the explained variance is a more challenging
problem, mainly due to the fact that one needs to characterize the uncertainty of the
proposed estimator. Specifically, accurate estimation of Q can be conducted uniformly
over all levels of SNR while construction of confidence intervals uniformly over all levels
of SNR requires much more efforts. Another interesting observation is that inference for
explained variance is different from that for linear functional [Zhang and Zhang, 2014,
van de Geer et al., 2014, Javanmard and Montanari, 2014a,b, Cai and Guo, 2017c], where
the valid inference results for the latter do not depend on the magnitude of SNR.
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4. Related Semi-supervised Inference Problem

The improvement due to integrating the unlabelled data is not just limited to the in-
ference problem for βᵀΣβ, but can also be obtained in the semi-supervised inference for
‖β‖22. This unweighted quadratic functional is different from βᵀΣβ as the covariance
matrix Σ does not appear in the expression. Hence, it is even unclear whether the un-
labelled data can be of any help. We introduce in this section a procedure integrating
the unlabelled data and also carefully quantify the improvement with making use of the
additional unlabelled data in the semi-supervised setting.

The estimation of ‖β‖22 in the supervised setting was studied in Guo et al. [2017],

where the error decomposition of the plug-in estimator ‖β̂‖22 was established as ‖β̂‖22 −
‖β‖22 = 2β̂ᵀ(β̂ − β)− (β̂ − β)ᵀ(β̂ − β). In Guo et al. [2017], the bias term 2β̂ᵀ(β̂ − β) in

the decomposition was estimated and hence the plug-in estimator ‖β̂‖22 was corrected.
We illustrate here how the additional unlabelled data facilitates the bias-correction

step. We randomly split the labelled data (y,X) into two subsamples
(
y(1), X(1)

)
with

sample size n1 and
(
y(2), X(2)

)
with sample size n2, where n1 � n2. Let β̂ denote an

estimator of β produced by the first sub-sample
(
y(1), X(1)

)
satisfying Condition (B1),

where one example is the scaled Lasso estimator (5) applied to
(
y(1), X(1)

)
. Then we

construct a projection direction û ∈ Rp and propose the estimator ‖β̂‖22 as

‖̂β‖22 = ‖β̂‖22 + 2ûᵀ
1

n2

n∑
i=n1+1

Xi·

(
yi −Xᵀ

i· β̂
)
. (28)

The unlabelled data is particularly useful in estimating the projection direction û ∈ Rp.
The projection direction û is constructed as û = Ω̂β̂ =

∑
l∈supp(β̂)

Ω̂·lβ̂l where Ω̂·l is the

CLIME estimator defined as

Ω̂·l = arg min ‖m‖1 subject to ‖Σ̃m− el‖∞ ≤ λS (29)

with Σ̃ = 1
N+n1

(
∑n1

i=1Xi·X
ᵀ
i· +

∑n+N
i=n+1Xi·X

ᵀ
i·) and λS �

√
log p/(n1 +N). The addi-

tional unlabelled data plays a role in constructing the sample covariance matrix Σ̃ in (29)
and hence constructing the projection direction û. The specific way of including the un-
labelled data to improve the estimation accuracy of ‖β‖22 is different from that of βᵀΣβ,
where the additional unlabelled data is used to estimate Σ directly in estimating βᵀΣβ
while the additional unlabelled is used to estimate Σ−1 in estimating ‖β‖22. However, the
high level idea is the same, that is, making use of the flexibility of calibrated estimator
and properly incorporating the information about Σ contained in the unlabelled data.

Precision matrix estimation has been studied in the literature; see Cai et al. [2011]

and the reference in the paper. We restrict the attention to Ω̂ satisfying the following
condition.

(B3) The estimator Ω̂ satisfies P
(
‖Ω̂− Ω‖2 & CΩs

√
log p/(N + n)

)
≥ 1 − γ1(N + n)

where γ1(N + n) → 0, s = max1≤l≤p ‖Ωl·‖0 and CΩ is a constant depending on
‖Ω‖L1

.
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The CLIME estimator Ω̂ =
(
Ω̂·1 Ω̂·2 · · · Ω̂·p

)
with Ω̂l· constructed in (29) is shown to

satisfy the condition (B3) under certain regularity conditions. See the exact statement in
Cai et al. [2011]. We show in the following theorem that, with a sufficiently large amount
of unlabelled data, the inference results for the semi-supervised setting are distinguished
from those in the supervised data.

Theorem 6. Suppose that Condition (A1) holds, k ≤ cn/ log p for some constant
c > 0 and c0 ≤ λmin (Ω) ≤ λmax (Ω) ≤ C0 for some positive constants C0 ≥ c0 > 0.

Suppose that β̂ satisfies (B1) and Ω̂ satisfies (B3). Under the sample size condition
N+n� C2

Ωk (s log p)2 , then with probability larger than 1−γ(n)−C(p−c+exp(−ct2))−
γ1(N + n), ∣∣∣‖̂β‖22 − ‖β‖22∣∣∣ . σ

‖β‖2√
n

+ k
log p

n
σ2. (30)

In addition, if 1
σ‖β‖2 � k log p/

√
n and εi are i.i.d Gaussian random variables, then

√
n/(σ2V)

(
‖̂β‖22 − ‖β‖

2
2

)
d→ N(0, 1), with V = 4

n∑
i=n1+1

(ûᵀXi·)
2/n2

2 (31)

The limiting distribution in (31) leads to the confidence interval construction

CI‖β‖22 =
(
‖̂β‖22 − zα/2σ̂

√
V, ‖̂β‖22 + zα/2σ̂

√
V
)

where ‖̂β‖22 is defined in (28), V is defined as (31) and û =
∑

l∈supp(β̂)
Ω̂·lβ̂l.

A few remarks are in order for the semi-supervised inference for ‖β‖22. The results
established in Guo et al. [2017] showed that the optimal rate for estimating ‖β‖22 in

the supervised setting is σ‖β‖2√
n

+ (1 + ‖β‖2)k log p
n σ2. In contrast, the term ‖β‖2 · k log p

n σ

disappears in the rate of convergence (37) by efficiently incorporating the unlabelled
data. The improvement varies across different signal strengths, where the reduction in
RMSE is limited if the signal strength ‖β‖2 is small but is significant if ‖β‖2 is large.
While integrating the unlabelled data is useful in reducing the RMSE for estimating both
βᵀΣβ and ‖β‖22, it is interesting to observe that the improvement by incorporating the
unlabelled data is different, where for estimating βᵀΣβ, part of the variance component
is reduced but for estimating ‖β‖22, the bias component is reduced by ‖β‖2 ·k log p

n σ. More
interestingly, when the size of the unlabelled data is large enough and the spectrum of
Σ is bounded away from zero and infinity, the rate of estimating ‖β‖22 in (30) coincides
with that of estimating βᵀΣβ in (17).

Theorem 6 requires the additional sample size condition for the unlabelled data,
N +n� C2

Ωk (s log p)2 . The general results for any N ≥ 0 are given in Section A in the
supplementary material.

The additional unlabelled data is not just useful in improving the estimation accuracy,
but is also useful in confidence interval construction. The specific effect is different from
that for βᵀΣβ; the confidence interval for βᵀΣβ is shortened as in (21) while the length
of confidence interval CI‖β‖22 is not shortened in terms of order of magnitude. However,
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the additional unlabelled data significantly weakens the model complexity and sample
size condition for establishing the limiting distribution, where the sufficient condition for
the supervised setting is 1

σ‖β‖2 � k log p/
√
n and k �

√
n/log p. Corollary 6 has shown

that the condition k �
√
n/log p is not needed if there is sufficient amount of unlabelled

data.

5. Statistical Applications

In this section, we apply the inference procedure related to the CHIVE estimator to
tackle several important statistical problems.

5.1. Application 1: Signal Detection and Global Testing
Signal detection is of great importance in statistics and related scientific applications
and the detection problem in high-dimensional linear regression was studied in Arias-
Castro et al. [2011], Ingster et al. [2010]. The inference procedure stated in Algorithm
1 has profound implications on signal detection and the general global testing in high-
dimensional linear regression. We consider the global hypothesis testing problem H0 :
(β−βnull)ᵀΣ(β−βnull) = 0 v.s. H1 : (β−βnull)ᵀΣ(β−βnull) > 0. , which includes signal
detection as a special case with βnull = 0. We apply Algorithm 1 with a given τ0 > 0 and

obtain the point estimator Q̂R(y−Xβnull, X, τ0) and its standard error estimator φ̂E(y−
Xβnull, X, τ0). Then we propose the detection procedure, with Type I error controlled at

α ∈ (0, 1) as D(τ0) = 1
(

Q̂R(y −Xβnull, X, τ0) ≥ φ̂E(y −Xβnull, X, τ0)zα

)
. Define the

null parameter spaceH0 =
{
θ =

(
βnull,Σ, σ

)
: 1
M1
≤ λmin (Σ) ≤ λmax (Σ) ≤M1, σ ≤M2

}
and the local alternative parameter space as

H1 (∆) =

{
θ = (β,Σ, σ) : (β − βnull)ᵀΣ(β − βnull) =

∆√
n
,

1

M1
≤ λmin (Σ) ≤ λmax (Σ) ≤M1, σ ≤M2

}
.

The following corollary establishes that D(τ0) controls the type I error asymptotically
and also establishes the asymptotic power function of the proposed test.

Corollary 7. Suppose that Conditions (A1) and (A2) hold, τ0 > 0 is a positive
constant and the vector δ = β−βnull satisfies the conditions that ‖δ‖0 � min{n/(log(N+

n) log p),
√
n/log p} and

√
E (δᵀX1·X

ᵀ
1·δ − δᵀΣδ)2 ≥ c0δ

ᵀΣδ for some positive constant

c0. Then for any θ ∈ H0, the type I error is controlled, limn→∞ Pθ (D(τ0) = 1) ≤ α. For
ρ > 0 and any θ ∈ H1(∆) with some positive constant ∆ > 0, then

lim
n→∞

Pθ (D(τ0) = 1) = 1− Φ−1

zα − ∆√
4σ2 (δᵀΣδ + τ2

0 ) + ρE (δᵀX1·X
ᵀ
1·δ − δᵀΣδ)

2

 . (32)

The assumptions of Corollary 7 are the same as those of Corollary 6 from the perspective
that the conditions imposed on β in Corollary 6 are now imposed on the difference vector
δ = β − βnull. One sufficient condition for the difference vector δ being sparse is that
both the true signal β and the null hypothesis βnull are sparse. Corollary 7 shows that for
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any positive constant τ0, D(τ0) controls the type I error asymptotically. The asymptotic
power of the proposed test is established in (32), where the additional unlabelled data
proves useful in improving the power. See Section D.2 for the improvement in the
numerical studies. For the finite sample performance, we have investigated how to
choose the randomization level τ0 in the simulation section. See Section D.3 for the
numerical performance.

5.2. Application 2: Prediction Accuracy Assessment
Inference for explained variance has important applications to evaluating the out-of-
sample prediction for a given sparse estimator β̌. To keep the notation consistent, we
assume β̌ is estimated based on a training data set (X0, y0) and (X, y) is an independent
test data to evaluate its prediction accuracy. We start with computing the residual on
the test data set y − Xβ̌ = X(β − β̌) + ε. The out-of-sample prediction accuracy is

defined as PA(β̌) = Exnew

(
xᵀnew(β̌ − β)

)2
= (β̌ − β)ᵀΣ(β̌ − β) and it is reduced to the

explained variance for the residual model with outcome r = y −Xβ̌ and covariates X.
Let Q̂R(r,X, τ0) and φ̂E(r,X, τ0) denote the outputs of Algorithm 1 with the labeled
data {(ri, Xi·)}1≤i≤n and unlabelled data {Xi·}n+1≤i≤n+N as inputs. Then we propose

the point estimator of PA(β̌) as Q̂R(r,X, τ0) and the interval estimator for PA(β̌) as

CIPA(β̌) = [(Q̂R(r,X, τ0)− zα/2φ̂E(r,X, τ0))+, Q̂
R(r,X, τ0) + zα/2φ̂

E(r,X, τ0)] (33)

The following corollary establishes the convergence rate for the point estimator and the
coverage and precision properties of the interval estimator.

Corollary 8. Suppose that Conditions (A1) and (A2) hold, τ0 > 0 is a positive
constant and c0 ≤ λmin (Ω) ≤ λmax (Ω) ≤ C0, σ ≤ M2 for some positive constants
C0 ≥ c0 > 0 and M2 > 0. For any sparse estimator satisfying ‖β̌‖0 ≤ C‖β‖0 and C > 0,

(a) If k ≤ cn/ log p for some positive constant c > 0, then with probability larger than
1− γ(n)− C(p−c + exp(−cN) + e−ct

2

),∣∣∣Q̂R(r,X, τ0)−Q
∣∣∣ . t

‖β̌ − β‖2 + τ0√
n

+ t
‖β̌ − β‖22√
N + n

+
(
‖β̌ − β‖2 + 1

) k log p

n
(34)

(b) If k � min{n/(log(N+n) log p),
√
n/log p} and

√
E (δᵀX1·X

ᵀ
1·δ − δᵀΣδ)2 ≥ c0δ

ᵀΣδ

for δ = β − β̌ and some positive constant c0, then the confidence interval defined

in (33) satisfies the coverage property limn→∞ P
(

PA(β̌) ∈ CIPA(β̌)

)
≥ 1− α and

lim
n→∞

P
(

L(CIPA(β̌)) ≥ C
(
‖β̌ − β‖2 + τ0√

n
+
‖β̌ − β‖22√
N + n

))
= 0 (35)

for some constant C > 0.

