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CONFIDENCE INTERVALS FOR HIGH-DIMENSIONAL LINEAR
REGRESSION: MINIMAX RATES AND ADAPTIVITY1

BY T. TONY CAI AND ZIJIAN GUO

University of Pennsylvania

Confidence sets play a fundamental role in statistical inference. In this
paper, we consider confidence intervals for high-dimensional linear regres-
sion with random design. We first establish the convergence rates of the min-
imax expected length for confidence intervals in the oracle setting where the
sparsity parameter is given. The focus is then on the problem of adaptation to
sparsity for the construction of confidence intervals. Ideally, an adaptive con-
fidence interval should have its length automatically adjusted to the sparsity
of the unknown regression vector, while maintaining a pre-specified coverage
probability. It is shown that such a goal is in general not attainable, except
when the sparsity parameter is restricted to a small region over which the
confidence intervals have the optimal length of the usual parametric rate. It is
further demonstrated that the lack of adaptivity is not due to the conservative-
ness of the minimax framework, but is fundamentally caused by the difficulty
of learning the bias accurately.

1. Introduction. Driven by a wide range of applications, high-dimensional
linear regression, where the dimension p can be much larger than the sample size
n, has received significant recent attention. The linear model is

(1.1) y = Xβ + ε, ε ∼ N
(
0, σ 2I

)
,

where y ∈ Rn, X ∈ Rn×p and β ∈ Rp . Several penalized/constrained �1 minimiza-
tion methods, including Lasso [24], Dantzig Selector [12], square-root Lasso [2],
and scaled Lasso [23] have been proposed and studied. Under regularity condi-
tions on the design matrix X, these methods with a suitable choice of the tuning
parameter have been shown to achieve the optimal rate of convergence k

logp
n

under
the squared error loss over the set of k-sparse regression coefficient vectors with
k ≤ c n

logp
where c > 0 is a constant. That is, there exists some constant C > 0 such

that

(1.2) sup
‖β‖0≤k

P

(
‖β̂ − β‖2

2 > Ck
logp

n

)
= o(1),
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where ‖β‖0 denotes the number of the nonzero coordinates of a vector β ∈ Rp;
see, for example, [3, 12, 23, 26]. A key feature of the estimation problem is that
the optimal rate can be achieved adaptively with respect to the sparsity parameter k.

Confidence sets play a fundamental role in statistical inference and confidence
intervals for high-dimensional linear regression have been actively studied recently
with a focus on inference for individual coordinates. But, compared to point esti-
mation, there is still a paucity of methods and fundamental theoretical results on
confidence intervals for high-dimensional regression. Zhang and Zhang [27] was
the first to introduce the idea of de-biasing for constructing a valid confidence
interval for a single coordinate βi . The confidence interval is centered at a low-
dimensional projection estimator obtained through bias correction via score vector
using the scaled Lasso as the initial estimator. [16, 17, 25] also used de-biasing for
the construction of confidence intervals and [25] established asymptotic efficiency
for the proposed estimator. All the aforementioned papers [16, 17, 25, 27] have fo-

cused on the ultra-sparse case where the sparsity k �
√

n
logp

is assumed. Under such
a sparsity condition, the expected length of the confidence intervals constructed in
[16, 25, 27] is at the parametric rate 1√

n
and the procedures do not depend on the

specific value of k.
Compared to point estimation where the sparsity condition k � n

logp
is suffi-

cient for estimation consistency [see equation (1.2)], the condition k �
√

n
logp

for
valid confidence intervals is much stronger. There are several natural questions:

What happens in the region where
√

n
logp

� k � n
logp

? Is it still possible to construct
a valid confidence interval for βi in this case? Can one construct an adaptive honest
confidence interval not depending on k?

The goal of the present paper is to address these and other related questions
on confidence intervals for high-dimensional linear regression with random de-
sign. More specifically, we consider construction of confidence intervals for a
linear functional T(β) = ξᵀβ , where the loading vector ξ ∈ Rp is given and
maxi∈supp(ξ) |ξi |
mini∈supp(ξ) |ξi | ≤ c̄ with c̄ ≥ 1 being a constant. Based on the sparsity of ξ , we
focus on two specific regimes: the sparse loading regime where ‖ξ‖0 ≤ Ck, with
C > 0 being a constant; the dense loading regime where ‖ξ‖0 satisfying (2.7) in
Section 2. It will be seen later that for confidence intervals, T(β) = βi is a pro-
totypical case for the general functional T(β) = ξᵀβ with a sparse loading ξ , and
T(β) =∑p

i=1 βi is a representative case for T(β) = ξᵀβ with a dense loading ξ .
To illustrate the main idea, let us first focus on the two specific functionals

T(β) = βi and T(β) =∑p
i=1 βi . We establish the convergence rate of the minimax

expected length for confidence intervals in the oracle setting where the sparsity
parameter k is given. It is shown that in this case the minimax expected length is
of order 1√

n
+ k

logp
n

for confidence intervals of βi . An honest confidence interval,
which depends on the sparsity k, is constructed and is shown to be minimax rate
optimal. To the best of our knowledge, this is the first construction of confidence
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intervals in the moderate-sparse region
√

n
logp

� k � n
logp

. If the sparsity k falls into

the ultra-sparse region k �
√

n
logp

, the constructed confidence interval is similar to
the confidence intervals constructed in [16, 25, 27]. On the other hand, the con-
vergence rate of the minimax expected length of honest confidence intervals for∑p

i=1 βi in the oracle setting is shown to be k

√
logp

n
. A rate-optimal confidence in-

terval that also depends on k is constructed. It should be noted that this confidence
interval is not based on the de-biased estimator.

One drawback of the constructed confidence intervals mentioned above is that
they require a prior knowledge of the sparsity k. Such knowledge of sparsity is
usually unavailable in applications. A natural question is: Without knowing the
sparsity k, is it possible to construct a confidence interval as good as when the
sparsity k is known? This is a question about adaptive inference, which has been
a major goal in nonparametric and high-dimensional statistics. Ideally, an adap-
tive confidence interval should have its length automatically adjusted to the true
sparsity of the unknown regression vector, while maintaining a pre-specified cov-
erage probability. We show that, in marked contrast to point estimation, such a
goal is in general not attainable for confidence intervals. In the case of confidence
intervals for βi , it is impossible to adapt between different sparsity levels, except

when the sparsity k is restricted to the ultra-sparse region k �
√

n
logp

, over which

the confidence intervals have the optimal length of the parametric rate 1√
n

, which

does not depend on k. In the case of confidence intervals for
∑p

i=1 βi , it is shown
that adaptation to the sparsity is not possible at all, even in the ultra-sparse region

k �
√

n
logp

.

Minimax theory is often criticized as being too conservative as it focuses on
the worst case performance over a large parameter space. For confidence intervals
for high-dimensional linear regression, we establish strong non-adaptivity results
which demonstrate that the lack of adaptivity is not due to the conservativeness of
the minimax framework. It shows that for any confidence interval with guaranteed
coverage probability over the set of k sparse vectors, its expected length at any
given point in a large subset of the parameter space must be at least of the same
order as the minimax expected length. So the confidence interval must be long at
a large subset of points in the parameter space, not just at a small number of “un-
lucky” points. This leads directly to the impossibility of adaptation over different
sparsity levels. Fundamentally, the lack of adaptivity is caused by the difficulty in
accurately learning the bias of any estimator for high-dimensional linear regres-
sion.

We now turn to confidence intervals for general linear functionals. For a lin-
ear functional ξᵀβ in the sparse loading regime, the rate of the minimax expected
length is ‖ξ‖2(

1√
n

+ k
logp

n
), where ‖ξ‖2 is the vector �2 norm of ξ . For a lin-

ear functional ξᵀβ in the dense loading regime, the rate of the minimax expected
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length is ‖ξ‖∞k

√
logp

n
, where ‖ξ‖∞ is the vector �∞ norm of ξ . Regarding adap-

tivity, the phenomena observed in confidence intervals for the two special linear
functionals T(β) = βi and T(β) =∑p

i=1 βi extend to the general linear function-
als. The case of confidence intervals for T(β) =∑p

i=1 ξiβi with a sparse loading
ξ is similar to that of confidence intervals for βi in the sense that rate-optimal
adaptation is impossible except when the sparsity k is restricted to the ultra-sparse

region k �
√

n
logp

. On the other hand, the case for a dense loading ξ is similar to that

of confidence intervals for
∑p

i=1 βi : adaptation to the sparsity k is not possible at

all, even in the ultra-sparse region k �
√

n
logp

.
In addition to the more typical setting in practice where the covariance matrix �

of random design and the noise level σ of the linear model are unknown, we also
consider the case with the prior knowledge of � = I and σ = σ0. It turns out that
this case is strikingly different. The minimax rate for the expected length in the
sparse loading regime is reduced from ‖ξ‖2(

1√
n

+ k
logp

n
) to ‖ξ‖2√

n
, and in particular

it does not depend on the sparsity k. Furthermore, in marked contrast to the case of
unknown � and σ , adaptation to sparsity is possible over the full range k � n

logp
.

On the other hand, for linear functionals ξᵀβ with a dense loading ξ , the mini-
max rates and impossibility for adaptive confidence intervals do not change even
with the prior knowledge of � = I and σ = σ0. However, the cost of adaptation is
reduced with the prior knowledge.