The above corollary has shown that the precision of confidence interval for the prediction
accuracy is not just related to the sample sizes n,N , the sparsity k and the dimension p,
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but also related to the accuracy of the evaluated estimator ‖β̌−β‖2. As characterized in
(34) and (35), the integration of the unlabelled data is useful in improving the estimation
accuracy and confidence interval precision. See Sections 6.1 and D.4 for the numerical
performance.

5.3. Application 3: Confidence Ball Construction
The prediction accuracy evaluation established in (33) can be used to construct confi-
dence ball for β. For the setting where λmin(Σ) is known, then we have λmin(Σ)‖β̌−β‖22 ≤
(β̌ − β)ᵀΣ(β̌ − β) and construct the confidence ball for β as

CB(β̌) =

{
β : ‖β − β̌‖22 ≤ zα/2

1

λmin(Σ)
φ̂E(r,X, τ0)

}
(36)

As shown in (35), the radius of the confidence ball CB(β̌) is upper bounded by ‖β̌−β‖2+τ0√
n

+

‖β̌−β‖22√
N+n

. To minimize the radius, we need to select the center β̌ for the confidence ball

in (36) such that β̌ is sparse and ‖β̌ − β‖2 is small. In the high-dimensional literature,
several penalized estimators are shown to satisfy such properties, such as Lasso, scaled
Lasso and Dantzig Selector.

6. Simulation Study

We carry out simulation studies in this section to demonstrate the numerical performance
of the CHIVE estimator. Specifically, we illustrate the numerical improvement of pooling
over the unlabelled data in Section 6.1; we compare the performance of the CHIVE
estimator with the plug-in estimator in Section 6.2. Additional simulation results are
postponed to Section D in the supplementary material.

We first introduce the general simulation setting up used for this section. We gen-
erate the high-dimensional linear regression (1) with the dimension p = 800 and the
labelled data with sample size n and unlabelled data with sample size N . For the linear
model (1), the covariates {Xi·}1≤i≤n for the labelled data and also {Xi·}n+1≤i≤n+N for
the unlabelled data are generated in i.i.d. fashion to follow multivariate normal distri-
bution with mean zero and covariance matrix Σ ∈ R800×800 and the errors {εi}1≤i≤n are
generated as i.i.d standard normal distribution.

6.1. Effect of Pooling-over Additional Unsupervised Data
The focus of this section is to illustrate the improvement after integrating the unlabelled
data in the semi-supervised setting. We first consider the inference problem for βᵀΣβ
and then the out-of-sample prediction loss evaluation.
Inference for βᵀΣβ We fix the labelled data sample size as n = 400 and vary the
unlabelled data sample size N across {2, 000, 6, 000, 20, 000}. We consider the following
settings for the design covariance matrix Σ and high-dimensional regression vector β,

• Across Settings 1,2 and 3, the regression coefficients are generated as βi = i/10 for
1 ≤ i ≤ 0 and βi = 0 for i ≥ 11; The covariance matrix Σ is generated as follows,
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– Setting 1: Σij = 0.5|i−j|;

– Setting 2: Σij = 0.35 for 1 ≤ i 6= j ≤ p and Σii = 1 for 1 ≤ i ≤ p;
– Setting 3: Σij = 0.7 for 1 ≤ i 6= j ≤ p and Σii = 1 for 1 ≤ i ≤ p.

• Across Settings 4,5 and 6, the regression coefficients are generated as βi = 1.5 · 0.8i
for 1 ≤ i ≤ 800. The covariance matrix Σ is generated as follows,

– Setting 4: Σij = 0.5|i−j|;

– Setting 5: Σij = 0.35 for 1 ≤ i 6= j ≤ p and Σii = 1 for 1 ≤ i ≤ p;
– Setting 6: Σij = 0.7 for 1 ≤ i 6= j ≤ p and Σii = 1 for 1 ≤ i ≤ p.

RMSE Coverage Length
Setting N Semi-S S Ratio Semi-S S Semi-S S Ratio

1
2000 0.420 0.733 57.2% 0.950 0.942 1.598 2.769 57.7%
6000 0.370 0.751 49.2% 0.950 0.949 1.388 2.791 49.7%

20000 0.341 0.732 46.6% 0.933 0.940 1.291 2.777 46.5%

2
2000 0.554 1.026 54.0% 0.933 0.928 2.077 3.834 54.2%
6000 0.421 0.949 44.3% 0.951 0.957 1.741 3.855 45.2%

20000 0.407 0.994 41.0% 0.940 0.948 1.581 3.838 41.2%

3
2000 0.813 1.612 50.4% 0.950 0.958 3.213 6.539 49.1%
6000 0.642 1.654 38.8% 0.960 0.946 2.510 6.530 38.4%

20000 0.559 1.597 35.0% 0.942 0.956 2.148 6.509 33.0%

4
2000 0.415 0.745 55.7% 0.938 0.939 1.591 2.740 58.1%
6000 0.361 0.742 48.6% 0.932 0.935 1.383 2.742 50.4%

20000 0.324 0.738 43.9% 0.955 0.949 1.290 2.748 46.9%

5
2000 0.589 1.088 54.2% 0.953 0.968 2.329 4.462 52.2%
6000 0.496 1.149 43.2% 0.934 0.939 1.909 4.447 42.9%

20000 0.465 1.181 39.4% 0.936 0.935 1.713 4.441 38.6%

6
2000 0.924 2.013 45.9% 0.962 0.949 3.698 7.689 48.1%
6000 0.724 1.914 37.8% 0.945 0.951 2.822 7.692 36.7%

20000 0.632 1.894 33.3% 0.935 0.959 2.371 7.696 30.8%

Table 1: Inference for βᵀΣβ with n = 400 and N = 2000, 6000, 20000

Settings 1 to 3 correspond to the exact sparse case while Settings 4 to 6 correspond to
the approximate sparse case. Settings 1 and 4 correspond to the case of approximated
banded covariance matrix while Settings 2,3,5 and 6 are about denser covariance ma-
trices. The simulations are replicated over 1,000 simulations. The Root Mean Squared
Error (RMSE) and the coverage and length of confidence intervals are present in Table
1, where the columns under “Semi-S” correspond to the semi-supervised method and the
columns under “S” correspond to the supervised method. Regarding RMSE, we observe
that incorporation of unlabelled data reduces the RMSE significantly. The column under
“Ratio” reports the ratio of RMSE of the semi-supervised method to that of the super-
vised method and RMSE of the semi-supervised method is reduced to 33% to 57% of
that of the supervised method, depending on the amount of the unlabelled data and also
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the structure on Σ. Since Xi· follows multivariate Gaussian, the variance component
depending on the unlabelled data is expressed as E (βᵀX1·X

ᵀ
1·β − βᵀΣβ)2/(N + n) =

2(βᵀΣβ)2/(N + n). From setting 1 to setting 3, the value βᵀΣβ increases as Σ becomes
denser and this explains why the effect of using the unlabelled data becomes more sig-
nificant; the same phenomenon holds for settings 4 to 6.

In terms of constructed confidence intervals, both confidence intervals constructed
in the semi-supervised setting and supervised setting have near 95% coverage while
the confidence interval constructed using the unlabelled data have much shorter lengths.
Specifically, we use “Ratio” to measure the ratio of the length of CI in the semi-supervised
setting to that in the supervised setting and observe that the length of confidence inter-
vals can be reduced by as much as 70%.

The unlabelled data is not just useful in inference for βᵀΣβ, but also useful in pre-
diction loss evaluation, which will be illustrated in the following.
Prediction Loss Evaluation We generate βi = i/5 for 1 ≤ i ≤ 0 and βi = 0 for
i ≥ 11 and Σij = 0.5|i−j|. We fix the labelled data sample size as n = 400 and vary
the unlabelled data sample size N across {2, 000, 6, 000, 20, 000}. We use this gener-
ated data (both labelled and unlabelled) to evaluate the out-of-sample prediction ac-

curacy (β̂(λ) − β)ᵀΣ(β̂(λ) − β), where β̂(λ) is the Lasso estimator based on an inde-
pendent training data

(
X(0), y(0)

)
with sample size 300 with the tuning parameter λ,

β̂ (λ) = arg minβ∈Rp
‖y(0)−X(0)β‖22

2n0
+ λ

∑p
j=1

‖X(0)
·j ‖2√
n0
|βj |. Note that

(
X(0), y(0)

)
is an in-

dependent copy of the labelled data (X, y). Specifically, we consider three estimators

β̂(λ0), β̂(6λ0) and β̂(10λ0) with λ0 =
√

z1−1/(10p)

n0
and use the randomization level τ0 = 2

in terms of estimating this out-of-sample prediction accuracy.

RMSE Coverage Length
Estimator Loss N Semi-S S Ratio Semi-S S Semi-S S Ratio

β̂(λ0) 0.145
2000 0.269 0.279 96.3% 0.910 0.898 0.896 0.898 99.8%
6000 0.270 0.281 96.3% 0.918 0.902 0.895 0.897 99.8%

10000 0.262 0.273 96.0% 0.924 0.910 0.895 0.897 99.8%

β̂(6λ0) 1.818
2000 0.294 0.363 81.2% 0.924 0.896 1.046 1.148 91.1%
6000 0.308 0.373 82.6% 0.918 0.888 1.042 1.148 90.8%

10000 0.299 0.368 81.1% 0.926 0.892 1.038 1.148 90.3%

β̂(10λ0) 4.679
2000 0.365 0.548 66.5% 0.930 0.928 1.318 1.841 71.6%
6000 0.378 0.553 68.3% 0.934 0.902 1.291 1.839 70.2%

10000 0.362 0.551 65.8% 0.920 0.916 1.267 1.841 68.8%

Table 2: Inference for the out-of-sample prediction accuracy (β̂ − β)ᵀΣ(β̂ − β).

The simulations are replicated over 1,000 simulations and we report the numerical
performance of both point and interval estimators of the corresponding prediction accu-
racy in Table 2. The observation is consistent with that for βᵀΣβ, where CIs in both
semi-supervised and supervised settings have coverage but the semi-supervised estima-
tors are uniformly better than the supervised estimators in terms of both RMSE and
the length of CI. As observed in Table 2, across the three estimators β̂(λ0), β̂(6λ0) and

β̂(10λ0), the effect of unlabelled data is different. The effect of unlabelled data for es-
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timating β̂(λ0) is marginal while the effect of unlabelled data β̂(10λ0) is much more
significant, where RMSE and length of CI can be reduced by 30%. This matches with
the theory, where in the simulation setting of Gaussian design, the unlabelled data re-
duces the term ((β̂−β)ᵀΣ(β̂−β))2/(N+n) and (β̂−β)ᵀΣ(β̂−β) is pretty small (0.145)

for β̂ = β̂(λ0) and is much larger (4.679) for β̂ = β̂(10λ0).
The semi-supervised data is also useful for improving the power for signal detection.

Since the detection power is only improved around 5%, we defer the detailed results to
the supplementary material Section D.2.

6.2. Comparison with Other Estimators
In the following, we compare the CHIVE estimator with the plug-in estimator. We
fix the size of unlabelled data at N = 2, 000 and vary the labelled data sample size n
across {200, 400, 600, 800, 1, 000}. The simulations are replicated over 500 simulations.
We generate the design covariance matrix as Σij = 0.5|i−j| and the high-dimensional
regression vector β across the following three settings,

a. Setting a: β is generated with sparsity 10 where βj = j/10 for 1 ≤ j ≤ 10 and
βj = 0 for j ≥ 11;

b. Setting b: β is generated with sparsity 50 where βj = j/50 for 1 ≤ j ≤ 50 and
βj = 0 for j ≥ 51;

c. Setting c: β is generated as approximate sparse vector with βj = (0.5)p−1.

We compare four different estimators, where “CHIVE” and “CHIVE.semi” stand for
the CHIVE estimator in the supervised setting and semi-supervised setting, respectively;
“Plugin” and “Plugin.semi” stand for the plug-in estimator β̂ᵀΣ̂β̂ in the supervised
setting and semi-supervised setting, respectively. The numerical comparison has been
reported in Figure 1. Across all three settings, it is observed that the proposed CHIVE
estimator has achieved uniformly much better estimation accuracy than the plug-in
estimators, in both supervised and semi-supervised settings. This numerical observation
demonstrates that the calibration step is useful in improving the estimation accuracy.

We shall also point out that the unlabelled data is useful only if it is incooporated
in a proper way. “Plugin.semi” is another estimator also using the unlabelled data to
estimate Σ, but it is only slightly better than the “Plugin” estimator. In contrast,
together with the calibration machinery, “CHIVE.semi” uses the additional data in an
efficient way and the corresponding RMSE is significantly reduced in comparison to the
“CHIVE” estimator.

7. Real Data Application

In this section, we analyze a yeast data set reported in Bloom et al. [2013] and study how
the genetic variants explain the colony sizes under different growth media. The goal is
to estimate the heritability measures of colony sizes under different growth media, which
represent the variance of the colony sizes explained by the genetic variants.

Bloom et al. [2013] investigated a large scale genome-wide association study of 46
quantitative traits based on 1,008 Saccharomyces cerevisiae segregants crossbred from a
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Fig. 1: Root Mean Squared Error (RMSE) of different estimators of βᵀΣβ. The x-axis stands
for the sample size and y-axis stands for the RMSE of corresponding estimators. The dotted line
and the solid line represent the corresponding RMSEs of the CHIVE estimator in the supervised
setting and semi-supervised setting, respectively; The dashed line and the dotted-dashed solid
line represent the corresponding RMSE of the plug-in estimator in the supervised setting and
semi-supervised setting, respectively. From the leftmost to the rightmost, the figures correspond
to setting a to c, with the corresponding values for βᵀΣβ as 9.42, 49.47 and 2.9.

laboratory strain and a wine strain. These quantitative traits are measures of end-point
colony size under 46 different growth media, including Hydrogen Peroxide, Cadmium
Chloride, Calcium Chloride, Lactose, Raffinose, Sorbitol, Yeast Nitrogen Base (YNB)
and Yeast Peptone Dextrose (YPD). The genetic maker genotypes are coded as 1 or
−1, according to which strain it comes from. A set of 11,623 unique genotype markers
of the 1,008 segregants is measured. Since many of these markers are highly correlated
and the corresponding codes are only different in serval samples, Bloom et al. [2013]
further selected a set of 4, 410 markers that are weakly dependent based on the linkage
disequilibrium information. All traits are normalized to have unit variance and hence
the explained variance is a measure for heritability. Bloom et al. [2013] showed that
the genetic variants are associated with many of such trait values and highlighted the
importance of addressing missing heritability. Bloom et al. [2013] pointed out one key
reason for missing heritability as “the undiscovered factors could have effects that are too
small to be detected with current sample sizes, or even too small to ever be individually
detected with statistical significance”. We demonstrate that the CHIVE estimator has
exactly addressed this concern of missing heritability. As reported in Table 3, we choose
6 traits out of the total 46 traits and observe that the CHIVE estimates are always
larger than the corresponding plug-in estimates. This means that the calibration step
adds back the missing heritability due to plugging in the Lasso estimator, where the
Lasso estimator tends to ignore the genetic markers with small effects. The results for
all 46 traits is reported in Section E in the supplementary material.

We also construct confidence intervals for heritability of all 46 traits and report part
of the results in Table 3. Note that a proportion of the outcome variables for different
growth media have missing values, with the proportion of missing ranging from 0.2% to
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40.58%. This forms the semi-supervised type data naturally (note that the unlabelled
data is of a smaller size than the labelled data in this specific example). After applying
the proposed methods to analyzing the corresponding outcomes, we have the following
interesting observations, 1) the heritability measures of the colony sizes under different
growth media range from 0.3 to 0.8 and all of the confidence interval estimators do not
contain zero. This means the colony sizes under different growth media are strongly
genetically heritable; 2) The integration of the unlabelled data has shortened the length
of the constructed confidence intervals. For example the length is shorten by around
3% for Sorbitol (with 40.58% outcome missing), around 2% for Raffinose (with 34.33%
outcome missing) and around 1% for Hydrogen Peroxide (with 23.71% outcome missing).

Supervised Semi-Supervised
Media Plug CHIVE CI Plug CHIVE CI Missing

Cadmium 0.6240 0.7682 [0.7077, 0.8286] 0.6215 0.7657 [0.7058, 0.8256] 20.73%
Chloride (0.0308) (0.0306)
Calcium 0.1807 0.3701 [0.3068, 0.4333] 0.1785 0.3679 [0.3050, 0.4308] 5.85%
Chloride (0.0323) (0.0321)
Hydrogen 0.2909 0.4835 [0.4090, 0.5581] 0.2879 0.4806 [0.4071, 0.5540] 23.71%
Peroxide (0.0380) (0.0375)
Raffinose 0.3168 0.5105 [0.4300, 0.5909] 0.3105 0.5041 [0.4259, 0.5824] 34.33%

(0.0410) (0.0399)
Sorbitol 0.2968 0.4893 [0.4049, 0.5737] 0.2864 0.4789 [0.3972, 0.5606] 40.58%

(0.0431) (0.0417)
YPD 0.3754 0.5960 [0.5275,0.6645] 0.3761 0.5966 [0.5282, 0.6651] 0.20%

(0.0349) (0.0349)

Table 3: Confidence intervals for heritability. The column indexed with “ Media” represents
the growth media for the yeast segragents; The three columns under “Supervised” corresponds
to the case of only using the labelled data, where the column indexed with “Plug” represents
the plug-in estimator, indexed with “CHIVE” represents the CHIVE estimator, and indexed
with “CI” represents the constructed confidence interval; Similarly, the three columns under
“Semi-Supervised” corresponds to analyzing the semi-supervised type data, that is also using
the observations with missing outcome variables. The numbers inside the parenthesis represent
the standard errors of the proposed CHIVE estimators. The column indexed with “Missing”
represents the proportion of missing outcome for the corresponding media.

8. Discussions

This paper studies statistical inference for the explained variance βᵀΣβ in the semi-
supervised setting, which includes the supervised setting as a special case. By comparing
the theoretical as well as the numerical results for the semi-supervised and supervised
settings, it is easy to see the significant contributions of the unlabelled data to the
inference accuracy. In addition, the constructed confidence interval, using the idea of
calibration, has been shown to be useful in tackling other important statistical applica-
tions, including signal detection and global testing, prediction accuracy evaluation and
confidence ball construction. There remain a few open questions for future research.

Although the CHIVE estimator has been shown to achieve the optimal rates over the



Semi-supervised Inference for Explained Variance 27

whole sparse regime k . n/log p, construction of confidence intervals for βᵀΣβ is only
considered over the ultra-sparse regime k �

√
n/log p. Since both point and interval

estimator do not require the prior knowledge of the exact sparsity level, they are referred
to as adaptive estimation and adaptive confidence interval, respectively. However, it
remains open whether it is possible to construct adaptive confidence intervals over the
moderate sparse regime

√
n/log p . k . n/log p. The possibility of adaptive confidence

interval for the general linear functional ηᵀβ for η ∈ Rp has been studied in Cai and Guo
[2017c] and the technical tools developed in Cai and Guo [2017c] can be useful to study
the adaptive confidence intervals for βᵀΣβ.

Due to the emerging semi-supervised data sets, it is of significant importance to
propose procedures incorporating the unlabelled data efficiently and study how the un-
labelled data affects the statistical accuracy. This paper has studied both methodological
and theoretical perspectives of the semi-supervised statistical inference for the explained
variance βᵀΣβ and the unweighted quadratic functional ‖β‖22. However, it is largely
unknown how these unlabelled data can facilitate the statistical inference problem for
other quantities of interests, such as the general linear functional ηᵀβ for some given
η ∈ Rp and the variance level σ2. These are interesting problems left for future research.
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A. Additional Results on Semi-supervised Inference for ‖β‖22
The following theorem establishes the rate of convergence of the estimator defined in
(28) for general N ≥ 0, which is more general than the results presented in Theorem 6.

Theorem 7. Suppose that Condition (A1) holds, k ≤ cn/ log p for some constant
c > 0 and c0 ≤ λmin (Ω) ≤ λmax (Ω) ≤ C0 for some positive constants C0 ≥ c0 > 0.

For any estimator β̂ satisfying (B1) and Ω̂ satisfying (B3), with probability larger than

1− γ(n)− C(p−c + exp(−ct2))− γ1(N + n), then ‖̂β‖22 proposed in (28) satisfies∣∣∣‖̂β‖22 − ‖β‖22∣∣∣ . σ
‖β‖2√
n

(
1 + CΩ

s
√
k log p√
N + n

)
+ k

log p

n
σ2

(
1 + CΩ

s
√

log p√
N + n

)
. (37)

The above theorem illustrates the usefulness of the unlabelled data, where the amount
of the unlabelled data N plays a role in (37).

B. Proof

In this section, we will prove theorems and corollaries in the main paper and the proofs
of lemmas are present in Section C. The proofs of Theorem 1 and Corollary 2 are present
in Section B.1; The proof of Theorem 5 is present in Section B.2; The proof of Theorem
4 is present in Section B.3; The proof of Theorem 3 is present in Section B.4; The proof
of Theorem 2 is present in Section B.5; The proof of Corollary 4 is present in Section B.6;
Thr proofs of Corollaries 5 and 6 are present in Section B.7; The proofs of Theorem 7
and Corollary 6 are present in Section B.8; The proofs of Corollaries 7 and 8 are present
in Sections B.9 and B.10, respectively.

B.1. Proofs of Theorem 1 and Corollary 2
To establish Theorem 1 and Corollary 2, we first decompose the difference between the
calibrated estimator Q̂ = Q̂(β̂, Σ̂S) and Q = βᵀΣβ,

Q̂−Q =
2

n
β̂ᵀXᵀε+ βᵀ

(
Σ̂S − Σ

)
β − (β̂ − β)ᵀΣ̂S(β̂ − β) + 2β̂ᵀ(Σ̂S − 1

n

n∑
i=1

Xi·X
ᵀ
i·)(β̂ − β)

=
2

n
βᵀXᵀε+ βᵀ

(
Σ̂S − Σ

)
β +

2

n
(β̂ − β)ᵀXᵀε− (β̂ − β)ᵀΣ̂S(β̂ − β) + 2β̂ᵀ(Σ̂S − 1

n

n∑
i=1

Xi·X
ᵀ
i·)(β̂ − β).

(38)

Lemma 1 characterizes the convergence rates of the last three terms in (38). The proof
can be found in Section C.2 in the appendix.

Lemma 1. Suppose that Condition (A1) holds and k ≤ cn/ log p for some constant

c > 0. For any estimator β̂ satisfying Condition (B1), then with probability larger than
1− γ(n)− cp−c − exp(−cN)− e−ct2,∣∣∣∣ 1n(β̂ − β)ᵀXᵀε

∣∣∣∣ ≤ ‖β̂ − β‖1 ∥∥∥∥ 1

n
Xᵀε

∥∥∥∥
∞

.
k log p

n
σ2; (39)



32 Cai & Guo∣∣∣(β̂ − β)ᵀΣ̂S(β̂ − β)
∣∣∣ =

1

N + n

N+n∑
i=1

(
Xᵀ
i·(β̂ − β)

)2
.
k log p

n
σ2. (40)

∣∣∣∣∣β̂ᵀ(Σ̂S − 1

n

n∑
i=1

Xi·X
ᵀ
i·)(β̂ − β)

∣∣∣∣∣ . k
log p

n
σ2+‖Σ

1

2β‖2σ

(
t

√
N

n+N

√
k log p

n
+

N

n+N

k log p

n

)
(41)

For the first two terms in (38), the following lemma establishes their convergence rate
and also the limiting distribution. The proof can be found in Section C.3 in the appendix.

Lemma 2. Suppose that Condition (A1) holds and k ≤ cn/ log p for some constant
c > 0. Then with probability larger than 1− e−ct2,∣∣∣∣ 2nβᵀXᵀε

∣∣∣∣ . t
‖Σ

1

2β‖2√
n

σ,
∣∣∣βᵀ

(
Σ̂S − Σ

)
β
∣∣∣ . t

‖Σ
1

2β‖22√
N + n

(42)

In addition, we establish the limiting distribution

√
n

2
nβ

ᵀXᵀε+ βᵀ
(

Σ̂S − Σ
)
β√

4σ2βᵀΣβ + ρE (βᵀX1·X
ᵀ
1·β − βᵀΣβ)2

d→ N (0, 1) (43)

Proof of Theorem 1. In proving Theorem 1, the convergence rate in (7) follows from the

decomposition (38), Lemma 1, (42) in Lemma 2 and the fact that
√
N

n+N

√
k log p
n � 1√

n
.

Under the additional assumptions k �
√
n/log p and SNR = 1

σ‖Σ
1

2β‖2 � k log p/
√
n, it

follows from Lemma 1 that

√
n
(

2
n(β̂ − β)ᵀXᵀε− (β̂ − β)ᵀΣ̂(β̂ − β) + 2β̂ᵀ

(
Σ̂− 1

n

∑n
i=1Xi·X

ᵀ
i·

)
(β̂ − β)

)
√

4σ2βᵀΣβ + ρE (βᵀX1·X
ᵀ
1·β − βᵀΣβ)2

p→ 0.

Combined with (43) in Lemma 2, we establish the limiting distribution (8).

Proof of Corollary 2. The proof of Corollary 2 is similar to that of Theorem 1. The

main change is that Σ̂S in (38) is replaced by Σ̂L = 1
n

∑n
i=1Xi·X

ᵀ
i· and hence the last

term 2β̂ᵀ(Σ̂S − 1
n

∑n
i=1Xi·X

ᵀ
i·)(β̂ − β) in the decomposition (38) becomes zero in this

case. Hence, the convergence rate in (13) follows from the decomposition (38) and

Lemma 1 and (42) in Lemma 2. Under the additional assumptions SNR = 1
σ‖Σ

1

2β‖2 �
min

{
k log p/

√
n, (k log p/

√
n)

1/2
}

and the condition (A2) it follows from Lemma 1 that
√
n( 2

n
(β̂−β)ᵀXᵀε−(β̂−β)ᵀΣ̂(β̂−β))√

4σ2βᵀΣβ+E(βᵀX1·X
ᵀ
1·β−βᵀΣβ)2

p→ 0. Combined with (43) in Lemma 2, we establish the

limiting distribution (14).
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B.2. Proof of Theorem 5
Following from (38), we establish the error decomposition of Q̂R −Q,

Q̂R −Q =
2

n
βᵀXᵀε+

2

n
uᵀε+ βᵀ

(
Σ̂S − Σ

)
β +

2

n
uᵀXᵀ

(
β − β̂

)
+

2

n
(β̂ − β)ᵀXᵀε− (β̂ − β)ᵀΣ̂S(β̂ − β) + 2β̂ᵀ(Σ̂S − 1

n

n∑
i=1

Xi·X
ᵀ
i·)(β̂ − β).

(44)
The theorem follows from Lemma 1, the decomposition (44) and the following lemma,
whose proof is postponed to Section C.4 in the appendix.

Lemma 3. Under the same assumptions as Theorem 5, we have

√
n

2
nβ

ᵀXᵀε+ 2
nu

ᵀε+ βᵀ
(

Σ̂S − Σ
)
β + 2

nu
ᵀXᵀ

(
β − β̂

)
√

4σ2
(
βᵀΣβ + τ2

0

)
+ ρE (βᵀX1·X

ᵀ
1·β − βᵀΣβ)2

d→ N (0, 1) (45)

B.3. Proof of Theorem 4
Define φ1 = σ2βᵀΣβ and φ2 = E (βᵀX1·X

ᵀ
1·β − βᵀΣβ)2. Recall the definitions

φ̂1 = σ̂2β̂ᵀΣ̂S β̂ and φ̂2 =
1

n+N

n+N∑
i=1

(
β̂ᵀXi·X

ᵀ
i· β̂ − β̂

ᵀΣ̂S β̂
)2
.