The rest of the paper is organized as follows: After basic notation is introduced,
Section 2 presents a precise formulation for the adaptive confidence interval prob-
lem. Section 3 establishes the minimaxity and adaptivity results for a general linear
functional ξᵀβ with a sparse loading ξ . Section 4 focuses on confidence intervals
for a general linear functional ξᵀβ with a dense loading ξ . Section 5 considers
the case when there is prior knowledge of covariance matrix of the random design
and the noise level of the linear model. Section 6 discusses connections to other
work and further research directions. The proofs of the main results are given in
Section 7. More discussion and proofs are presented in the Supplementary Mate-
rial [6].

2. Formulation for adaptive confidence interval problem. We present in
this section the framework for studying the adaptivity of confidence intervals. We
begin with the notation that will be used throughout the paper.

2.1. Notation. For a matrix X ∈ Rn×p , Xi·, X·j , and Xi,j denote respectively
the ith row, j th column and (i, j) entry of the matrix X, Xi,−j denotes the ith row
of X excluding the j th coordinate, and X−j denotes the submatrix of X exclud-
ing the j th column. Let [p] = {1,2, . . . , p}. For a subset J ⊂ [p], XJ denotes the
submatrix of X consisting of columns X·j with j ∈ J and for a vector x ∈ Rp ,
xJ is the subvector of x with indices in J and x−J is the subvector with indices
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in J c. For a set S, |S| denotes the cardinality of S. For a vector x ∈ Rp , supp(x)

denotes the support of x and the �q norm of x is defined as ‖x‖q = (
∑q

i=1 |xi |q)
1
q

for q ≥ 0 with ‖x‖0 = | supp(x)| and ‖x‖∞ = max1≤j≤p |xj |. We use ei to de-
note the ith standard basis vector in Rp . For a ∈ R, a+ = max{a,0}. We use

∑
βi

as a shorthand for
∑p

i=1 βi , max‖X·j‖2 as a shorthand for max1≤j≤p ‖X·j‖2 and
min‖X·j‖2 as a shorthand for min1≤j≤p ‖X·j‖2. For a matrix A and 1 ≤ q ≤ ∞,
‖A‖q = sup‖x‖q=1 ‖Ax‖q is the matrix �q operator norm. In particular, ‖A‖2 is
the spectral norm. For a symmetric matrix A, λmin(A) and λmax(A) denote respec-
tively the smallest and largest eigenvalue of A. We use c and C to denote generic
positive constants that may vary from place to place. For two positive sequences
an and bn, an � bn means an ≤ Cbn for all n and an � bn if bn � an and an � bn if
an � bn and bn � an, and an � bn if lim supn→∞ an

bn
= 0 and an  bn if bn � an.

2.2. Framework for adaptivity of confidence intervals. We shall focus in this
paper on the high-dimensional linear model with the Gaussian design,

(2.1) yn×1 = Xn×pβp×1 + εn×1, ε ∼ Nn

(
0, σ 2I

)
,

where the rows of X satisfy Xi·
i.i.d.∼ Np(0,�), i = 1, . . . , n, and are independent

of ε. Both � and the noise level σ are unknown. Let 	 = �−1 denote the precision
matrix. The parameter θ = (β,	,σ) consists of the signal β , the precision matrix
	 for the random design, and the noise level σ . The target of interest is the linear
functional of β , T(β) = ξᵀβ , where ξ ∈ Rp is a pre-specified loading vector. The
data that we observe is Z = (Z1, . . . ,Zn)

ᵀ, where Zi = (yi,Xi) ∈ Rp+1 for i =
1, . . . , n.

For 0 < α < 1 and a given parameter space � and the linear functional T(β),
denote by Iα(�,T) the set of all (1 − α) level confidence intervals for T(β) over
the parameter space �,

(2.2)
Iα(�,T) =

{
CIα(T,Z)

= [
l(Z),u(Z)

] : inf
θ∈�

Pθ

(
l(Z) ≤ T(β) ≤ u(Z)

)≥ 1 − α
}
.

For any confidence interval CIα(T,Z) ∈ Iα(�,T), the maximum expected length
over a parameter space � is defined as

L
(
CIα(T,Z),�,T

)= sup
θ∈�

EθL
(
CIα(T,Z)

)
,

where for confidence interval CIα(T,Z) = [l(Z),u(Z)], L(CIα(T,Z)) = u(Z) −
l(Z) denotes its length. For two parameter spaces �1 ⊆ �, we define the bench-
mark L∗

α(�1,�,T) as the infimum of the maximum expected length over �1
among all (1 − α)-level confidence intervals over �,

(2.3) L∗
α(�1,�,T) = inf

CIα(T,Z)∈Iα(�,T)
L
(
CIα(T,Z),�1,T

)
.
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We will write L∗
α(�,T) for L∗

α(�,�,T), which is the minimax expected length
of confidence intervals over �.

We should emphasize that L∗
α(�1,�,T) is an important quantity that measures

the degree of adaptivity over the nested spaces �1 ⊂ �. A confidence interval
CIα(T,Z) that is (rate-optimally) adaptive over �1 and � should have the optimal
expected length performance simultaneously over both �1 and � while maintain-
ing a given coverage probability over �, that is, CIα(T,Z) ∈ Iα(�,T) such that

L
(
CIα(T,Z),�1,T

)� L∗
α(�1,T) and L

(
CIα(T,Z),�,T

)� L∗
α(�,T).

Note that in this case L(CIα(T,Z),�1,T) ≥ L∗
α(�1,�,T). So for two parame-

ter spaces �1 ⊂ �, if L∗
α(�1,�,T)  L∗

α(�1,T), then rate-optimal adaptation
between �1 and � is impossible to achieve.

We consider the following collection of parameter spaces:

(2.4)

�(k) =
{
θ = (β,	,σ) : ‖β‖0 ≤ k,

1

M1
≤ λmin(	) ≤ λmax(	) ≤ M1,0 < σ ≤ M2

}
,

where M1 > 1 and M2 > 0 are positive constants. Basically, �(k) is the set of all
k-sparse regression vectors. 1

M1
≤ λmin(	) ≤ λmax(	) ≤ M1 and 0 < σ ≤ M2 are

two mild regularity conditions on the design and the noise level.
The main goal of this paper is to address the following two questions:

1. What is the minimax length L∗
α(�(k),T) in the oracle setting where the spar-

sity level k is known?
2. Is it possible to achieve rate-optimal adaptation over different sparsity lev-

els?
More specifically, for k1 � k, is it possible to construct a confidence interval

CIα(T,Z) that is adaptive over �(k1) and �(k) in the sense that CIα(T,Z) ∈
Iα(�(k),T) and

(2.5)
L
(
CIα(T,Z),�(k1),T

)� L∗
α

(
�(k1),T

)
,

L
(
CIα(T,Z),�(k),T

)� L∗
α

(
�(k),T

)
?

We will answer these questions by analyzing the two benchmark quantities
L∗

α(�(k),T) and L∗
α(�(k1),�(k),T). Both lower and upper bounds will be es-

tablished. If (2.5) can be achieved, it means that the confidence interval CIα(T,Z)

can automatically adjust its length to the sparsity level of the true regression vector
β . On the other hand, if L∗

α(�(k1),�(k),T)  L∗
α(�(k1),T), then such a goal is

not attainable.
For ease of presentation, we calibrate the sparsity level

k � pγ for some 0 ≤ γ < 1
2 ,
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and restrict the loading ξ to the set

ξ ∈ �(q, c̄) =
{
ξ ∈ Rp : ‖ξ‖0 = q, ξ �= 0 and

maxj∈supp(ξ) |ξj |
minj∈supp(ξ) |ξj | ≤ c̄

}
,

where c̄ ≥ 1 is a constant. The minimax rate and adaptivity of confidence intervals
for the general linear functional ξᵀβ also depends on the sparsity of ξ . We are
particularly interested in the following two regimes:

1. The sparse loading regime: ξ ∈ �(q, c̄) with

(2.6) q ≤ Ck.

2. The dense loading regime: ξ ∈ �(q, c̄) with

(2.7) q = cpγq with 2γ < γq ≤ 1.

The behavior of the problem is significantly different in these two regimes. We will
consider separately the sparse loading regime in Section 3 and the dense loading
regime in Section 4.

3. Minimax rate and adaptivity of confidence intervals for sparse loading
linear functionals. In this section, we establish the rates of convergence for the
minimax expected length of confidence intervals for ξᵀβ with a sparse loading ξ

in the oracle setting where the sparsity parameter k of the regression vector β is
given. Both minimax upper and lower bounds are given. Confidence intervals for
ξᵀβ are constructed and shown to be minimax rate-optimal in the sparse loading
regime. Finally, we establish the possibility of adaptivity for the linear functional
ξᵀβ with a sparse loading ξ .

3.1. Minimax length of confidence intervals for ξᵀβ in the sparse loading
regime. In this section, we focus on the sparse loading regime defined in (2.6).
The following theorem establishes the minimax rates for the expected length of
confidence intervals for ξᵀβ in the sparse loading regime.

THEOREM 1. Suppose that 0 < α < 1
2 and k ≤ c min{pγ , n

logp
} for some con-

stants c > 0 and 0 ≤ γ < 1
2 . If ξ belongs to the sparse loading regime (2.6), the

minimax expected length for (1 − α) level confidence intervals of ξᵀβ over �(k)

satisfies

(3.1) L∗
α

(
�(k), ξᵀβ

)� ‖ξ‖2

(
1√
n

+ k
logp

n

)
.

Theorem 1 is established in two separate steps.
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1. Minimax upper bound: we construct a confidence interval CISα(ξᵀβ,Z) such
that CISα(ξᵀβ,Z) ∈ Iα(�(k), ξᵀβ) and for some constant C > 0

(3.2) L
(
CISα

(
ξᵀβ,Z

)
,�(k), ξᵀβ

)≤ C‖ξ‖2

(
1√
n

+ k
logp

n

)
.