The coverage property (20) follows from the following observation,

P (βᵀΣβ ∈ CI(Z)) = P

−zα
2
≤

√
n
(

Q̂− βᵀΣβ
)

√
4φ1 + ρφ2

·

√
4φ1 + ρφ2

4φ̂1 + ρ̂φ̂2

≤ zα
2

 (46)

The precision property of the constructed confidence intervals require the following
lemma and the proof can be found in Section C.7 in the appendix.

Lemma 4. Under the same assumptions as Theorem 4, then∣∣∣∣∣ φ̂1 − φ1

φ1

∣∣∣∣∣ p→ 0 (47)

∣∣∣∣∣ φ̂2 − φ2

4φ1 + ρφ2

∣∣∣∣∣ p→ 0 for ρ > 0 (48)

1√
n

√
4φ̂1 + ρ̂φ̂2√

4φ1/n+ φ2/(N + n)

p→ 1 (49)

To establish the coverage property (20), we consider the following two cases,
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(a) For the case ρ = 0, we have ρ̂φ̂2 ≥ ρφ2 and hence∣∣∣∣∣∣
√
n
(

Q̂− βᵀΣβ
)

√
4φ1 + ρφ2

·

√
4φ1 + ρφ2

4φ̂1 + ρ̂φ̂2

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
√
n
(

Q̂− βᵀΣβ
)

√
4φ1 + ρφ2

∣∣∣∣∣∣ ·
√
φ1

φ̂1

. (50)

Together with (47), we establish the coverage property (20).

(b) For the case ρ > 0, by Lemma 4, we have 4φ1+ρφ2

4φ̂1+ρ̂φ̂2

p→ 1 and hence

√
n
(

Q̂− βᵀΣβ
)

√
4φ1 + ρφ2

·

√
4φ1 + ρφ2

4φ̂1 + ρ̂φ̂2

d→ N(0, 1), (51)

which leads to the coverage property (20).

The precision property (21) follows from (49).

B.4. Proof of Theorem 3
The error Q̂(β̂, Σ̂(2), Z(2))−Q is decomposed as follows,

2

n2
β̂ᵀ(X(2))ᵀε(2)+β̂ᵀ

(
Σ̂(2) − Σ

)
β̂−(β̂−β)ᵀΣ(β̂−β)+2β̂ᵀ

(
Σ− 1

n2
(X(2))ᵀX(2)

)
(β̂−β)

(52)
The following Lemma controls the terms involved in the above decomposition and the
corresponding proof is present in Section C.5.

Lemma 5. With probability larger than 1− p−c1 − e−c1t2 − γ(n),

(β̂ − β)ᵀΣ(β̂ − β) .
k log p

n
σ2, (53)

∣∣∣∣β̂ᵀ

(
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n2
(X(2))ᵀX(2)

)
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∣∣∣∣ . ‖Σ 1
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n
‖Σ

1

2 (β̂ − β)‖2 (54)

∣∣∣∣ 2

n2
β̂ᵀ
(
X(2)

)ᵀ
ε(2)

∣∣∣∣ . tσ
‖Σ

1

2 β̂‖2√
n

,
∣∣∣β̂ᵀ

(
Σ̂(2) − Σ

)
β̂
∣∣∣ . t

‖Σ
1

2 β̂‖22√
N + n

(55)

The proof of (12) follows from the error decomposition (52), the separate error bounds

in Lemma 5 and the fact k . n/log p and the upper bounds
∣∣∣‖Σ 1

2 β̂‖2 − ‖Σ
1

2β‖2
∣∣∣ ≤

‖Σ
1

2 (β̂ − β)‖2 and
∣∣∣‖Σ 1

2 β̂‖22 − ‖Σ
1

2β‖22
∣∣∣ ≤ ‖Σ 1

2 (β̂ − β)‖22 + 2‖Σ
1

2β‖2‖Σ
1

2 (β̂ − β)‖2.
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B.5. Proof of Theorem 2
We start with introducing two definitions. Define the χ2 distance between two distri-

butions f1(z) and f0(z) as χ2(f1, f0) =
∫ (f1(z)−f0(z))2

f0(z) dz =
∫ f2

1 (z)
f0(z)dz − 1 and the total

variation distance as L1(f1, f0) =
∫
|f1(z)− f0(z)| dz. It is well known that

L1(f1, f0) ≤
√
χ2(f1, f0). (56)

Part of the lower bound in Theorem 2 follows from the lower bounds established in Guo
et al. [2017], where, using the the current paper’s terminology, equation (29) of Theorem
3 in Guo et al. [2017] is expressed as

inf
‖̃β‖22

sup
θ∈Θ(k,M)

P
(∣∣∣‖̃β‖22 − ‖β‖22∣∣∣ & min

{
M/
√
n+ k log p/n,M2

})
≥ 1

4
. (57)

The constructed least favorable null and alternative hypotheses in the proof of (57)
belong to the subspace θ ∈ Θ (k,M)∩{Σ = I}. For Σ = I, Q = βᵀΣβ is reduced to ‖β‖22
and (57) implies the following lower bound,

inf
Q̃

sup
θ∈Θ(k,M)

P
(∣∣∣Q̃−Q

∣∣∣ & min
{
M/
√
n+ k log p/n,M2

})
≥ 1

4
. (58)

It remains to establish the additional term of the lower bound M2/
√
N + n, whose proof

is based on the following version of Le Cam’s Lemma (stated as Lemma 4 in Guo et al.
[2017]; See also LeCam [1973], Yu [1997], Ren et al. [2015]).

Lemma 6. Let T (θ) denote a functional on θ. Suppose that θ0, θ1 ∈ Θ, H0 = {θ0}
and H1 = {θ1} and d = |T (θ1)− T (θ0)|. Then we have

inf
T̂

sup
θ∈H0∪H1

Pθ
(∣∣∣T̂− T (θ)

∣∣∣ ≥ d

2

)
≥ 1− L1 (fθ1 , fθ0)

2
. (59)

To establish the lower bound M2/
√
N + n, we need to perturb the design covariance

matrix and introduce the following null and alternative parameter spaces,

H0 = {θ0 = (β, I, σ0)}

H1 =

{
θ1 =

(
β, I +

c√
N + n‖β‖22

ββᵀ, σ0

)}
,

(60)

where β ∈ Rp satisfies ‖β‖0 ≤ k and ‖β‖2 = M and c = min

{√
log
(

1 +
(

1
4 −

α
2

)2)
,M1 − 1

}
.

Note that H0,H1 ∈ Θ(k,M). Since the conditional distribution f(y|X) is the same un-
der both θ0 and θ1, then we have the decompositions fθ0(y,X) = f(y|X)fθ0(X) and
fθ1(y,X) = f(y|X)fθ1(X) and hence∫ ∫

|fθ0(y,X)− fθ1(y,X)| dXdy =

∫ ∫
f(y|X) |fθ1(X)− fθ0(X)| dXdy

=

∫ (∫
f(y|X)dy

)
|fθ1(X)− fθ0(X)| dX = L1(fθ1(X), fθ0(X)).

(61)
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Hence, it is sufficient to control the L1 or χ2 distance between fθ1(X) and fθ0(X). To
control the distance, we introduce the following Lemma, which was established in Cai
and Zhou [2012], Ren et al. [2015] and stated as Lemma 3 in Cai and Guo [2017b].

Lemma 7. Let gi be the density function of N(0,Σi) for i = 0, 1, 2, respectively. Then∫
g1g2

g0
=
(
det
(
I− Σ−1

0 (Σ1 − Σ0) Σ−1
0 (Σ2 − Σ0)

))− 1

2 .

Note that χ2(fθ1(X), fθ0(X)) + 1 =
∏n
i=1

∫ f2
θ1

(Xi·)

fθ0 (Xi·)
. By applying Lemma 7 with Σ0 = I

and Σ1 = Σ2 = I + c0√
N+n‖β‖22

ββᵀ, we have

χ2(fθ1(X), fθ0(X)) + 1 =

(
det

(
I− c2

0

(N + n)‖β‖22
ββᵀ

))−N+n

2

=

(
1− c2

0

N + n

)−N+n

2

.

For a sufficient small c such that c2

N+n < log 2
2 , we have

(
1− c2

N+n

)−N+n

2 ≤ exp
(
c2
)
≤

1 +
(

1
4 −

α
2

)2
, where the first inequality follows from the inequality 1

1−x ≤ exp(2x) for

x ∈ [0, log 2
2 ) and the second inequality follows from the definition of c. By (56), we have

L1(fθ1(X), fθ0(X)) ≤ 1
4−

α
2 . To apply Lemma 6, we consider the functional Q(θ) = βᵀΣβ

and calculate

|Q(θ1)−Q(θ0)| =
∣∣∣∣βᵀβ − βᵀ

(
I +

c√
N + n‖β‖22

ββᵀ

)
β

∣∣∣∣ = c
‖β‖22√
N + n

= c
M2

√
N + n

.

By applying Lemma 6, we establish

inf
Q̃

sup
θ∈Θ(k,M)

P
(∣∣∣Q̃−Q

∣∣∣ ≥ c

2

M2

√
N + n

)
≥ 1

4
+
α

2
. (62)

Combining (58) and (62), we establish the theorem.

B.6. Proof of Corollary 4
To establish (17), we decompose the error Q̂(β̂,Σ, Z(2))−Q as follows,

2

n2
β̂ᵀ(X(2))ᵀε(2) − (β̂ − β)ᵀΣ(β̂ − β) + 2β̂ᵀ

(
Σ− 1

n2
(X(2))ᵀX(2)

)
(β̂ − β).

Then (17) follows from the above decomposition and Lemma 5. To establish (18), the

error Q̂(β̂,Σ, Z)−Q is decomposed as

2

n
βᵀXᵀε+

2

n
(β̂ − β)ᵀXᵀε− (β̂ − β)ᵀΣ(β̂ − β) + 2β̂ᵀ(Σ− 1

n

n∑
i=1

Xi·X
ᵀ
i·)(β̂ − β) (63)

By (39), (42) and (53), we have∣∣∣∣ 2nβᵀXᵀε+
2

n
(β̂ − β)ᵀXᵀε− (β̂ − β)ᵀΣ(β̂ − β)

∣∣∣∣ . t
‖Σ

1

2β‖2√
n

σ +
k log p

n
σ2. (64)
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By the similar argument as the proof of (41), we establish
∣∣∣2β̂ᵀ(Σ− 1

n

∑n
i=1Xi·X

ᵀ
i·)(β̂ − β)

∣∣∣ .
k log p
n σ2 + ‖Σ

1

2β‖2 k log p
n σ. Together with (63) and (64), we establish (18).

B.7. Proof of Corollaries 5 and 6
Corollary 6 follows from Theorem 5 and the consistency of the standard deviation es-

timator φ̂R. Define φ3 = σ2
(
βᵀΣβ + τ2

0

)
and φ̂3 = σ̂2

(
β̂ᵀΣ̂S β̂ + τ2

0

)
. Using the same

proof of Lemma 4, we can establish the following lemma.

Lemma 8. Under the same assumptions as Corollary 6, then∣∣∣∣∣ φ̂2 − φ2

4φ3 + ρφ2

∣∣∣∣∣ p→ 0 for ρ > 0 and

∣∣∣∣∣ φ̂3 − φ3

φ3

∣∣∣∣∣ p→ 0 (65)

1√
n

√
4φ̂3 + ρ̂φ̂2√

4φ3/n+ φ2/(N + n)

p→ 1 (66)

Applying the same argument as (50) and (51), we establish (24) for CIR; By (66), we
establish (25) for CIR. The proof of corollary 5 follows from the same argument as the
proof of Theorem 4 and the fact that

(1 +
‖Σ

1

2β‖2
σ

N

n+N
)
k log p

n
σ2 �

√
1

n
4σ2

(
βᵀΣβ + τ2

0

)
if k �

√
n

log p
.

Together with Lemma 8, the bias term (1 + ‖Σ
1
2 β‖2
σ

N
n+N )k log p

n σ2 in (7) is upper bounded
by the width of the enlarged confidence interval.

B.8. Proof of Theorem 7 and Corollary 6
The proofs rely on the error decomposition of the proposed estimator ‖̂β‖22

‖̂β‖22 − ‖β‖
2
2 =

2

n2
β̂ᵀΩ̂Xᵀ

i·εi + 2β̂ᵀ

(
Ω̂

1

n2

n∑
i=n1+1

Xi·X
ᵀ
i· − I

)(
β − β̂

)
− (β̂ − β)ᵀ(β̂ − β),

(67)
and the decomposition of the second term on the right hand side of (67),

2β̂ᵀ

(
Ω̂

1

n2

n∑
i=n1+1

Xi·X
ᵀ
i· − I

)(
β − β̂

)
= 2β̂ᵀ

(
Ω̂− Ω

) 1

n2

n∑
i=n1+1

Xi·X
ᵀ
i·

(
β − β̂

)
+ 2β̂ᵀΩ

(
1

n2

n∑
i=n1+1

Xi·X
ᵀ
i· − Σ

)(
β − β̂

)
.

(68)
To establish the rate of convergence for estimating ‖β‖22, we introduce the following
lemma, whose proof is deferred to Section C.6.
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Lemma 9. Under the assumption of Theorem 7, then with probability larger than
1− p−c − γ(n)− e−ct2,∣∣∣∣∣ 2

n2

n∑
i=n1+1

β̂ᵀΩ̂Xᵀ
i·εi

∣∣∣∣∣ . σ

√
1

n2
β̂ᵀΩ̂ΣΩ̂β̂ . ‖Ω̂β̂‖2

σ
√
n2

(69)

∣∣∣∣∣2β̂ᵀ
(

Ω̂− Ω
) 1

n2

n∑
i=n1+1

Xi·X
ᵀ
i·

(
β − β̂

)∣∣∣∣∣ . ‖(Ω̂− Ω
)
β̂‖2‖Σ

1

2 (β̂ − β)‖2 (70)

∣∣∣∣∣2β̂ᵀΩ

(
1

n2

n∑
i=n1+1

Xi·X
ᵀ
i· − Σ

)(
β − β̂

)∣∣∣∣∣ . 1
√
n2
‖Ωβ̂‖2‖Σ

1

2 (β̂ − β)‖2 (71)

By the error decomposition (67), (68) and Lemma 9, we have∣∣∣‖̂β‖22 − ‖β‖22∣∣∣ . σ
‖β‖2√
n

+ k
log p

n
σ2 + ‖(Ω̂− Ω)β̂‖2

√
k log p

n
σ. (72)

The rate of convergence in (37) follows from (72), Condition (B3) and the following
inequality,

‖(Ω̂− Ω)β̂‖2 ≤ ‖(Ω̂− Ω)‖2
(
‖β‖2 + ‖β − β̂‖2

)
.

The rate of convergence in (30) follows from (37) and (??). Note that

2√
n2

∑n
i=n1+1 β̂

ᵀΩ̂Xᵀ
i·εi√

4σ2

n2
ûᵀ
∑n

i=n1+1X
ᵀ
i·Xi·û

d→ N(0, 1) (73)

and √
n2k

log p
n σ2√

4σ2

n2
ûᵀ
∑n

i=n1+1X
ᵀ
i·Xi·û

� k log p/
√
n

‖Ω̂β̂‖2
(74)

Since

‖Ω̂β̂ − Ωβ‖2 ≤ ‖(Ω̂− Ω)‖2
(
‖β‖2 + ‖β − β̂‖2

)
+ ‖Ω(β̂ − β)‖2, (75)

we have

‖Ω̂β̂‖2 ≥ ‖Ωβ‖2 − ‖Ω̂β̂ − Ωβ‖2

≥ ‖Ωβ‖2 − ‖(Ω̂− Ω)‖2
(
‖β‖2 + ‖β − β̂‖2

)
− ‖Ω(β̂ − β)‖2

(76)

Under condition (B3) and the sample size condition (??), we have ‖Ω̂β̂‖2 & ‖β‖2 −√
k log p
n σ. Under the assumption 1

σ‖β‖2 � k log p/
√
n, we have

√
n2k

log p

n
σ2√

4σ2

n2
ûᵀ

∑n
i=n1+1X

ᵀ
i·Xi·û

p→

0. Combined with (73), we establish (31).
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B.9. Proof of Corollary 7
By applying Corollary 6 to the following linear model,

y −Xβnull = X(β − βnull) + ε, (77)

we establish the following limiting distribution,

√
n

Q̂R(y −Xβnull, X, τ0)− (β − βnull)ᵀΣ(β − βnull)

SE
→ N(0, 1), (78)

where SE =
√

4σ2
(
δᵀΣδ + τ2

0

)
+ ρE (δᵀX1·X

ᵀ
1·δ − δᵀΣδ)2 with δ = β − βnull. Hence

P (D(τ0) = 1) can be expressed as

P

(
Q̂R(y −Xβnull, X, τ0)− (β − βnull)ᵀΣ(β − βnull)

SE
≥ φ̂E(y −Xβnull, X, τ0)zα − (β − βnull)ᵀΣ(β − βnull)

SE

)

Note that limn→∞
φ̂E(y−Xβnull,X,τ0)

SE/
√
n

≥ 1, where the equality holds as long as ρ > 0. By

the limiting distribution (78), we show that

lim
n→∞

P (D(τ0) = 1) ≤ Φ−1

(
zα −

√
n(β − βnull)ᵀΣ(β − βnull)

SE

)
, (79)

where the equality holds as long as ρ > 0. By applying (79) with (β − βnull)ᵀΣ(β −
βnull) = 0, we controls the type I error; For the case ρ > 0, by applying (79) with
(β − βnull)ᵀΣ(β − βnull) = ∆√

n
, we establish (32).

B.10. Proof of Corollary 8
The estimation bound (34) follows from the argument of Theorem 1 and the decom-
position of (44). Note that the additional randomization term can be controlled as in
(45).

The proof of the coverage and precision properties follows from the application of
Corollary 6 to the following linear model,

y −Xβ̌ = X(β − β̌) + ε. (80)

Note that the precision property also relies on the following observation,

E (δᵀX1·X
ᵀ
1·δ − δ

ᵀΣδ)2 ≤ 4‖X1·‖2ψ2
‖δ‖42,

which follows from Lemma 10 and the definition of sub-exponential random variable.

C. Proof of Lemmas

To establish the technical lemmas, we introduce the following definitions. For a random

variable U , its sub-gaussian norm is defined as ‖U‖ψ2
= supq≥1

1√
q (E|U |q)

1

q , and its

sub-exponential norm is defined as ‖U‖ψ1
= supq≥1

1
q (E|U |q)

1

q . For a random vector



40 Cai & Guo

U ∈ Rp, its sub-gaussian norm is defined as ‖U‖ψ2
= supv∈Sp−1 ‖〈v, U〉‖ψ2

and sub-
exponential norm is defined as ‖U‖ψ1

= supv∈Sp−1 ‖〈v, U〉‖ψ1
, where Sp−1 is the unit

sphere in Rp. The following lemma shows that the product of two sub-gaussian variables
is a sub-exponential variable, whose proof is present in Section C.1.

Lemma 10. Suppose that U and V are sub-gaussian random variables, then

‖UV ‖ψ1
≤ 2‖U‖ψ2

‖V ‖ψ2
and ‖UV − EUV ‖ψ1

≤ 4‖U‖ψ2
‖V ‖ψ2

(81)

We introduce the following events to facilitate the proofs,

G1 =

{
max

{
‖β̂ − β‖22,

1

n

n∑
i=1

(
Xᵀ
i·(β̂ − β)

)2
}

.
k log p

n
σ2

}
, G2 =

{
‖β̂ − β‖1 . k

√
log p

n
σ

}
,

G3 =

{
‖ 1

n

n∑
i=1

Xi·εi‖∞ . C

√
log p

n
σ

}
, G4 =

{
1

N

n+N∑
i=n+1

(
Xᵀ
i·(β̂ − β)

)2
.
k log p

n
σ2

}
,

(82)
and

G5(w, t) =

{∣∣∣∣ 1nwᵀXᵀε

∣∣∣∣ . t
‖Σ

1

2w‖2√
n

σ

}
,

G6(w, v, t) =

{∣∣∣∣∣wᵀ

(
1

m

m∑
i=1

XiX
ᵀ
i

)
v − wᵀΣv

∣∣∣∣∣ . t
‖Σ

1

2w‖2‖Σ
1

2 v‖2√
m

} (83)

for w, v ∈ Rp. Define G = ∩4
i=1Gi. The following Lemma demonstrates that the above

events happen with high probability and the corresponding proof is present in Section
C.1.

Lemma 11. For any estimator β̂ satisfying (B1), then

P(G) ≥ 1− γ(n)− cp−c − exp(−cN). (84)

For given w, v ∈ Rp and t > 0, then

P(G5(w, t)) ≥ 1− 2 exp(−ct2) and P(G6(w, v, t)) ≥ 1− 2 exp(−ct2). (85)

Lemma 12. Suppose that the condition holds for Σ, then we have

max
‖vSc‖1≤C0‖vS‖1

‖Σ
1

2 v‖2 ≤ ρmax(k,Σ)(2 + C0)‖v‖2. (86)

The proof of the above lemmas is present in next subsection.
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C.1. Proof of Lemmas 10, 11 and 12
Proof of Lemma 10 The proof for ‖UV ‖ψ1

follows from the following inequality

‖UV ‖ψ1
= sup

q≥1

1

q
(E|UV |q)

1

q ≤ 2
1√
2q

(
E|U |2q

) 1

2q
1√
2q

(
E|V |2q

) 1

2q ≤ 2‖U‖ψ2
‖V ‖ψ2

,

where the first inequality is by Cauchy-Schwarz and the second inequality follows from
the definition of sub-gaussian norm. The proof of the centered part ‖UV − EUV ‖ψ1

follows from the upper bound for ‖UV ‖ψ1
and the remark 5.18 in Vershynin [2012].

Proof of Lemma 11 The control of the events G1 and G2 follows from the definition
of (B1) and the following inequality,

‖β̂ − β‖1 ≤ (1 + C0)‖(β̂ − β)S‖1 ≤ (1 + C0)
√
k‖(β̂ − β)S‖2.

In the following, we first establish (85) and then come back to the control of eventsG3 and

G4. By Lemma 10, wᵀ (XiX
ᵀ
i − Σ) v = wᵀ

(
Σ

1

2ZiZ
ᵀ
i Σ

1

2 − Σ
)
v = (Σ

1

2w)ᵀ (ZiZ
ᵀ
i − I) Σ

1

2 v

is centered random variable with sub-exponential norm

‖wᵀ (XiX
ᵀ
i − Σ) v‖ψ1

≤ 2‖Σ
1

2w‖2‖Σ
1

2 v‖2‖Zi·‖2ψ2
= K1‖Σ

1

2w‖2‖Σ
1

2 v‖2

where K1 = 2‖Zi·‖2ψ2
. Similarly, wᵀXi·εi = (Σ

1

2w)ᵀZi·εi is centered sub-exponential

random variable with sub-exponential norm ‖wᵀXi·εi‖ψ1
≤ ‖Σ

1

2w‖2‖Zi·‖ψ2
‖εi‖ψ2

≤
K2‖Σ

1

2w‖2σ where K2 = ‖Zi·‖ψ2
‖εi/σ‖ψ2

. By applying Corollary 5.17 in Vershynin
[2012], we have for t ≤

√
n,

P

(∣∣∣∣∣ 1n
n∑
i=1

wᵀXi·εi

∣∣∣∣∣ ≥ t√
n
·K2‖Σ

1

2w‖2σ

)
≤ 2 exp(−ct2)

and for t ≤
√
m,

P

(∣∣∣∣∣wᵀ

(
1

m

m∑
i=1

XiX
ᵀ
i

)
v − wᵀΣv

∣∣∣∣∣ ≥ t√
m
·K1‖Σ

1

2w‖2‖Σ
1

2 v‖2

)
≤ 2 exp(−ct2)

Then (85) follows from the above two concentration inequality. Note that, on the event
∩pi=1G5(ei,

√
log p), the eventG3 holds and hence we have P(G3) ≥ 1−2p exp(−c(

√
log p)2);

on the event G6(β̂ − β, β̂ − β, t),

1

N

n+N∑
i=n+1

(
Xᵀ
i·(β̂ − β)

)2
≤
(

1 +
t√
N

)
(β̂ − β)ᵀΣ(β̂ − β) .

(
1 +

t√
N

)
k log p

n
σ2.

By taking t =
√
N , we have P(G4) ≥ 1− 2 exp(−cN).

Proof of Lemma 12 For a given set S and vector v, we divide Sc into disjoint sets,
Sc = ∪Mj=1Tj where |T1| = |T2| = · · · = |TM−1| = k and |TM | ≤ k and also

min
i∈Tj
|vi| ≥ max

l∈Tj+1

|vl| (87)
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For any given unit vector δ ∈ Rp, we have

∣∣∣〈δ,Σ 1

2 v〉
∣∣∣ ≤ ∣∣∣〈δ,Σ 1

2 vS〉
∣∣∣+

M∑
j=1

∣∣∣〈δ,Σ 1

2 vTj 〉
∣∣∣ ≤ ρmax(k,Σ)

‖vS‖2 +

M∑
j=1

‖vTj‖2

 . (88)

Due to the property (87), we have ‖vTj‖2 ≤ 1√
k
‖vTj−1

‖1 for j ≥ 2 and hence

M∑
j=1

‖vTj‖2 ≤ ‖vT1
‖2+

1√
k

M−1∑
j=1

‖vTj−1
‖1 ≤ ‖vT1

‖2+
1√
k
C0‖vS‖1 ≤ ‖vT1

‖2+C0‖vS‖2 ≤ (1+C0)‖v‖2.

Then we have ‖vS‖2 +
∑M

j=1 ‖vTj‖2 ≤ (2 + C0)‖v‖2. By (88), we have
∣∣∣〈δ,Σ 1

2 v〉
∣∣∣ ≤

ρmax(k,Σ)(2 + C0)‖v‖2. Taking the maximum over the unit vector δ ∈ Rp, we have

‖Σ
1

2 v‖2 ≤ ρmax(k,Σ)(2 + C0)‖v‖2.

C.2. Proof of Lemma 1
The first inequality in (39) follows from the Holder’s inequality while the second inequal-
ity holds under the event G2 ∩G3. On the event G1 ∩G4, the second error bound (40)
follows from the following decomposition∣∣∣(β̂ − β)ᵀΣ̂S(β̂ − β)

∣∣∣ =
n

N + n

1

n

n∑
i=1

(
Xᵀ
i·(β̂ − β)

)2
+

N

N + n

1

N

n+N∑
i=n

(
Xᵀ
i·(β̂ − β)

)2
.