2. Minimax lower bound: we show that for some constant c > 0

(3.3) L∗
α

(
�(k), ξᵀβ

)≥ c‖ξ‖2

(
1√
n

+ k
logp

n

)
.

The minimax lower bound is implied by the adaptivity result given in Theorem 2.
We now detail the construction of a confidence interval CISα(ξᵀβ,Z) achieving the
minimax rate (3.1) in the sparse loading regime. The interval CISα(ξᵀβ,Z) is cen-
tered at a de-biased scaled Lasso estimator, which generalizes the ideas used in
[16, 25, 27]. The construction of the (random) length is different from the afore-

mentioned papers as the asymptotic normality result is not valid once k �
√

n
logp

.

Let {β̂, σ̂ } be the scaled Lasso estimator with λ0 =
√

2.05 logp
n

,

(3.4) {β̂, σ̂ } = arg min
β∈Rp,σ∈R+

‖y − Xβ‖2
2

2nσ
+ σ

2
+ λ0

p∑
j=1

‖X·j‖2√
n

|βj |.

Define

(3.5) û = arg min
u∈Rp

{
uᵀ�̂u : ‖�̂u − ξ‖∞ ≤ λn

}
,

where �̂ = 1
n
XᵀX and λn = 12‖ξ‖2M

2
1

√
logp

n
. The confidence interval CISα(ξᵀβ,

Z) is centered at the following de-biased estimator:

(3.6) μ̃ = ξᵀβ̂ + ûᵀ
1

n
Xᵀ(y − Xβ̂),

where β̂ is the scaled Lasso estimator given in (3.4) and û is defined in (3.5).
Before specifying the length of the confidence interval, we review the following
definition of restricted eigenvalue introduced in [3]:

(3.7) κ(X, k,α0) = min
J0⊂{1,...,p},

|J0|≤k

min
δ �=0,

‖δJc
0
‖1≤α0‖δJ0‖1

‖Xδ‖2√
n‖δJ0‖2

.

Define

(3.8)
ρ1(k) = ‖ξ‖2σ̂ min

{
1.01

√√√√ ûᵀ�̂û

n‖ξ‖2
2

zα/2 + C1(X, k)k
logp

n
,

logp

(
1√
n

+ k logp

n

)}
,
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where zα/2 is the α/2 upper quantile of the standard normal distribution and

(3.9) C1(X, k) = 7000M2
1

√
n

min‖X·j‖2
max

{
1.25,

912 max‖X·j‖2
2

nκ2(X, k,405(
max‖X·j‖2
min‖X·j‖2

))

}
.

Define the event

(3.10) A = {σ̂ ≤ logp}.
The confidence interval CISα(ξᵀβ,Z) for ξᵀβ is defined as

(3.11) CISα
(
ξᵀβ,Z

)= {[
μ̃ − ρ1(k), μ̃ + ρ1(k)

]
on A,

{0} on Ac.

It will be shown in Section 7 that the confidence interval CISα(ξᵀβ,Z) has the
desired coverage property and achieves the minimax length in (3.1).

REMARK 1. In the special case of ξ = e1, the confidence interval defined in
(3.11) is similar to the ones based on the de-biased estimators introduced in [16, 25,
27]. The second term ûᵀ 1

n
Xᵀ(y − Xβ̂) in (3.6) is incorporated to reduce the bias

of the scaled Lasso estimator β̂ . The constrained estimator û defined in (3.5) is a
score vector u such that the variance term uᵀ�̂u is minimized and one component
of the bias term ‖�̂u− ξ‖∞ is constrained by the tuning parameter λn. The tuning

parameter λn is chosen as 12‖ξ‖2M
2
1

√
logp

n
such that u = 	ξ lies in the constraint

set ‖�̂u− ξ‖∞ ≤ λn in (3.5) with overwhelming probability. For C1(X, k) defined
in (3.9), it will be shown that it is upper bounded by a constant with overwhelming
probability.

3.2. Adaptivity of confidence intervals for ξᵀβ in the sparse loading regime.
We have constructed a minimax rate-optimal confidence interval for ξᵀβ in the or-
acle setting where the sparsity k is assumed to be known. A major drawback of the
construction is that it requires prior knowledge of k, which is typically unavailable
in practice. An interesting question is whether it is possible to construct adaptive
confidence intervals that have the guaranteed coverage and automatically adjust its
length to k.

We now consider the adaptivity of the confidence intervals for ξᵀβ . In light of
the minimax expected length given in Theorem 1, the following theorem provides
an answer to the adaptivity question (2.5) for the confidence intervals for ξᵀβ in
the sparse loading regime.

THEOREM 2. Suppose that 0 < α < 1
2 and k1 ≤ k ≤ c min{pγ , n

logp
} for some

constants c > 0 and 0 ≤ γ < 1
2 . If ξ belongs to the sparse loading regime (2.6),

then there is some constant c1 > 0 such that

(3.12) L∗
α

(
�(k1),�(k), ξᵀβ

)≥ c1‖ξ‖2

(
1√
n

+ k
logp

n

)
.
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FIG. 1. Illustration of adaptivity of confidence intervals for ξᵀβ with a sparse loading ξ satisfy-
ing ‖ξ‖0 ≤ Ck1. For adaptation between �(k1) and �(k) with k1 � k, rate-optimal adaptation is

possible if k �
√

n
logp

and impossible otherwise.

Note that Theorem 2 implies the minimax lower bound in Theorem 1 by taking
k1 = k. Theorem 2 rules out the possibility of rate-optimal adaptive confidence
intervals beyond the ultra-sparse region. Consider the setting where k1 � k and√

n
logp

� k � n
logp

. In this case,

L∗
α

(
�(k1),�(k), ξᵀβ

)� L∗
α

(
�(k), ξᵀβ

)� ‖ξ‖2k
logp

n
 L∗

α

(
�(k1), ξ

ᵀβ
)
.

So it is impossible to construct a confidence interval that is adaptive simultaneously

over �(k1) and �(k) when
√

n
logp

� k � n
logp

and k1 � k. For sparse loading with

q ≤ Ck1, the only possible region for adaptation is the ultra-sparse region k �
√

n
logp

,

over which the optimal expected length of confidence intervals is of order 1√
n

and in particular does not depend on the specific sparsity level. These facts are
illustrated in Figure 1.

So far the analysis is carried out within the minimax framework where the focus
is on the performance in the worst case over a large parameter space. The minimax
theory is often criticized as being too conservative. In the following, we establish
a stronger version of the nonadaptivity result which demonstrates that the lack of
adaptivity for confidence intervals is not due to the conservativeness of the mini-
max framework. The result shows that for any confidence interval CIα(ξᵀβ,Z),
under the coverage constraint that CIα(ξᵀβ,Z) ∈ Iα(�(k), ξᵀβ), its expected
length at any given θ∗ = (β∗, I, σ ) ∈ �(k1) must be of order ‖ξ‖2(

1√
n

+ k
logp

n
).

So the confidence interval must be long at a large subset of points in the parameter
space, not just at a small number of “unlucky” points.

THEOREM 3. Suppose that 0 < α < 1
2 and k ≤ c min{pγ , n

logp
} for some con-

stants c > 0 and 0 ≤ γ < 1
2 . Let k1 ≤ (1 − ζ0)k − 1 and q ≤ ζ0

4 k for some constant
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0 < ζ0 < 1. Then for any θ∗ = (β∗, I, σ ) ∈ �(k1) and ξ ∈ �(q, c̄), there is some
constant c1 > 0 such that

(3.13) inf
CIα(ξᵀβ,Z)∈Iα(�(k),ξᵀβ)

Eθ∗L
(
CIα

(
ξᵀβ,Z

))≥ c1‖ξ‖2

(
k

logp

n
+ 1√

n

)
σ.

Note that no supremum is taken over the parameter θ∗ in (3.13). Theorem 3
illustrates that if a confidence interval CIα(ξᵀβ,Z) is “superefficient” at any point
θ∗ = (β∗, I, σ ) ∈ �(k1) in the sense that

Eθ∗L
(
CIα

(
ξᵀβ,Z

))� ‖ξ‖2

(
1√
n

+ k
logp

n

)
σ,

then the confidence interval CIα(ξᵀβ,Z) cannot have the guaranteed coverage
over the parameter space �(k).

3.3. Minimax rate and adaptivity of confidence intervals for β1. We now turn
to the special case T(β) = βi , which has been the focus of several previous papers
[16, 17, 25, 27]. Without loss of generality, we consider β1, the first coordinate
of β , in the following discussion and the results for any other coordinate βi are
the same. The linear functional β1 is the special case of linear functional of sparse
loading regime with ξ = e1.

Theorem 1 implies that the minimax expected length for (1 − α) level confi-
dence intervals of β1 over �(k) satisfies

(3.14) L∗
α

(
�(k),β1

)� 1√
n

+ k
logp

n
.

In the ultra-sparse region with k �
√

n
logp

, the minimax expected length is of order
1√
n

. However, when k falls in the moderate-sparse region
√

n
logp

� k � n
logp

, the

minimax expected length is of order k
logp

n
and in this case k

logp
n

 1√
n

. Hence,
the confidence intervals constructed in [16, 17, 25, 27], which are of parametric
length 1√

n
, asymptotically have coverage probability going to 0. The condition

k �
√

n
logp

is thus necessary for the parametric rate 1√
n

. [25] established asymptotic
normality and asymptotic efficiency for a de-biased estimator under the sparsity

assumption k �
√

n
logp

. Similar results have also been given in [21] for a related
problem of estimating a single entry of a p-dimensional precision matrix based

on n i.i.d. samples under the same sparsity condition k �
√

n
logp

. It was also shown

that k �
√

n
logp

is necessary for the asymptotic normality and asymptotic efficiency
results.