Together with (84), we establish (40). To establish (41), we start with the following
decomposition,

β̂ᵀ(Σ̂S − 1

n

n∑
i=1

Xi·X
ᵀ
i·)(β̂ − β) = (β̂ − β)ᵀ(Σ̂S − 1

n

n∑
i=1

Xi·X
ᵀ
i·)(β̂ − β)

+
N

N + n

(
βᵀ(

1

N

n+N∑
i=n+1

Xi·X
ᵀ
i· − Σ)(β̂ − β)− βᵀ(

1

n

n∑
i=1

Xi·X
ᵀ
i· − Σ)(β̂ − β)

) (89)

In the following, we are going to bound the terms separately in the above decomposition.
On the event G1, we have (β̂ − β)ᵀ 1

n

∑n
i=1Xi·X

ᵀ
i·(β̂ − β) . k log p

n σ2; By (40), we have

(β̂ − β)ᵀΣ̂S(β̂ − β) . k log p
n σ2 and hence

(β̂ − β)ᵀ(Σ̂S − 1

n

n∑
i=1

Xi·X
ᵀ
i·)(β̂ − β) .

k log p

n
σ2. (90)

On the event G6(β, β̂ − β, t), we have∣∣∣∣∣βᵀ(
1

N

n+N∑
i=n+1

Xi·X
ᵀ
i· − Σ)(β̂ − β)

∣∣∣∣∣ . t√
N
‖Σ

1

2β‖2‖Σ
1

2 (β̂−β)‖2 .
t√
N
‖Σ

1

2β‖2

√
k log p

n
σ,

(91)
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where the last inequality follows from Lemma 12 and condition (B1). On the event

G6(β, ei,
√

log p), we have
∣∣βᵀ( 1

n

∑n
i=1Xi·X

ᵀ
i· − Σ)ei

∣∣ . √
log p/n‖Σ

1

2β‖2 and hence on

the even ∩pi=1G6(β, ei,
√

log p), we have ‖βᵀ( 1
n

∑n
i=1Xi·X

ᵀ
i· −Σ)‖∞ .

√
log p/n‖Σ

1

2β‖2.
By Holder’s inequality, on the event G2 ∩

(
∩pi=1G6(β, ei,

√
log p)

)
, we have∣∣∣∣∣βᵀ(

1

n

n∑
i=1

Xi·X
ᵀ
i· − Σ)(β̂ − β)

∣∣∣∣∣ . ‖Σ 1

2β‖2
k log p

n
σ (92)

By applying (90), (91) and (92) to the decomposition (89), we establish that with prob-
ability larger than 1− p−c − γ(n)− e−ct2 ,∣∣∣∣∣β̂ᵀ(Σ̂S − 1

n

n∑
i=1

Xi·X
ᵀ
i·)(β̂ − β)

∣∣∣∣∣ . k
log p

n
σ2+‖Σ

1

2β‖2σ

(
t

√
N

n+N

√
k log p

n
+

N

n+N

k log p

n

)
.

C.3. Proof of Lemma 2
On the event G5(β, t) ∩ G6(β, β, t), the inequality (42) holds. The probability control
of (42) follows from (85) with taking w = v = β. Let ρn denote n/(N + n) and hence
ρn → ρ To establish (43), we start with the decomposition,

√
n

(
2

n
βᵀXᵀε+ βᵀ

(
Σ̂S − Σ

)
β

)
=

1√
n

n∑
i=1

(2βᵀXi·εi + ρnβ
ᵀ (Xi·X

ᵀ
i· − Σ)β)

+
√
ρn(1− ρn)

1√
N

N+n∑
i=n+1

βᵀ (Xi·X
ᵀ
i· − Σ)β

(93)

Note that E (2βᵀXi·εi + ρnβ
ᵀ (Xi·X

ᵀ
i· − Σ)β)2 = 4σ2βᵀΣβ+ρ2

nE (βᵀX1·X
ᵀ
1·β − βᵀΣβ)2 ,

then we have

√
n
(

2
nβ

ᵀXᵀε+ βᵀ
(

Σ̂S − Σ
)
β
)

√
4σ2βᵀΣβ + ρ2

nE (βᵀX1·X
ᵀ
1·β − βᵀΣβ)

2

d→ N(0, 1),

√
4σ2βᵀΣβ + ρ2

nE (βᵀX1·X
ᵀ
1·β − βᵀΣβ)

2√
4σ2βᵀΣβ + ρ2E (βᵀX1·X

ᵀ
1·β − βᵀΣβ)

2
→ 1

√
ρn(1− ρn) 1√

N

∑N+n
i=n+1 β

ᵀ (Xi·X
ᵀ
i· − Σ)β√

ρ(1− ρ)E (βᵀX1·X
ᵀ
1·β − βᵀΣβ)2

d→ N(0, 1)

By the above limiting distributions, together with the independence between the two
terms on the right hand side of (93), we establish (43).

C.4. Proof of Lemma 3
The proof follows from that of Lemma 2. The main change is that

E (2 (βᵀXi· + ui) εi + ρnβ
ᵀ (Xi·X

ᵀ
i· − Σ)β)2 = 4σ2

(
βᵀΣβ + τ2

0

)
+ρ2

nE (βᵀX1·X
ᵀ
1·β − β

ᵀΣβ)2 .
(94)
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In addition, we need to show that
√
n 1
nu

ᵀXᵀ(β − β̂)
p→ 0. Since uᵀXᵀ(β−β̂)

‖Xᵀ(β−β̂)‖
|Z = z ∼

N(0, 1), we have

P
(∣∣∣∣√n 1

n
uᵀXᵀ(β − β̂)

∣∣∣∣ ≥ δ0

)
=

∫
P
(∣∣∣∣√n 1

n
uᵀXᵀ(β − β̂)

∣∣∣∣ ≥ δ0|z
)
f(z)dz

=

∫
2Φ−1

(
δ0

√
n‖Xᵀ(β − β̂)‖

)
dz =

∫
z∈G1

2Φ−1

(
δ0

√
n‖Xᵀ(β − β̂)‖2

)
f(z)dz + P (Gc1)

(95)
where Φ−1 denotes the inverse of quantile function for the standard normal random vari-

able. By (84) and
√
n‖Xᵀ(β−β̂)‖ . k log p/

√
n→ 0, we show that P

(∣∣∣√n 1
nu

ᵀXᵀ(β − β̂)
∣∣∣ ≥ δ0

)
→

0 and hence
√
n 1
nu

ᵀXᵀ(β − β̂)
p→ 0.

C.5. Proof of Lemma 5
The proof of (53) and (55) in Lemma 5 follows the same arguments as those of Lemma 1

and 2. Conditioning on β̂, we have {β̂ᵀ (Σ−Xi·X
ᵀ
i·) (β̂−β)}n1+1≤i≤n+N are i.i.d centered

random variables and ‖β̂ᵀ (Σ−Xi·X
ᵀ
i·) (β̂ − β)‖ψ1

≤ 2‖Zi‖2ψ2
‖Σ

1

2 β̂‖2‖Σ
1

2 (β̂ − β)‖2 for

n1 + 1 ≤ i ≤ n. By applying Corollary 5.17 in Vershynin [2012], we have

P
(∣∣∣∣β̂ᵀ

(
Σ− 1

n2
(X(2))ᵀX(2)

)
(β̂ − β)

∣∣∣∣ ≥ t
√
n2
· 2‖Zi‖2ψ2

‖Σ 1
2 β̂‖2‖Σ

1
2 (β̂ − β)‖2

)
≤ 2 exp(−ct2).

(96)

C.6. Proof of Lemma 9
The proof relies on the independence between (Ω̂, β̂) and (Xi, yi) for n1 + 1 ≤ i ≤ n.

On the event G5(Ω̂β̂, t), we have (69). On the event G6((Ω̂−Ω)β̂, β̂−β, t), we establish

(70). On the event G6(Ωβ̂, β̂ − β, t), we establish (71).

C.7. Proof of Lemma 4
We first establish (47) and then establish (48). Define ∆1 = σ̂2/σ2 − 1 and ∆2 =

β̂ᵀΣ̂S β̂/βᵀΣβ − 1 . Then we have∣∣∣∣∣ φ̂1

φ1
− 1

∣∣∣∣∣ ≤ |∆1|+ |∆2|+ |∆1| · |∆2| .

Note that

∆2 =
1

βᵀΣβ

(
2βᵀΣ̂S(β̂ − β) + (β̂ − β)ᵀΣ̂S(β̂ − β) + βᵀ

(
Σ̂S − Σ

)
β
)
. (97)

The term βᵀΣ̂S(β̂ − β) is decomposed as

βᵀΣ̂S(β̂−β) =
1

n+N

n+N∑
i=1

Xᵀ
i·(β̂−β)Xᵀ

i·β ≤

√√√√ 1

n+N

n+N∑
i=1

(
Xᵀ
i·(β̂ − β)

)2

√√√√ 1

n+N

n+N∑
i=1

(Xᵀ
i·β)2,

(98)
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where the inequality follows from the Cauchy-Schwarz inequality. Recall the definition
of events in (82) and (83). On the event G1 ∩G4, then (β̂ − β)ᵀΣ̂S(β̂ − β) . k log p/n;

On the event G6(β, β,
√

log p), then
βᵀ(Σ̂S−Σ)β

βᵀΣβ .
√

log p
n+N . Together with (98), we show

that on the event G1 ∩G4 ∩G6(β, β,
√

log p),

βᵀΣ̂S(β̂ − β)

βᵀΣβ
.

√√√√k log p/n

βᵀΣβ
·

(
1 +

√
log p

n+N

)
.

Hence by the decomposition (97), we show that on the event G1 ∩G4 ∩G6(β, β,
√

log p),

|∆2| .
k log p

n
+

√
log p

n
+

√√√√k log p/n

βᵀΣβ
·

(
1 +

√
log p

n+N

)
.

Together with the condition ‖β‖2 � k log p/
√
n and Condition (B2), we establish (47).

In the following, we present the proof of (48). Define φ̄2 = 1
(n+N)

∑n+N
i=1

(
βᵀXi·X

ᵀ
i·β − βᵀΣ̂Sβ

)2
.

Then
φ̂2 − φ2

4φ1 + ρφ2
=

φ̂2 − φ̄2

4φ1 + ρφ2
+

φ̄2 − φ2

4φ1 + ρφ2
(99)

where

φ̂2 − φ̄2 =
1

n+N

n+N∑
i=1

((
β̂ᵀXi·X

ᵀ
i· β̂ − β̂

ᵀΣ̂S β̂
)2
−
(
βᵀXi·X

ᵀ
i·β − β

ᵀΣ̂Sβ
)2
)

φ̄2 − φ2 =
1

n+N

n+N∑
i=1

((
βᵀXi·X

ᵀ
i·β − β

ᵀΣ̂Sβ
)2
− E (βᵀXi·X

ᵀ
i·β − β

ᵀΣβ)2

)
In the following, we will show

P

(
1

φ2

∣∣φ̄2 − φ2

∣∣ ≥ C (log(n+N))5/2√
(n+N)

(βᵀΣβ)2

φ2

)
. (n+N)−c, (100)

P

 1

4φ1 + ρφ2

∣∣∣φ̂2 − φ̄2

∣∣∣ ≥
√√√√1 + C

(log(n+N))5/2√
(n+N)

(βᵀΣβ)2

φ2

√
Λ(n)

4φ1 + ρφ2

+
Λ(n)

4φ1 + ρφ2

 . (n+N)
−c

+ p
−c

+ γ(n),

(101)

where

Λ(n) =
(k log p)2

n+N
+ log(n+N)

k log p

n

(
‖β‖22 +

k log p

n

)
(102)

Since 4φ1 + ρφ2 ≥ c(‖β‖22 + ρ‖β‖42), under the regime k �
√
n/log p, ‖β‖2 � k log p/

√
n

and log(N+n)k log p� n, then (101) implies that 1
4φ1+ρφ2

∣∣∣φ̂2 − φ̄2

∣∣∣ p→ 0. Together with

(100), we establish (48). The result (49) follows from (47) and (48) and the following
decomposition,∣∣∣∣∣4φ̂1 + ρ̂φ̂2

4φ1 + ρ̂φ2
− 1

∣∣∣∣∣ =

∣∣∣∣∣∣4(φ̂1 − φ1)

4φ1 + ρ̂φ2
+
ρ̂
(
φ̂2 − φ2

)
4φ1 + ρ̂φ2

∣∣∣∣∣∣ ≤
∣∣∣∣∣ φ̂1 − φ1

φ1

∣∣∣∣∣+

∣∣∣φ̂2 − φ2

∣∣∣
max{φ1, φ2}

.
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Proof of Equation (100). Define Ai = Xᵀ
i,·β/
√
βᵀΣβ. Then we simply the expression of

φ2 and φ̂2 as

φ2

(βᵀΣβ)2 = E
(
A2
i − EA2

i

)2
and

φ̄2

(βᵀΣβ)2 =
1

n+N

n+N∑
i=1

(
A2
i −

1

n+N

n+N∑
i=1

A2
i

)2

.

Define ψ2 = φ2

(βᵀΣβ)2
and ψ̄2 = φ̄2

(βᵀΣβ)2
and it is sufficient to show that

∣∣ψ̄2 − ψ2

∣∣ p→ 0,

which can be proved by applying Lemma 1 and 2 in Cai and Liu [2011]. To be self-
contained, let’s first re-state the Lemma 1 in Cai and Liu [2011] as Lemma 13.

Lemma 13. Let ξ1, · · · , ξn be independent random variables with mean 0. Suppose
that there exists some η > 0 and Mn such that

∑n
i=1 Eξ2

i exp (η|ξi|) ≤ M2
n. Then for

0 < t ≤Mn,

P

(
n∑
i=1

ξi ≥ CηMnt

)
≤ exp(−t2), (103)

where Cη = η + η−1.