The following corollary, as a special case of Theorem 3, illustrates the strong

nonadaptivity for confidence intervals of β1 when k 
√

n
logp

.
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COROLLARY 1. Suppose that 0 < α < 1
2 and k ≤ c min{pγ , n

logp
} for some

constants c > 0 and 0 ≤ γ < 1
2 . Let k1 ≤ (1 − ζ0)k − 1 for some constant 0 <

ζ0 < 1. Then for any θ∗ = (β∗, I, σ ) ∈ �(k1), there is some constant c1 > 0 such
that

(3.15) inf
CIα(β1,Z)∈Iα(�(k),β1)

Eθ∗L
(
CIα(β1,Z)

)≥ c1

(
1√
n

+ k
logp

n

)
σ.

4. Minimax rate and adaptivity of confidence intervals for dense loading
linear functionals. We now turn to the setting where the loading ξ is dense in
the sense of (2.7). We will also briefly discuss the special case

∑p
i=1 βi and the

computationally feasible confidence intervals.

4.1. Minimax length of confidence intervals for ξᵀβ in the dense loading
regime. The following theorem establishes the minimax length of confidence in-
tervals of ξᵀβ in the dense loading regime (2.7).

THEOREM 4. Suppose that 0 < α < 1
2 and k ≤ c min{pγ , n

logp
} for some con-

stants c > 0 and 0 ≤ γ < 1
2 . If ξ belongs to the dense loading regime (2.7), the

minimax expected length for (1 − α) level confidence intervals of ξᵀβ over �(k)

satisfies

(4.1) L∗
α

(
�(k), ξᵀβ

)� ‖ξ‖∞k

√
logp

n
.

Note that the minimax rate in (4.1) is significantly different from the minimax
rate ‖ξ‖2(

1√
n

+ k
logp

n
) for the sparse loading case given in Theorem 1. In the

following, we construct a confidence interval CIDα (ξᵀβ,Z) achieving the minimax
rate (4.1) in the dense loading regime. Define

(4.2) C2(X, k) = 822

√
n

min‖X·j‖2
max

{
1.25,

912 max‖X·j‖2
2

nκ2(X, k,405(
max‖X·j‖2
min‖X·j‖2

))

}
.

It will be shown that C2(X, k) is upper bounded by a constant with overwhelming
probability. The confidence interval CIDα (ξᵀβ,Z) is defined to be

(4.3) CIDα
(
ξᵀβ,Z

)= {[
ξᵀβ̂ − ‖ξ‖∞ρ2(k), ξᵀβ̂ + ‖ξ‖∞ρ2(k)

]
on A,

{0} on Ac,

where A is defined in (3.10) and β̂ is the scaled Lasso estimator defined in (3.4)
and

(4.4) ρ2(k) = min
{
C2(X, k)k

√
logp

n
σ̂ , logp

(
k

√
logp

n
σ̂

)}
.
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The confidence interval constructed in (4.3) will be shown to have the desired
coverage property and achieve the minimax length in (4.1). A major differ-
ence between the construction of CIDα (ξᵀβ,Z) and that of CISα(ξᵀβ,Z) is that
CIDα (ξᵀβ,Z) is not centered at a de-biased estimator. If a de-biased estimator is
used for the construction of confidence intervals for ξᵀβ with a dense loading, its
variance would be too large, which leads to a confidence interval with length much

larger than the optimal length ‖ξ‖∞k

√
logp

n
.

4.2. Adaptivity of confidence intervals for ξᵀβ in the dense loading regime. In
this section, we investigate the possibility of adaptive confidence intervals for ξᵀβ
in the dense loading regime. The following theorem leads directly to an answer to
the adaptivity question (2.5) for confidence intervals for ξᵀβ in the dense loading
regime.

THEOREM 5. Suppose that 0 < α < 1
2 and k1 ≤ k ≤ c min{pγ , n

logp
} for some

constants c > 0 and 0 ≤ γ < 1
2 . If ξ belongs to the dense loading regime (2.7),

then there is some constant c1 > 0 such that

(4.5) L∗
α

(
�(k1),�(k), ξᵀβ

)≥ c1‖ξ‖∞k

√
logp

n
.

Theorem 5 implies the minimax lower bound in Theorem 4 by taking k1 = k. If
k1 � k, (4.5) implies

(4.6) L∗
α

(
�(k1),�(k), ξᵀβ

)≥ c‖ξ‖∞k

√
logp

n
 L∗

α

(
�(k1), ξ

ᵀβ
)
,

which shows that rate-optimal adaptation over two different sparsity levels k1 and
k is not possible at all for any k1 � k. In contrast, in the case of the sparse loading
regime, Theorem 2 shows that it is possible to construct an adaptive confidence

interval in the ultra-sparse region k �
√

n
logp

, although adaptation is not possible in

the moderate-sparse region
√

n
logp

� k � n
logp

.
Similarly to Theorem 3, the following theorem establishes the strong non-

adaptivity results for ξᵀβ in the dense loading regime.

THEOREM 6. Suppose that 0 < α < 1
2 and k ≤ c min{pγ , n

logp
} for some con-

stants c > 0 and 0 ≤ γ < 1
2 . Let q satisfy (2.7) and k1 ≤ (1−ζ0)k−1 for some pos-

itive constant 0 < ζ0 < 1. Then for any θ∗ = (β∗, I, σ ) ∈ �(k1) and ξ ∈ �(q, c̄),
there is some constant c1 > 0 such that

(4.7) inf
CIα(ξᵀβ,Z)∈Iα(�(k),ξᵀβ)

Eθ∗L
(
CIα

(
ξᵀβ,Z

))≥ c1‖ξ‖∞k

√
logp

n
σ.
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4.3. Minimax length and adaptivity of confidence intervals for
∑p

i=1 βi . We
now turn to the special case of T(β) = ∑p

i=1 βi , the sum of all regression coef-
ficients. Theorem 4 implies that the minimax expected length for (1 − α) level
confidence intervals of

∑p
i=1 βi over �(k) satisfies

(4.8) L∗
α

(
�(k),

∑
βi

)
� k

√
logp

n
.

The following impossibility of adaptivity result for confidence intervals for∑p
i=1 βi is a special case of Theorem 6.

COROLLARY 2. Suppose that 0 < α < 1
2 and k ≤ c min{pγ , n

logp
} for some

constants c > 0 and 0 ≤ γ < 1
2 . Let k1 ≤ (1 − ζ0)k − 1 for some constant 0 < ζ0 <

1. Then for any θ∗ = (β∗, I, σ ) ∈ �(k1),

(4.9) inf
CIα(

∑
βi,Z)∈Iα(�(k),

∑
βi)

Eθ∗L
(
CIα

(∑
βi,Z

))
≥ c1k

√
logp

n
σ,

for some constant c1 > 0.

REMARK 2. In the Gaussian sequence model, minimax estimation of the sum
of sparse means has been considered in [8] and construction of confidence inter-
vals for the sum was studied in [9]. In particular, minimax estimation rate and
minimax expected length of confidence intervals are given in [8] and [9], respec-
tively. A more refined nonasymptotic analysis for the minimax estimation of the
sum of sparse means was given in a recent paper [13].

4.4. Computationally feasible confidence intervals. A major drawback of
the minimax rate-optimal confidence intervals CISα(ξᵀβ,Z) given in (3.11) and
CIDα (ξᵀβ,Z) given in (4.3) is that they are not computationally feasible as both
depend on restricted eigenvalue κ(X, k,α0), which is difficult to evaluate. In this
section, we assume the prior knowledge of the sparsity k and discuss how to con-
struct a computationally feasible confidence interval.

The main idea is to replace the term involved with restricted eigenvalue by a
computationally feasible lower bound function ω(	,X,k) defined by

(4.10) ω(	,X,k) =
(

1

4
√

λmax(	)
−

9(1 + 405max‖X·j‖2
min‖X·j‖2

)
√

λmin(	)

√
k

logp

n

)2

+
.

The lower bound relation is established by Lemma 13 in the Supplementary Mate-
rial [6], which is based on the concentration inequality for Gaussian design in [20].
Except for λmin(	) and λmax(	), all terms in (4.10) are based on the data (X,y)
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and the prior knowledge of k. To construct a data-dependent computationally fea-
sible confidence interval, we make the following assumption:

(4.11)
sup

	∈G	

PX

(
max

{∣∣ ˜λmin(	) − λmin(	)
∣∣,

∣∣ ˜λmax(	) − λmax(	)
∣∣}≥ Can,p

)= o(1),

where lim supan,p = 0 and G	 is a pre-specified parameter space for 	 and PX

denotes the probability distribution with respect to X.

REMARK 3. We assume G	 is a subspace of the precision matrix defined in
(2.4), {	 : 1

M1
≤ λmin(	) ≤ λmax(	) ≤ M1}. By assuming G	 is the set of pre-

cision matrix of special structure, we can find estimators satisfying (4.11). For
example, if G	 is assumed to be the set of sparse precision matrices, the preci-
sion matrix 	 can be estimated by the CLIME estimator 	̃ proposed in [5]. Under

a proper sparsity assumption on 	, the plug-in estimator ( ˜λmin(	), ˜λmax(	)) =
(λmin(	̃), λmax(	̃)) satisfies (4.11). Other special structures can also be assumed,
for example, the covariance matrix � is sparse. We can use the plug-in estimator
of the thresholding estimators proposed in [4, 11].

With ˜λmin(	) and ˜λmax(	), we define ω̃(	,X, k) as

ω̃(	,X, k) =
(

1

4
√

˜λmax(	)

−
9(1 + 405max‖X·j‖2

min‖X·j‖2
)√

˜λmin(	)

√
k

logp

n

)2

+

and construct computationally feasible confidence intervals by replacing κ2(X, k,

405(
max‖X·j‖2
min‖X·j‖2

)) in (3.11) and (4.3) with ω̃(	,X, k).

5. Confidence intervals for linear functionals with prior knowledge � = I
and σ = σ0. We have so far focused on the setting where both the precision
matrix 	 and the noise level σ are unknown, which is the case in most statistical
applications. It is still of theoretical interest to study the problem when 	 and σ

are known. It is interesting to contrast the results with the ones when 	 and σ are
unknown. In this case, we consider the setting where it is known a priori that 	 = I
and σ = σ0 and specify the parameter space as

(5.1) �(k, I, σ0) = {
θ = (β, I, σ0) : ‖β‖0 ≤ k

}
.

We will discuss separately the minimax rates and adaptivity of confidence intervals
for the linear functionals in the sparse loading regime and dense loading regime
over the parameter space �(k, I, σ0).
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5.1. Confidence intervals for linear functionals in the sparse loading regime.
The following theorem establishes the minimax rate of confidence intervals for
linear functionals in the sparse loading regime when there is prior knowledge that
	 = I and σ = σ0.

THEOREM 7. Suppose that 0 < α < 1
2 and k ≤ c min{pγ , n

logp
} for some con-

stants c > 0 and 0 ≤ γ < 1
2 . If ξ belongs to the sparse loading regime (2.6),

the minimax expected length for (1 − α) level confidence intervals of ξᵀβ over
�(k, I, σ0) satisfies

(5.2) L∗
α

(
�(k, I, σ0), ξ

ᵀβ
)� ‖ξ‖2√

n
.

Compared with the minimax rate ‖ξ‖2√
n

+ ‖ξ‖2k
logp

n
for the unknown 	 and σ

case given in Theorem 1, the minimax rate in (5.2) is significantly different. With
the prior knowledge of 	 = I and σ = σ0, the above theorem shows that the min-
imax expected length of confidence intervals for ξᵀβ is always of the parametric
rate and in particular does not depend on the sparsity parameter k. In this case,
adaptive confidence intervals for ξᵀβ is possible over the full range k ≤ c n

logp
.

A similar result for confidence intervals covering all βi was given in a recent paper
[18]. The focus of [18] is on individual coordinates, not general linear functionals.

The proof of Theorem 7 involves establishment of both minimax lower and
upper bounds. The lower bound follows from the same proof for the parametric
lower bound in Theorem 1. As both 	 and σ are known, the upper bound analysis
is easier than the unknown 	 and σ case and is similar to the one given in [18].
For completeness, we detail the construction of a confidence interval achieving
the minimax length in (5.2) using the de-biasing method. We first randomly split
the samples (X,y) into two subsamples (X(1), y(1)) and (X(2), y(2)) with sample
sizes n1 and n2, respectively. Without loss of generality, we assume that n is even
and n1 = n2 = n

2 . Let β̂ denote the Lasso estimator defined based on the sample

(X(1), y(1)) with the proper tuning parameter λ =
√

2.05 logp
n1

σ0,

(5.3) β̂ = arg min
β∈Rp

‖y(1) − X(1)β‖2
2

2n1
+ λ

p∑
j=1

‖X(1)
·j ‖2√
n1

|βj |.

We define the following estimator of ξᵀβ:

(5.4) μ̄ = ξᵀβ̂ + 1

n2
ξᵀ
(
X(2))ᵀ(y(2) − X(2)β̂

)
.

Based on the estimator, we construct the following confidence interval:

(5.5) CII
α

(
ξᵀβ,Z

)= [
μ̄ − 1.01

‖ξ‖2√
n2

zα0/2σ0, μ̄ + 1.01
‖ξ‖2√

n2
zα0/2σ0

]
,
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where α0 = γ0α with 0 < γ0 < 1. It will be shown in the Supplementary Mate-
rial [6] that the confidence interval proposed in (5.5) has the nominal coverage
probability asymptotically and achieves the minimax length in (5.2).

5.2. Confidence intervals for linear functionals in the dense loading regime.
The following theorem establishes the adaptivity lower bound in the dense loading
regime.

THEOREM 8. Suppose that 0 < α < 1
2 and k1 ≤ k ≤ c min{pγ , n

logp
} for some

constants c > 0 and 0 ≤ γ < 1
2 . If ξ belongs to the dense loading regime (2.7),

then there is some constant c1 > 0 such that

L∗
α

(
�(k1, I, σ0),�(k, I, σ0), ξ

ᵀβ
)

≥ c1‖ξ‖∞σ0 max
{√

kk1

√
logp

n
,min

{
k

√
logp

n
,

√
k

n
1
4

}}
.

(5.6)

REMARK 4. There are two parts in the lower bound given in (5.6), which are

established separately. The lower bound min{k
√

logp
n

,
√

k

n
1
4
} is obtained using well-

known techniques by testing a simple null against a composite alternative. The
construction of the least favorable set is quite standard. For example, such a con-
struction of least favorable set has been used under the Gaussian sequence model
in [1] for signal detection and in [8, 9] for estimation and confidence intervals for
linear functionals. The technique has also been used more recently in [15, 19] for
detection and confidence ball in sparse linear regression. On the other hand, the

other lower bound,
√

kk1

√
logp

n
, cannot be established using a similar argument

and a novel comparison of two composite least favorable spaces is introduced to
establish this lower bound.

The lower bound given in (5.6) immediately yields the minimax lower bound
for the expected length of confidence intervals over �(k, I, σ0),

L∗
α

(
�(k, I, σ0), ξ

ᵀβ
)≥ c1‖ξ‖∞k

√
logp

n
σ0,

by simply setting k1 = k in (5.6). Since this lower bound can be achieved by the
confidence interval constructed in (4.3), we have established the minimax con-

vergence rate L∗
α(�(k1, I, σ0), ξ

ᵀβ) � ‖ξ‖∞k

√
logp

n
σ0, which is the same as the

minimax rate established in Theorem 4 for the case of unknown 	 and σ . Thus,
in marked contrast to the sparse loading regime, the prior knowledge of 	 = I and
σ = σ0 does not improve the minimax rate in the dense loading regime. Under
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the framework (2.5), adaptive confidence intervals are still impossible, since for
k1 � k,

L∗
α

(
�(k1, I, σ0),�(k, I, σ0), ξ

ᵀβ
) L∗

α

(
�(k1, I, σ0), ξ

ᵀβ
)
.

However, compared with Theorem 5, we observe that the cost of adaptation is
reduced with the prior knowledge of 	 = I and σ = σ0.

6. Discussion. In the present paper, we studied the minimaxity and adaptivity
of confidence intervals for general linear functionals ξᵀβ with a sparse or dense
loading ξ for the setting where 	 and σ are unknown as well as the setting with
the prior knowledge of 	 = I and σ = σ0. In the more typical case in practice
where 	 and σ are unknown, the adaptivity results are quite negative: With the
exception of the ultra-sparse region for confidence intervals for ξᵀβ with a sparse
loading ξ , it is necessary to know the true sparsity k in order to have guaranteed
coverage probability and rate-optimal expected length. In contrast to estimation,
knowledge of the sparsity k is crucial to constructing honest confidence intervals.
In this sense, the problem of constructing confidence intervals is much harder than
the estimation problem.

The case of known 	 = I and σ = σ0 is strikingly different. The minimax ex-
pected length in the sparse loading regime is of order ‖ξ‖2√

n
and in particular does

not depend on k and adaptivity can be achieved over the full range of sparsity
k � n

logp
. So in this case, the knowledge of 	 and σ is very useful. On the other

hand, in the dense loading regime the information on 	 and σ is of limited use.
In this case, the minimax rate and lack of adaptivity remain unchanged, compared
with the unknown 	 and σ case, although the cost of adaptation is reduced.

Regarding the construction of confidence intervals, there is a significant dif-
ference between the sparse and dense loading regimes. The de-biasing method is
useful in the sparse loading regime since such a procedure reduces the bias but
does not dramatically increase the variance. However, the de-biasing construction
is not applicable to the dense loading regime since the cost of obtaining a near-
unbiased estimator is to significantly increase the variance which would lead to
an unnecessarily long confidence interval. An interesting open problem is the con-
struction of a confidence interval for ξᵀβ achieving the minimax length where the
sparsity q of the loading ξ is in the middle regime with cpγ ≤ q ≤ cp2γ+ς for
some 0 < ς < 1 − 2γ .

In addition to constructing confidence intervals for linear functionals, another
interesting problem is constructing confidence balls for the whole vector β . Such
has been considered in [19], where the impossibility of adaptive confidence balls
for sparse linear regression was established. These problems are connected, but
each has its own special features and the behaviors of the problems are differ-
ent from each other. The connections and differences in adaptivity among various
forms of confidence sets have also been observed in nonparametric function esti-
mation problems; see, for example, [9] for adaptive confidence intervals for linear
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functionals, [7, 14] for adaptive confidence bands and [10, 22] for adaptive confi-
dence balls.

In the context of nonparametric function estimation, a general adaptation the-
ory for confidence intervals for an arbitrary linear functional was developed in Cai
and Low [9] over a collection of convex parameter spaces. It was shown that the
key quantity that determines adaptivity is a geometric quantity called the between-
class modulus of continuity. The convexity assumption on the parameter space in
Cai and Low [9] is crucial for the adaptation theory. In high-dimensional linear
regression, the parameter space is highly nonconvex. The adaptation theory devel-
oped in [9] does not apply to the present setting of high-dimensional linear regres-
sion. It would be of significant interest to develop a general adaptation theory for
confidence intervals in such a nonconvex setting.