We bound ψ̄2 − ψ2 based on the following decomposition,

ψ̄2 − ψ2 =
1

n+N

n+N∑
i=1

(
A4
i − EA4

i

)
+ 2EA2

i ·
1

n+N

n+N∑
i=1

(
A2
i − EA2

i

)
−

(
1

n+N

n+N∑
i=1

(
A2
i − EA2

i

))2

(104)

Since EA2
i = 1, it is sufficient to establish upper bounds for 1

n+N

∑n+N
i=1

(
A2
i − EA2

i

)
and

1
n+N

∑n+N
i=1

(
A4
i − EA4

i

)
. It follows from Lemma 10 that A2

i a sub-exponential random

variable. By Remark 5.18 in Vershynin [2012], A2
i − EA2

i is a sub-exponential random
variable with sub-exponential norm smaller than 2M1‖Xi·‖2ψ2

. By Corollary 5.17 in

Vershynin [2012], we have

P

(
1

n+N

n+N∑
i=1

(
A2
i − EA2

i

)
≥ 2M1‖Xi·‖2ψ2

√
log(n+N)

n+N

)
≤ 2 exp (−c log(n+N)) = 2(n+N)−c.

(105)
Since Ai is a sub-gaussian random variable, there exists positive constants C1 > 0 and
c > 2 such that the following concentration inequality holds,

n+N∑
i=1

P
(
|Ai| ≥ C1

√
log(n+N)

)
≤ (n+N) max

1≤i≤(n+N)
P
(
|Ai| ≥ C1

√
log(n+N)

)
. (n+N)−c

(106)

Define Āi = Ai1
(
|Ai| ≤ C1

√
log(n+N)

)
and Ãi = Ai1

(
|Ai| ≥ C1

√
log(n+N)

)
.

Then we have

1

n+N

n+N∑
i=1

(
A4
i − EA4

i

)
=

1

n+N

n+N∑
i=1

(
Ā4
i − EĀ4

i

)
+

1

n+N

n+N∑
i=1

(
Ã4
i − EÃ4

i

)
(107)
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We control EÃ4
i as follows,

EÃ4
i ≤

√
E
(
A8
i

)
P
(
|Ai| ≥ C1

√
log(n+N)

)
. P

(
|Ai| ≥ C1

√
log(n+N)

)1/2
. (n+N)−c/2,

(108)
where the first inequality follows from Cauchy-Schwarz inequality, the second inequality
follows from the fact that Ai is a sub-gaussian random variable and the last inequality
follows from (106). Now we apply Lemma 13 to bound 1

n+N

∑n+N
i=1

(
Ā4
i − EĀ4

i

)
. By

taking η = c1/(C1 log(n+N))2 for some small positive constant c1 > 0, we have

n+N∑
i=1

E
(
Ā4
i − EĀ4

i

)2
exp

(
η
∣∣Ā4

i − EĀ4
i

∣∣) ≤ C n+N∑
i=1

E
(
Ā4
i − EĀ4

i

)2 ≤ C2(n+N).

By applying Lemma 13 with Mn =
√
C2(n+N), η = c1/(C1 log(n+N))2 and t =√

log(n+N), then we have

P

(
1

n+N

n+N∑
i=1

(
Ā4
i − EĀ4

i

)
≥ C (log(n+N))5/2

√
n+N

)
. (n+N)−c. (109)

By (106), (107), (108) and (109), we have

P

(
1

n+N

n+N∑
i=1

(
A4
i − EA4

i

)
≥ C (log(n+N))

5/2

√
n+N

)
≤
n+N∑
i=1

P
(
|Ai| ≥ C

√
log(n+N)

)
+ P

(
1

n+N

n+N∑
i=1

(
Ā4
i − EĀ4

i

)
≥ C (log(n+N))

5/2

√
n+N

)
+ P

(
EÃ4

i ≥ C
(log(n+N))

5/2

√
n+N

)
. (n+N)−c.

(110)

By (105) and (110), then there exisits a large constant C such that

P

(∣∣ψ̄2 − ψ2

∣∣ ≥ C (log(n+N))5/2√
(n+N)

)
. (n+N)−c, (111)

for some c > 0. By the fact that
∣∣ψ̄2 − ψ2

∣∣ = 1
(βᵀΣβ)2

∣∣φ̄2 − φ2

∣∣, this implies (100).

Proof of Equation (101). We start with the following decomposition,

1

n+N

n+N∑
i=1

((
β̂ᵀXi·X

ᵀ
i· β̂ − β̂

ᵀΣ̂S β̂
)2
−
(
βᵀXi·X

ᵀ
i·β − β

ᵀΣ̂Sβ
)2
)

=
1

n+N

n+N∑
i=1

(
β̂ᵀXi·X

ᵀ
i· β̂ − β̂

ᵀΣ̂S β̂ − βᵀXi·X
ᵀ
i·β + βᵀΣ̂Sβ

)2

+
1

n+N

n+N∑
i=1

2
(
βᵀXi·X

ᵀ
i·β − β

ᵀΣ̂Sβ
)(

β̂ᵀXi·X
ᵀ
i· β̂ − β̂

ᵀΣ̂S β̂ − βᵀXi·X
ᵀ
i·β + βᵀΣ̂Sβ

)
(112)
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where the second term on the right hand side of (112) is further upper bounded by

2

n+N

√√√√n+N∑
i=1

(
βᵀXi·X

ᵀ
i·β − βᵀΣ̂Sβ

)2

√√√√n+N∑
i=1

(
β̂ᵀXi·X

ᵀ
i· β̂ − β̂ᵀΣ̂S β̂ − βᵀXi·X

ᵀ
i·β + βᵀΣ̂Sβ

)2

(113)
Note that (111) implies

P


√√√√ 1

n+N

n+N∑
i=1

(
βᵀXi·X

ᵀ
i·β − βᵀΣ̂Sβ

)2

≥

√√√√1 + C
(log(n+N))

5/2√
(n+N)

(βᵀΣβ)
2

φ2

√
φ2

 . (n+N)−c,

(114)

Then it is sufficient to control 1
n+N

∑n+N
i=1

(
β̂ᵀXi·X

ᵀ
i· β̂ − β̂ᵀΣ̂S β̂ − βᵀXi·X

ᵀ
i·β + βᵀΣ̂Sβ

)2
,

which is further decomposed as,

1

n+N

n+N∑
i=1

(
β̂ᵀXi·X

ᵀ
i·β̂ − β̂

ᵀΣ̂S β̂ − βᵀXi·X
ᵀ
i·β + βᵀΣ̂Sβ

)2

=
1

n+N

n+N∑
i=1

(
(β̂ − β)ᵀXi·X

ᵀ
i·(β̂ − β) + 2βᵀXi·X

ᵀ
i·(β̂ − β)− (β̂ − β)ᵀΣ̂S(β̂ − β)− 2βᵀΣ̂S(β̂ − β)

)2

≤ 4

n+N

n+N∑
i=1

(
(β̂ − β)ᵀXi·X

ᵀ
i·(β̂ − β)

)2

+ 4
(
βᵀXi·X

ᵀ
i·(β̂ − β)

)2

+ 2
(

(β̂ − β)ᵀΣ̂S(β̂ − β)− 2βᵀΣ̂S(β̂ − β)
)2

(115)

Recall the definition of events in (82). On the event G1 ∩ G4, (β̂ − β)ᵀΣ̂S(β̂ − β) .
k log p/n; On the event G1 ∩G4 ∩G6(β, β,

√
log p),∣∣∣βᵀΣ̂S(β̂ − β)

∣∣∣ ≤√βᵀΣ̂Sβ

√
(β̂ − β)ᵀΣ̂S(β̂ − β) . (1 +

√
log p

n+N
)‖β‖2

√
k log p/n.

Hence,

2
(

(β̂ − β)ᵀΣ̂S(β̂ − β)− 2βᵀΣ̂S(β̂ − β)
)2

.

(
k log p

n

)2

+ ‖β‖22
k log p

n
. (116)

It remains to control 4
n+N

∑n+N
i=1

(
(β̂ − β)ᵀXi·X

ᵀ
i·(β̂ − β)

)2
+ 4

(
βᵀXi·X

ᵀ
i·(β̂ − β)

)2
in

the expression (115), which relies on the following fact. On the eventG1,
∑n

i=1
(Xᵀ

i·(β̂−β))
2

Ck log p ≤
1 and hence

1

n+N

n∑
i=1

(
Xᵀ
i·(β̂ − β)

)4
=
C2(k log p)2

n+N
×

n∑
i=1

(
Xᵀ
i·(β̂ − β)

)4

C2(k log p)2
.

(k log p)2

n+N
. (117)

Define the event B1 as B1 =
{

maxn+1≤i≤n+N

∣∣∣Xᵀ
i·(β̂ − β)

∣∣∣ ≥ C√log(n+N)‖β̂ − β‖2
}

and the event B2 as B2 =
{

max1≤i≤n+N |Xᵀ
i·β| ≥ C

√
log(n+N)‖β‖2

}
. Since Xi· is
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sub-gaussian random variable and β̂ − β is independent of Xi· for n + 1 ≤ i ≤ n + N ,
then

max
i=1,2

P (Bi) . (n+N)−c. (118)

On the event B1 ∩G6(β̂ − β, β̂ − β,
√

log p),

1

N

n+N∑
i=n+1

(
Xᵀ
i·(β̂ − β)

)4
≤ 1

N

n+N∑
i=n+1

(
Xᵀ
i·(β̂ − β)

)2
log(n+N)‖β̂−β‖22 . log(n+N) (k log p/n)2

(119)
On the event B2 ∩G1 ∩G4, we have

4

n+N

n+N∑
i=1

4
(
βᵀXi·X

ᵀ
i·(β̂ − β)

)2

. log(n+N)‖β‖22
4

n+N

n+N∑
i=1

(
Xᵀ
i·(β̂ − β)

)2

. log(n+N)‖β‖22
k log p

n

Combined with (116), (117) and (119), we show that on the event B1 ∩ B2 ∩ G6(β̂ −
β, β̂ − β,

√
log p) ∩G1 ∩G4,∣∣∣∣∣ 1

n+N

n+N∑
i=1

(
β̂ᵀXi·X

ᵀ
i· β̂ − β̂

ᵀΣ̂S β̂ − βᵀXi·X
ᵀ
i·β + βᵀΣ̂Sβ

)2
∣∣∣∣∣ ≤ Λ(n), (120)

where Λ(n) = (k log p)2

n+N + log(n+N)k log p
n

(
‖β‖22 + k log p

n

)
. Together with (112), (114)

and (113), we establish (101).

D. Additional Simulation Results

D.1. Inference for βᵀΣβ
This section presents the additional inference results corresponding to Section 6.2. In
addition to the significant improvement in terms of estimation, the CHIVE estimator
serves as the center of confidence intervals for βᵀΣβ. The coverage and precision prop-
erties of the constructed confidence interval CI are reported in Table 4. With a larger
sample size, the empirical coverage of the proposed confidence interval achieves 95% and
the average lengths of the confidence intervals get shorter. The integration of the unla-
belled data in the semi-supervised setting has shorten the lengths of confidence interval
significantly.

D.2. Effect of Pooling over Unlabelled Data: Signal Detection
We generate the high-dimensional linear regression (1) with the dimension p = 400
and the labelled data with sample size n = 100 and unlabelled data with sample size
N = 3, 000. For the linear model (1), the covariates {Xi·}1≤i≤n for the labelled data
and also {Xi·}n+1≤i≤n+N for the unlabelled data are generated in i.i.d. fashion to follow
multivariate normal distribution with mean zero and covariance matrix Σ ∈ Rp×p where
Σij = 0.8 for 1 ≤ i 6= j ≤ p and Σii = 1 for 1 ≤ i ≤ p. The errors {εi}1≤i≤n are
generated as i.i.d normal distribution with mean zero and standard deviation 0.2. For
the detection problem, we generate β as βj = δ for 1 ≤ j ≤ 40 and βj = 0 for j ≥ 41
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Supervised Semi-Supervised
n Cov Len Cov Len

Setting 1

200 0.922 3.750 0.896 1.796
400 0.936 2.734 0.942 1.536
600 0.946 2.293 0.950 1.393
800 0.936 1.991 0.942 1.290

1,000 0.966 1.800 0.960 1.215

Setting 2

200 0.906 18.218 0.510 6.217
400 0.940 13.444 0.880 5.930
600 0.946 11.045 0.920 5.643
800 0.932 9.671 0.924 5.419

1,000 0.966 8.757 0.956 5.247

Setting 3

200 0.864 1.342 0.866 0.903
400 0.914 0.982 0.904 0.721
600 0.934 0.828 0.906 0.624
800 0.944 0.723 0.924 0.561

1,000 0.942 0.650 0.950 0.516

Table 4: Coverage and precision properties of Proposed CIs. Different rows correspond to differ-
ent settings (Setting 1,2,3) and different sample sizes (n = 200, 400, 600, 800, 1000) for the given
setting. Each row reports empirical coverage (indexed with “Cov”) and average lengths (indexed
with “Len”) of proposed CIs. The columns indexed with “Supervised” represent the results for
the supervised setting and the columns indexed with “Semi-Supervised” represent the results for
the semi-supervised setting. For example, in the first row of numbers (0.922, 3.750, 0.896, 1.796),
it corresponds to the setting 1 and sample size n = 200, in the supervised setting, CI has em-
pirical coverage 0.922 and the average length is 3.750; in the semi-supervised setting, CI has
empirical coverage 0.896 and the average length is 1.796.

and vary δ across 1
100{0, 1.025, 1.075, 1.125, 1.175, 1.225, 1.275, 1.325, 1.375, 1.425}. We

use the randomization level τ0 = 2 in conducting the hypothesis testing H0 : β = 0.