7. Proofs. In this section, we prove three main results, Theorem 1, Theorem 2
and Theorem 3. For reasons of space, the proofs of Theorems 4–8 are given in
the Supplementary Material [6]. A key technical tool for the proof of the lower
bound results is the following lemma which establishes the adaptivity over two
nested parameter spaces. Such a formulation has been considered in [9] in the
context of adaptive confidence intervals over convex parameter spaces under the
Gaussian sequence model. However, the parameter space �(k) considered in the
high-dimensional setting is highly nonconvex. The following lemma can be viewed
as a generalization of [9] to the nonconvex parameter space, where the lower bound
argument requires testing composite hypotheses.

Suppose that we observe a random variable Z which has a distribution Pθ where
the parameter θ belongs to the parameter space H. Let CIα(T,Z) be the confi-
dence interval for the linear functional T(θ) with the guaranteed coverage 1 − α

over the parameter space H. Let H0 and H1 be subsets of the parameter space
H where H = H0 ∪ H1. Let πHi

denote the prior distribution supported on the
parameter space Hi for i = 0,1. Let fπHi

(z) denote the density function of the
marginal distribution of Z with the prior πHi

on Hi for i = 0,1. More specifically,
fπHi

(z) = ∫
fθ (z)πHi

(θ) dθ , for i = 0,1.
Denote by PπHi

the marginal distribution of Z with the prior πHi
on Hi for

i = 0,1. For any function g, we write EπH0
(g(Z)) for the expectation of g(Z)

with respect to the marginal distribution of Z with the prior πH0 on H0. We define
the χ2 distance between two density functions f1 and f0 by

(7.1) χ2(f1, f0) =
∫

(f1(z) − f0(z))
2

f0(z)
dz =

∫
f 2

1 (z)

f0(z)
dz − 1

and the total variation distance by TV(f1, f0) = ∫ |f1(z) − f0(z)|dz. It is well
known that

(7.2) TV(f1, f0) ≤
√

χ2(f1, f0).
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LEMMA 1. Assume T(θ) = μ0 for θ ∈ H0 and T(θ) = μ1 for θ ∈ H1 and
H = H0 ∪H1. For any CIα(T,Z) ∈ Iα(T,H),

(7.3)
L
(
CIα(T,Z),H

)≥ L
(
CIα(T,Z),H0

)
≥ |μ1 − μ0|(1 − 2α − TV(fπH1

, fπH0
)
)
+.

7.1. Proof of Lemma 1. The supremum risk over H0 is lower bounded by the
Bayesian risk with the prior πH0 on H0,

(7.4)
sup
θ∈H0

EθL
(
CIα(T,Z)

)≥ ∫
θ
EθL

(
CIα(T,Z)

)
πH0(θ) dθ

= EπH0
L
(
CIα(T,Z)

)
.

By the definition of CIα(T,Z) ∈ Iα(T,H), we have

(7.5) PπHi

(
μi ∈ CIα(T,Z)

)= ∫
θ
Pθ

(
μi ∈ CIα(T,Z)

)
πHi

(θ) dθ ≥ 1 − α,

for i = 0,1. By the following inequality,∣∣PπH1

(
μ1 ∈ CIα(T,Z)

)− PπH0

(
μ1 ∈ CIα(T,Z)

)∣∣≤ TV(fπH1
, fπH0

),

then we have PπH0
(μ1 ∈ CIα(T,Z)) ≥ 1 − α − TV(fπH1

, fπH0
). This to-

gether with (7.5) yields PπH0
(μ0,μ1 ∈ CI) ≥ 1 − 2α − TV(fπH1

, fπH0
), which

leads to PπH0
(L(CIα(T,Z)) ≥ |μ1 − μ0|) ≥ 1 − 2α − TV(fπH1

, fπH0
). Hence,

EπH0
L(CIα(T,Z)) ≥ |μ1 − μ0|(1 − 2α − TV(fπH1

, fπH0
))+. The lower bound

(7.3) then follows from inequality (7.4).

7.2. Proof of Theorem 3. The lower bound in (3.13) can divided into the fol-
lowing two lower bounds,

(7.6) inf
CIα(ξᵀβ,Z)∈Iα(�(k),ξᵀβ)

Eθ∗L
(
CIα

(
ξᵀβ,Z

))≥ c‖ξ‖2k
logp

n
σ

and

(7.7) inf
CIα(ξᵀβ,Z)∈Iα(�(k),ξᵀβ)

Eθ∗L
(
CIα

(
ξᵀβ,Z

))≥ c
‖ξ‖2√

n
σ,

for some constant c > 0. We will establish the lower bounds (7.6) and (7.7) sepa-
rately.

PROOF OF (7.6). Without loss of generality, we assume supp(ξ) = {1, . . . , q},
where q = ‖ξ‖0. We generate the orthogonal matrix M ∈ Rq×q such that its first
row is 1

‖ξ‖2
ξsupp(ξ) and define the orthogonal matrix Q as Q = (

M 0
0 I

)
. We trans-

form both the design matrix X and the regression vector β and view the linear
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model (2.1) as y = V ψ + ε, where V = XQᵀ and ψ = Qβ . The transformed co-

efficient vector ψ∗ = Qβ∗ = (Mβ∗
supp(ξ)

β∗− supp(ξ)

)
is of sparsity at most q + k1. The first co-

efficient ψ1 of ψ is 1
‖ξ‖2

ξᵀβ . The covariance matrix � of V1· is Q�Qᵀ and its cor-
responding precision matrix is � = Q	Qᵀ. To represent the transformed observed
data and parameter, we abuse the notation slightly and also use Zi = (yi,Vi·) and
θ∗ = (ψ∗, I, σ ). We define the parameter space G(k) of (ψ,�,σ ) as

(7.8) G(k) = {
(ψ,�,σ ) : ψ = Qβ,� = Q	Qᵀ for (β,	,σ) ∈ �(k)

}
.

For a given Q, there exists a bijective mapping between �(k) and G(k). To
show that (ψ,�,σ ) ∈ G(k), it is equivalent to show (Qᵀψ,Qᵀ�Q,σ) ∈ �(k). Let
Iα(G(k),ψ1) denote the set of confidence intervals for ψ1 = 1

‖ξ‖2
ξᵀβ with guar-

anteed coverage over G(k). If CIα(ψ1,Z) ∈ Iα(G(k),ψ1), then ‖ξ‖2 CIα(ψ1,Z) ∈
Iα(�(k), ξᵀβ); If CIα(ξᵀβ,Z) ∈ Iα(�(k), ξᵀβ), then 1

‖ξ‖2
CIα(ξᵀβ,Z) ∈

Iα(G(k),ψ1). Because of such one to one correspondence, we have

(7.9)

inf
CIα(ξᵀβ,Z)∈Iα(�(k),ξᵀβ)

Eθ∗L
(
CIα

(
ξᵀβ,Z

))
= ‖ξ‖2 inf

CIα(ψ1,Z)∈Iα(G(k),ψ1)
Eθ∗L

(
CIα(ψ1,Z)

)
.

By (7.6) and (7.9), we reduce the problem to

(7.10) inf
CIα(ψ1,Z)∈Iα(G(k),ψ1)

Eθ∗L
(
CIα(ψ1,Z)

)≥ ck
logp

n
σ.

Under the Gaussian random design model, Zi = (yi,Vi·) ∈ Rp+1 follows a joint
Gaussian distribution with mean 0. Let �z denotes the covariance matrix of Zi .

Decompose �z into blocks
(�z

yy (�z
vy)ᵀ

�z
vy �z

vv

)
, where �z

yy , �z
vv and �z

vy denote the vari-

ance of y, the variance of V and the covariance of y and V , respectively. We
define the function h : �z → (ψ,�,σ ) as h(�z) = ((�z

vv)
−1�z

vy, (�
z
vv)

−1,�z
yy −

(�z
vy)

ᵀ(�z
vv)

−1�z
vy). The function h is bijective and its inverse mapping h−1 :

(ψ,�,σ ) → �z is

h−1((ψ,�,σ )
)= (

ψᵀ�−1ψ + σ 2 ψᵀ�−1

�−1ψ �−1

)
.

The null space is taken as H0 = {(ψ∗, I, σ )} and πH0 denotes the point mass
prior at this point. The proof is divided into three steps:

1. Construct H1 and show that H1 ⊂ G(k);
2. Control the distribution distance TV(fπH1

, fπH0
);

3. Calculate the distance μ1−μ0 where μ0 = ψ∗
1 and μ1 = ψ1 with (ψ,�,σ ) ∈

H1. We show that μ1 = ψ1 is a fixed constant for all (ψ,�,σ ) ∈ H1 and then apply
Lemma 1.
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Step 1. We construct the alternative hypothesis parameter space H1. Let �z
0

denote the covariance matrix of Zi corresponding to (ψ∗, I, σ ) ∈ H0. Let S1 =
supp(ψ∗) ∪ {1} and S = S1 \ {1}. Let k∗ denote the size of S and p1 denote the
size of Sc

1 and we have k∗ ≤ k1 + q and p1 ≥ p − k∗ − 1 ≥ cp. Without loss
of generality, let S = {2, . . . , k∗ + 1}. We have the following expression for the
covariance matrix of Zi under the null:

(7.11) �z
0 =

⎛⎜⎜⎜⎜⎝
∥∥ψ∗∥∥2

2 + σ 2 ψ∗
1

(
ψ∗

S

)ᵀ 01×p1

ψ∗
1 1 01×k∗ 01×p1

ψ∗
S 0k∗×1 Ik∗×k∗ 0k∗×p1

0p1×1 0p1×1 0p1×k∗ Ip1×p1

⎞⎟⎟⎟⎟⎠ .