The simulations are replicated over 500 simulations and the Empirical Rejection Rate
(ERR) and the coverage and length of confidence intervals are present in Table 5,where
the column under “Semi-S” corresponds to the semi-supervised method and the column
under “S” corresponds to the supervised method. Regarding ERR, we observe that
the incorporation of unlabelled data is of help in improving the detection rate though
the improvement, reported under the column “Imp”, is only at the level of 5%. This
small improvement for β closed to 0 is actually predicted by the theoretical results.
Since the design matrix is generated to follow multivariate Gaussian distribution in the
simulation studies, the rate of convergence related to the unlabelled data is expressed
as E (βᵀX1·X

ᵀ
1·β − βᵀΣβ)2/(N + n) = 2(βᵀΣβ)2/(N + n); For the hypothesis testing

problem, the interesting but challenging regime is the local alternative near β = 0, that
is, E (βᵀX1·X

ᵀ
1·β − βᵀΣβ)2 = 2(βᵀΣβ)2 is near zero. This explains why improvement of

integrating unlabelled data in testing H0 : β = 0 is not as significant as the prediction
loss evaluation and also inference for the explained variance βᵀΣβ as presented in the
main paper.
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ERR Coverage Length
100δ Semi-S S Imp Semi-S S Semi-S S Ratio

0.000 0.018 0.018 0% 0.972 0.972 0.172 0.172 100%
1.025 0.662 0.628 5.4% 0.974 0.974 0.148 0.153 97.0%
1.075 0.702 0.652 7.7% 0.970 0.976 0.147 0.152 96.3%
1.125 0.760 0.734 3.5% 0.968 0.966 0.146 0.153 95.5%
1.175 0.834 0.804 3.7% 0.948 0.956 0.145 0.153 94.7%
1.225 0.882 0.838 5.3% 0.952 0.956 0.146 0.155 94.0%
1.275 0.946 0.904 4.6% 0.970 0.964 0.144 0.156 92.6%
1.325 0.982 0.946 3.8% 0.972 0.956 0.143 0.156 91.1%
1.375 0.982 0.960 2.3% 0.964 0.962 0.142 0.158 90.1%
1.425 0.984 0.968 1.6% 0.964 0.966 0.143 0.161 88.6%

Table 5: Signal detection p = 400, sample size n = 100 and N = 3000.

The constructed confidence intervals have coverage in both the supervised and semi-
supervised settings and the confidence interval constructed using the unlabelled data
has a shorter length. Under the column “Ratio”, we report the ratio of the length of
confidence intervals in the semi-supervised setting to that in the supervised setting and
see the confidence intervals can be reduced by as much as12% in length. With the same
reasoning as the ERR, the length of the confidence interval is not significantly reduced
as the simulated setting mainly focuses on the case where β is close to zero.

D.3. More about Signal Detection
In this section, we investigate more on the signal detection problem. We switch the focus
from how to integrate the unlabelled data in the detection problem to investigating the
numerical effect of the randomization levels.

For the detection problem, we generate β as βj = δ for 1 ≤ j ≤ 50 and βj = 0
for 51 ≤ j ≤ 800 and vary δ across {0.00, 0.025, 0, 05, 0.075, 010, 0.125, 0.15} and vary
the sample size n across {600, 1200}. In Figure 2, we demonstrate the coverage and
precision properties of the randomized confidence intervals across four methods, the
non-randomized detector D(0) and the three randomized detectors D(2), D(4) and D(6),
where D(·) is defined in (??). The two plots on the top of Figure 2, corresponding to
the supervised setting with n = 600 demonstrate the effect of randomization on the
empirical coverage and average lengths, where the randomization leads to a interval
estimator achieving the coverage properties at the expense of wider interval estimators.
With the randomization level τ0 reaching 2, the coverage property is guaranteed while
the empirical coverage for the procedure without randomization (τ0 = 0) is much lower
than 0.95, especially for weak signals with a small δ. The bottom two plots of Figure
2 corresponds to the supervised setting with n = 1, 200 and the main observation is
similar to the case of n = 600 but the confidence intervals are much shorter than the
setting with n = 600.

The empirical detection rate is reported in Table 6, where the sample size n is gen-
erated across n = 600 and n = 1, 200 and the explained variance βᵀΣβ is controlled via
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Fig. 2: Empirical coverage and average lengths of the proposed randomized confidence intervals
in the supervised setting. The above two figures correspond to the sample size n = 600 and
the bottom two figures correspond to n = 1200 . The left hand side figures stand for the
empirical coverage for different δ while the right hand side figures stand for the average lengths
of CIs for different δ. Different type of the curves correspond to different randomization levels
τ0 ∈ {0, 2, 4, 6}. The dashed horizontal lines on the left hand figures correspond to the targeted
coverage level, 0.95.

the scaler δ. When δ = 0, it corresponds to the null case and a proper detection proce-
dure is expected to have type I error rate 0.05. As predicted by theory, the detection
method without randomization D(0) fails to give proper type I error due to presence
of weak signals. With introducing the randomization procedure, the type I error rate
gets closer to 0.05. When δ moves away from zero, the detection procedure is taken as
a powerful procedure as the empirical detection rate approaches 1. For the detection
procedure with randomization level τ0 = 2, the setting with δ = 0.025 corresponds to
an indistinguishable region, where it is challenging to detect the signal. However, as
δ reaches 0.05, the detection rate reaches 0.800 for n = 600 and 0.944 for n = 1200.
As characterized by theory, a larger randomization level requires a higher value of δ
such that the signal can be detected, for example, for τ0 = 4, until δ reaches 0.075, the
detection rate reaches 0.82 for n = 600 and 0.968 for n = 1200. The corresponding
semi-supervised setting shows a similar phenomenon to the supervised setting but tends
to be easier than the supervised setting due to the unlabelled data. The results are
reported in the supplementary materials.
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n = 600 n = 1, 200
δ βᵀΣβ D(0) D(2) D(4) D(6) D(0) D(2) D(4) D(6)

0.000 0.000 1.000 0.148 0.082 0.066 1.000 0.124 0.076 0.068
0.025 0.091 1.000 0.248 0.094 0.062 1.000 0.254 0.124 0.086
0.050 0.365 1.000 0.800 0.356 0.182 1.000 0.944 0.472 0.264
0.075 0.821 1.000 1.000 0.820 0.524 1.000 1.000 0.968 0.764
0.100 1.460 1.000 1.000 1.000 0.914 1.000 1.000 1.000 0.992
0.125 2.281 1.000 1.000 1.000 0.996 1.000 1.000 1.000 1.000
0.150 3.285 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 6: Empirical detection rates in the supervised setting. The column indexed with δ repre-
sents the signal strength, where the signal is of sparsity 50 and of the form δ·(1, 1, · · · 1, 0, 0, · · · , 0);
the column indexed with βᵀΣβ represents the value of βᵀΣβ; the columns under “n=600” and
“n=1,200” correspond to sample size 600 and 1,200 respectively, where the column indexed with
D(τ0) report the empirical detection rates for the detector D(τ0).

D.4. Prediction Loss Evaluation
In this subsection, we present additional results about prediction loss evaluation. We
generate the high-dimensional regression vector β with sparsity 10 where βj = j/5 for

1 ≤ j ≤ 10 and βj = 0 for j ≥ 11. Let β̂(λ) denote the Lasso estimator based on an

independent training data
(
X(0), y(0)

)
with sample size n0 = 300,

β̂ (λ) = arg min
β∈Rp

‖y(0) −X(0)β‖22
2n0

+ λ

p∑
j=1

‖X(0)
·j ‖2√
n0
|βj |.

We consider the inference problem for the out-of-sample prediction accuracy (β̂(λ) −
β)ᵀΣ(β̂(λ) − β). Specifically, we consider three estimators β̂(λ0), β̂(5λ0) and β̂(10λ0)

with λ0 =
√

Z(1−(0.1/p))

n0
and report the numerical performance of both point and interval

estimators of the corresponding prediction accuracy. We consider the prediction accuracy
problem across three different sample sizes, {600, 1200, 2400} and introduce different
randomization levels. We will use PA(τ0) to denote the procedure with randomization
level τ0.

Table 7 has reported the point and interval estimators of the prediction accuracy
across different settings. In terms of point estimation, the sample averages get closer
to the true accuracy with increasing sample sizes. Among the three estimators, the
true prediction accuracy of β̂(λ0) is the smallest and also the most difficult to assess.
The fundamental reason is that the small accuracy/error is hard to quantify. This
phenomenon is connected to the theoretical results established in Cai and Guo [2017a],

which showed that the estimation accuracy ‖β̂− β‖22 is hard to quantify for an accurate

estimator β̂. The constructed confidence interval PA(0) without randomization has no
coverage even for n = 2400. In such a scenario with weak signals, the evaluators involved
with randomized calibration, PA(2) and PA(4) produce valid confidence intervals across
different settings.

Not only the point and interval estimators are useful, the upper limit and lower limit
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of the confidence intervals reported in Table 7 can also be informative in the prediction
accuracy evaluation. For the estimator β̂(λ0), although the average of lower limit of

confidence intervals for (β̂(λ0)−β)ᵀΣ(β̂(λ0)−β) is zero, the corresponding upper limits
of confidence intervals are informative as they provide empirical guidance to practitioners
with upper bounds for the prediction accuracy. For β̂(5λ0) and β̂(10λ0), both the upper
and lower limits of the confidence intervals are informative on the size of the prediction
accuracy.

β̂(λ0) β̂(5λ0) β̂(10λ0)
True Accuracy 0.065 0.636 2.310

PA(0) PA(2) PA(4) PA(0) PA(2) PA(4) PA(0) PA(2) PA(4)

Super, 600
Coverage 0.166 0.938 0.962 0.778 0.928 0.956 0.914 0.934 0.948
Est Aver 0.157 0.158 0.160 0.739 0.743 0.746 2.417 2.421 2.424

Lower Aver 0.090 0.000 0.000 0.584 0.373 0.058 2.062 1.932 1.665
Upper Aver 0.223 0.502 0.837 0.895 1.112 1.434 2.772 2.909 3.183

Semi, 600
Coverage 0.180 0.938 0.962 0.800 0.936 0.962 0.930 0.944 0.958
Est Aver 0.154 0.155 0.157 0.726 0.729 0.732 2.385 2.388 2.391

Lower Aver 0.088 0.000 0.000 0.581 0.364 0.047 2.102 1.950 1.664
Upper Aver 0.220 0.499 0.834 0.871 1.094 1.418 2.667 2.827 3.119

Super, 1200
Coverage 0.480 0.968 0.976 0.890 0.960 0.974 0.964 0.964 0.970
Est Aver 0.107 0.108 0.109 0.684 0.686 0.688 2.356 2.358 2.360

Lower Aver 0.067 0.000 0.000 0.575 0.420 0.190 2.099 2.004 1.810
Upper Aver 0.146 0.355 0.599 0.793 0.952 1.185 2.613 2.712 2.909

Semi, 1200
Coverage 0.494 0.970 0.976 0.898 0.958 0.972 0.954 0.954 0.968
Est Aver 0.106 0.107 0.108 0.680 0.682 0.684 2.348 2.350 2.352

Lower Aver 0.066 0.000 0.000 0.576 0.418 0.187 2.133 2.026 1.821
Upper Aver 0.145 0.354 0.598 0.783 0.946 1.180 2.563 2.675 2.883

Super, 2400
Coverage 0.738 0.972 0.978 0.916 0.954 0.972 0.948 0.944 0.958
Est Aver 0.083 0.084 0.084 0.663 0.663 0.662 2.340 2.340 2.340

Lower Aver 0.058 0.000 0.000 0.585 0.472 0.306 2.154 2.085 1.945
Upper Aver 0.109 0.260 0.434 0.741 0.853 1.019 2.526 2.594 2.734

Semi, 2400
Coverage 0.742 0.972 0.978 0.912 0.962 0.976 0.950 0.950 0.960
Est Aver 0.083 0.083 0.083 0.661 0.661 0.661 2.337 2.337 2.336

Lower Aver 0.058 0.000 0.000 0.587 0.472 0.306 2.173 2.098 1.952
Upper Aver 0.108 0.260 0.434 0.736 0.851 1.017 2.501 2.576 2.721

Table 7: Inference for prediction accuracy (β̂(λ) − β)ᵀΣ(β̂(λ) − β). The table reports six
settings, corresponding to three different sample sizes (600,1200, 2400) and the supervised and
semi-supervised setting. For example, “Super, 600” stands for the supervised setting with sample
size n = 600 and “Semi, 600” stands for the semi-supervised setting with sample size n =
600. The true prediction accuracy of the three estimators β̂(λ0), β̂(5λ0) and β̂(λ0) is reported
as 0.065, 0.636 and 2.310. Three prediction accuracy evaluators PA(0), PA(2) and PA(4) are
reported, where PA(0) is the evaluator with no randomization, PA(2) is the evaluator with
randomization level τ0 = 2 and PA(4) is the evaluator with randomization level τ0 = 4. For each
setting, the row indexed with “Coverage” reports the empirical coverage of the corresponding
confidence intervals over 500 simulations; the row indexed with “Est Aver” reports the sample
average of the corresponding point estimators over 500 simulations; the rows indexed with “Lower
Aver” and ‘Upper Aver” report the sample averages of the lower and upper limits of interval
estimators over 500 simulations.
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E. Additional Real Data Analysis

In the following, we compare the plug-in estimator and the CHIVE estimator to demon-
strate that the CHIVE estimator adds back the missing heritability across all 46 traits.
We demonstrate this phenomenon in Figure 3 by comparing the CHIVE estimator and
the plug-in estimators of heritability for all 46 traits. We shall stress that all points lie
above the line y = x and this means that the calibration step adds back the missing
heritability due to simply plugging in the Lasso estimator, where the Lasso estimator
tends to ignore the genetic markers with small effects.
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Fig. 3: Heritability for 46 traits. The x-axis represents the heritability estimated by the plug-in
estimator and the y-axis represents the heritability by the proposed CHIVE estimator; the line
represents y = x.