To construct H1, we define the following set:

(7.12) �

(
p1,

ζ0

2
k,ρ

)
=
{
δ : δ ∈Rp1,‖δ‖0 = ζ0

2
k, δi ∈ {0, ρ} for 1 ≤ i ≤ p1

}
.

Define the parameter space F for �z by F = {�z
δ : δ ∈ �(p1,

ζ0
2 k,ρ)}, where

(7.13) �z
δ =

⎛⎜⎜⎜⎜⎝
‖ψ∗∥∥2

2 + σ 2 ψ∗
1

(
ψ∗

S

)ᵀ
ρ0δ

ᵀ

ψ∗
1 1 01×k∗ δᵀ

ψ∗
S 0k∗×1 Ik∗×k∗ 0k∗×p1

ρ0δ δ 0p1×k∗ Ip1×p1

⎞⎟⎟⎟⎟⎠ .

Then we construct the alternative hypothesis space H1 for (ψ,�,σ ), which is
induced by the mapping h and the parameter space F ,

(7.14) H1 = {
(ψ,�,σ ) : (ψ,�,σ ) = h

(
�z) for �z ∈ F

}
.

In the following, we show that H1 ⊂ G(k). It is necessary to identify (ψ,�,σ ) =
h(�z) for �z ∈ F and show (Qᵀψ,Qᵀ�Q,σ) ∈ �(k). First, we identify the
expression E(yi | Vi,·) under the alternative joint distribution (7.13). Assuming
yi = Vi1ψ1 + Vi,SψS + Vi,Sc

1
ψSc

1
+ ε′

i , we have

(7.15) ψ1 = −‖δ‖2
2ρ0 + ψ∗

1

1 − ‖δ‖2
2

, ψS = ψ∗
S , ψSc

1
= (ρ0 − ψ1)δ

and

(7.16) Var
(
ε′
i

)= σ 2 − ‖δ‖2
2(ρ0 − ψ∗

1 )2

1 − ‖δ‖2
2

≤ σ 2 ≤ M2.

Based on (7.15), the sparsity of ψ in the alternative hypothesis space is upper
bounded by 1 + |supp(ψ∗

S )| + | supp(δ)| ≤ (1 − ζ0
4 )k, and hence the sparsity of the

corresponding β = Qᵀψ is controlled by

(7.17) ‖β‖0 ≤
(

1 − ζ0

4

)
k + q ≤ k.
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Second, we show that 	 = Qᵀ�Q satisfies the condition 1
M1

≤ λmin(	) ≤
λmax(	) ≤ M1. The covariance matrix � of Vi,· in the alternative hypothesis pa-
rameter space is expressed as

(7.18)

� =
⎛⎜⎝ 1 01×k∗ 0k∗×p1

0k∗×1 Ik∗×k∗ 0k∗×p1

0p1×1 0p1×k∗ Ip1×p1

⎞⎟⎠

+
⎛⎜⎝ 0 01×k∗ δᵀ

0k∗×1 0k∗×k∗ 0k∗×p1

δ 0p1×k∗ 0p1×p1

⎞⎟⎠ .

Since the second matrix on the above equation is of spectral norm ‖δ‖2, Weyl’s
inequality leads to max{|λmin(�) − 1|, |λmax(�) − 1|} ≤ ‖δ‖2. When ‖δ‖2 is
chosen such that ‖δ‖2 ≤ min{1 − 1

M1
,M1 − 1}, then we have 1

M1
≤ λmin(�) ≤

λmax(�) ≤ M1. Since 	 and � = Q	Qᵀ have the same eigenvalues, we have
1

M1
≤ λmin(	) ≤ λmax(	) ≤ M1. Combined with (7.16) and (7.17), we show that

H1 ⊂ G(k).
Step 2. To control TV(fπH1

, fπH0
), it is sufficient to control χ2(fπH1

, fπH0
)

and apply (7.2). Let π denote the uniform prior on δ over �(p1,
ζ0
2 k,ρ). Note that

this uniform prior π induces a prior distribution πH1 over the parameter space H1.
Let Eδ,̃δ denote the expectation with respect to the independent random variables

δ, δ̃ with uniform prior π over the parameter space �(p1,
ζ0
2 k,ρ). The following

lemma controls the χ2 distance between the null and the mixture over the alterna-
tive distribution.

LEMMA 2. Let f1 = (σ 2 + (ψ∗
1 )2 − ρ0ψ

∗
1 ). Then

(7.19) χ2(fπH1
, fπH0

) + 1 = Eδ,̃δ

(
1 − 1

σ 2

(
ρ0
(
ρ0 − ψ∗

1
)+ f1

)
δᵀδ̃

)−n

.

The following lemma is useful in controlling the right-hand side of (7.19).

LEMMA 3. Let J be a Hypergeometric(p, k, k) variable with P(J = j) =
(k
j)(

p−k
k−j )

(p
k)

, then

(7.20) E exp(tJ ) ≤ e
k2

p−k

(
1 − k

p
+ k

p
exp(t)

)k

.

Taking ρ0 = ψ∗
1 + σ , we have 1

σ 2 (ρ0(ρ0 − ψ∗
1 ) + f1) = 2 and by Lemma 2,

χ2(fπH1
, fπH0

) + 1 = Eδ,̃δ

(
1 − 2δᵀδ̃

)−n
.
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By the inequality 1
1−x

≤ exp(2x) for x ∈ [0,
log 2

2 ], if δᵀδ̃ ≤ ζ0
2 kρ2 <

log 2
4 , then

(1 − 2δᵀδ̃)−n ≤ exp(4nδᵀδ̃). By Lemma 3, we further have

Eδ,̃δ exp
(
4nδᵀδ̃

)= E exp
(
4Jnρ2)≤ e

ζ2
0 k2

4p1−2ζ0k

(
1 − ζ0k

2p1
+ ζ0k

2p1
exp

(
4nρ2)) ζ0

2 k

≤ e
ζ2
0 k2

4p1−2ζ0k

(
1 − ζ0k

2p1
+ ζ0k

2p1

√
4p1

ζ 2
0 k2

) ζ0
2 k

≤ e

c2ζ2
0 p2γ

4p1−2cζ0pγ

(
1 + 1√

p1

) cζ0
2 pγ

,

where the second inequality follows by plugging in ρ =
√

log 4p1
ζ2
0 k2

8n
and the last

inequality follows by k ≤ cpγ . If k ≤ c{ n
logp

,pγ }, where 0 ≤ γ < 1
2 and c is a

sufficient small positive constant, then kρ2 < min{ log 2
2ζ0

, (1 − 1
M1

)2,1}, and hence

(7.21) χ2(fπH1
, fπH0

) ≤
(

1

2
− α

)2
and TV(fπH1

, fπH0
) ≤ 1

2
− α.

Step 3. We calculate the distance between μ1 and μ0. Under H0, μ0 = ψ∗
1 .

Under H1, μ1 = ψ1 = −‖δ‖2
2ρ0+ψ∗

1
1−‖δ‖2

2
. For δ ∈ �(p1,

ζ0
2 k,ρ), ‖δ‖2

2 = ζ0
2 kρ2 and μ1 =

ψ1 = − ζ0
2 kρ2(ψ∗

1 +σ)+ψ∗
1

1− ζ0
2 kρ2

. Since ρ is selected as fixed, μ1 = ψ1 is a fixed constant

for (ψ,�,σ ) ∈ H1. Note that μ1 − μ0 = ‖δ‖2
2(ψ

∗
1 −ρ0)

1−‖δ‖2
2

= −σ‖δ‖2
2

1−‖δ‖2
2

, and it follows that

|μ1 − μ0| = σ
‖δ‖2

2
1−‖δ‖2

2
≥ ck

log 4p1
ζ2
0 k2

n
σ . Combined with (7.2) and (7.21), Lemma 1

leads to (7.10). By (7.9), we establish (3.13). �

PROOF OF (7.7). Similar to the proof of (7.6), the proof is divided into three
steps.

The first step. We construct alternative hypothesis parameter space H1. For a
given ξ , β∗ and a small positive constant ε̄, we select β such that

(7.22) β− supp(ξ) = β∗− supp(ξ),
∥∥βsupp(ξ) − β∗

supp(ξ)

∥∥
2 = σ

ε̄√
n

and

(7.23) ξᵀ
(
β − β∗)= ∑

i∈supp(ξ)

ξi

(
βi − β∗

i

)= ‖ξ‖2
∥∥β − β∗∥∥

2.
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The sparsity of β is controlled by ‖β‖0 ≤ ‖β∗‖0 +‖ξ‖0 ≤ k, and hence (β, I, σ ) ∈
�(k). We consider the parameter spaces H0 = {θ∗ = (β∗, I, σ )} and H1 =
{(β, I, σ )}.

The second step. Let πH0 denote the point mass prior on the point (β∗, I, σ )

and πH1 denote the point mass prior on the point (β, I, σ ). Let fπH0
(y | X) denote

the conditional density function of the marginal distribution of y given X with
the parameter πHi

on Hi for i = 0,1. The χ2 distance between the conditional
distributions fπH1

(y | X) and fπH0
(y | X) is

(7.24) χ2(fπH1
(y | X),fπH0

(y | X)
)+ 1 = exp

(
1

σ 2

∥∥X(β − β∗)∥∥2
2

)
.

Let EX denote the expectation with respect to X, where Xi·
i.i.d.∼ Np(0, I), i =

1, . . . , n, then we have

χ2(fπH1
(y,X), fπH0

(y,X)
)= EX

(
χ2(fπH1

(y | X),fπH0
(y | X)

))
= EX exp

(
1

σ 2

∥∥X(β − β∗)∥∥2
2

)
− 1.

If
2‖β∗−β‖2

2
σ 2 <

log 2
2 , we have

(7.25)
χ2(fπH1

(y,X), fπH0
(y,X)

)= (
1 − 2‖β∗ − β‖2

2

σ 2

)− n
2 − 1

≤ exp
(

2n‖β∗ − β‖2
2

σ 2

)
− 1,

where the first equality follows from the moment generating function of χ2 dis-
tribution and the second inequality follows from the inequality 1

1−x
≤ exp(2x) for

x ∈ [0,
log 2

2 ].
The third step. We calculate the distance between μ1 = Tβ and μ0 = Tβ∗. Note

that μ0 and μ1 are fixed constants under the simple null and alternative hypothesis.
By Lemma 1, the construction (7.22) and (7.23) and the control of χ2 distance
(7.25) lead to

Eθ∗
(
L
(
CIα

(
ξᵀβ,Z

)))≥ σ
ε̄√
n

(
1 − 2α −

√
exp

(
2ε̄2

)− 1
)
. �

7.3. Proof of Theorem 2. Theorem 2 follows from Theorem 3. Given 0 < ζ0 <

1, we define k∗
1 = min{k1, (1 − ζ0)k − 1} and q∗ = min{ ζ0

4 k,‖ξ‖0}. Let J denote
the subset of {1, . . . , p} corresponding to the q∗ largest in absolute value coordi-
nates of ξ . Define the parameter space �ξ(k) = {θ ∈ �(k) : βsupp(ξ)\J = 0}, which
is a subspace of �(k) setting β to be zero on the set supp(ξ) \ J . Define the vector
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ξ̄ such that ξ̄j = ξj for j ∈ J and ξ̄j = 0 for j /∈ J . By the fact that ξᵀβ = ξ̄ᵀβ for
β ∈ �ξ(k), we have

inf
CIα(ξᵀβ,Z)∈Iα(�ξ (k),ξᵀβ)

Eθ∗L
(
CIα

(
ξᵀβ,Z

))
= inf

CIα(ξ̄ᵀβ,Z)∈Iα(�ξ (k),ξ̄ᵀβ)
Eθ∗L

(
CIα

(
ξ̄ᵀβ,Z

))
.

It then follows from the same argument as the proof of Theorem 3 that

inf
CIα(ξ̄ᵀβ,Z)∈Iα(�ξ (k),ξ̄ᵀβ)

Eθ∗L
(
CIα

(
ξ̄ᵀβ,Z

))≥ c‖ξ̄‖2

(
1√
n

+ k logp

n

)
.

By taking θ∗ ∈ �ξ(k
∗
1), we have

L∗
α

(
�ξ

(
k∗

1
)
,�ξ (k), ξᵀβ

)≥ inf
CIα(ξᵀβ,Z)∈Iα(�ξ (k),ξᵀβ)

Eθ∗L
(
CIα

(
ξᵀβ,Z

))
.

Since �ξ(k
∗
1) ⊂ �(k1), �ξ(k) ⊂ �(k) and ‖ξ̄‖2 ≥ c‖ξ‖2, we have established

Theorem 2.

7.4. Proof of Theorem 1. The lower bound of Theorem 1 follows from The-
orem 2 by taking k1 = k. The minimax upper bound follows from the following
proposition, which establishes the coverage property and the expected length of
the confidence interval constructed in (3.11). Such a confidence interval achieves
the minimax length in (3.1).

PROPOSITION 1. Suppose that k ≤ c∗ n
logp

, where c∗ is a small positive con-
stant, then

(7.26) lim inf
n,p→∞ inf

θ∈�(k)
Pθ

(
ξᵀβ ∈ CISα

(
ξᵀβ,Z

))≥ 1 − α

and

(7.27) L
(
CISα

(
ξᵀβ,Z

)
,�(k)

)≤ C‖ξ‖2

(
k

logp

n
+ 1√

n

)
,

for some constant C > 0.

In the following, we are going to prove Proposition 1. By normalizing the
columns of X and the true sparse vector β , the linear regression model can be
expressed as

(7.28) y = Wd + ε with W = XD,d = D−1β and ε ∼ N
(
0, σ 2I

)
,

where

(7.29) D = diag
( √

n

‖X·j‖2

)
j∈[p]
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denotes the p ×p diagonal matrix with (j, j) entry to be
√

n
‖X·j‖2

. Take δ0 = 1.0048

and η0 = 0.01, and we have λ0 = (1 + η0)

√
2δ0 logp

n
. Take ε0 = 2.01

η0
+ 1 = 202,

ν0 = 0.01, C1 = 2.25, c0 = 1
6 and C0 = 3. Rather than use the constants directly

in the following discussion, we use δ0, η0, ε0, ν0,C1,C0 and c0 to represent the
above fixed constants in the following discussion. We also assume that logp

n
≤ 1

25
and δ0 logp > 2. Define the l1 cone invertibility factor (CIF1) as follows:

(7.30) CIF1(α0,K,W) = inf
{ |K|‖WᵀW

n
u‖∞

‖uK‖1
: ‖uKc‖1 ≤ α0‖uK‖1, u �= 0

}
,

where K is an index set. Define σ ora = 1√
n
‖y − Xβ‖2 = 1√

n
‖y − Wd‖2,

(7.31)

T = {
k : |dk| ≥ λ0σ

ora},
τ = (1 + ε0)λ0 max

{
4

σ ora ‖dT c‖1,
8|T |

CIF1(2ε0 + 1, T ,W)

}
.

To facilitate the proof, we define the following events for the random design X and
the error ε:

G1 =
{

2

5

1√
M1

<
‖X·j‖2√

n
<

7

5

√
M1 for 1 ≤ j ≤ p

}
,

G2 =
{∣∣∣∣(σ ora)2

σ 2 − 1
∣∣∣∣≤ 2

√
logp

n
+ 2

logp

n

}
,

G3 =
{

max
{∣∣∣∣ξᵀ�̂ξ

ξᵀ�ξ
− 1

∣∣∣∣, ∣∣∣∣uᵀ�̂u

ξᵀ	ξ
− 1

∣∣∣∣}≤ 2

√
logp

n
+ 2

logp

n

}
where u = 	ξ,

G4 =
{
κ(X, k,α) ≥ 1

4
√

λmax(	)
− 9√

λmin(	)
(1 + α)

√
k

logp

n

}
,

G5 =
{‖Wᵀε‖∞

n
≤ σ

√
2δ0 logp

n

}
,

S1 =
{‖Wᵀε‖∞

n
≤ σ oraλ0

ε0 − 1

ε0 + 1
(1 − τ)

}
,

S2 = {
(1 − ν0)σ̂ ≤ σ ≤ (1 + ν0)σ̂

}
,

B1 = {∥∥ξᵀ	�̂ − ξᵀ
∥∥∞ ≤ λn

}
where λn = 4C0M

2
1‖ξ‖2

√
logp

n
.
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Define G =⋂5
i=1 Gi and S =⋂2

i=1 Si . The following lemmas control the prob-
ability of events G, S and B1. The detailed proofs of Lemma 4, 5 and 6 are in the
Supplementary Material [6].

LEMMA 4.

(7.32) Pθ (G) ≥ 1 − 6

p
− 2p1−C1 − 1

2
√

πδ0 logp
p1−δ0 − c′ exp(−cn)

and

(7.33) Pθ (B1) ≥ 1 − 2p1−c0C
2
0 ,

where c and c′ are universal positive constants. If k ≤ c∗ n
logp

, then

(7.34)
Pθ (G ∩ S) ≥ Pθ (G) − 2 exp

(
−
(

g0 + 1 − √
2g0 + 1

2

)
n

)
− c′′ 1√

logp
p1−δ0,

where c∗ and c′′ are universal positive constants and g0 = ν0
2+3ν0

.

The following lemma establishes a data-dependent upper bound for the term
‖β̂ − β‖1.

LEMMA 5. On the event G ∩ S,

(7.35) ‖β̂ − β‖1 ≤ (2 + 2ε0)

√
n

min‖X·j‖2
l(Z, k),

where

(7.36) l(Z, k) = max
{
kλ0σ

ora,
(2 + 2ε0)max‖X·j‖2

2(σ

√
2δ0 logp

n
+ λ0σ̂ )k

nκ2(X, k, (1 + 2ε0)(
max‖X·j‖2
min‖X·j‖2

))

}
.

The following lemma controls the radius of the confidence interval.

LEMMA 6. On the event G ∩ S ∩ B1, there exists p0 such that if p ≥ p0,

(7.37) ρ1(k) ≤ C‖ξ‖2

(
1√
n

+ k logp

n

)
σ ≤ ‖ξ‖2 logp

(
1√
n

+ k logp

n

)
σ̂

and

(7.38) ρ2(k) ≤ Ck

√
logp

n
σ ≤ logp

(
k

√
logp

n
σ̂

)
.
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In the following, we establish the coverage property of the proposed confidence
interval. By the definition of μ̃ in (3.6), we have

(7.39) μ̃ − ξᵀβ = 1

n
ûᵀXᵀε + (

ξᵀ − ûᵀ�̂
)
(β̂ − β).

We now construct a confidence interval for the variance term 1
n
ûᵀXᵀε by normal

distribution and a high probability upper bound for the bias term (ξᵀ − ûᵀ�̂)(β̂ −
β). Since ε is independent of X and û and �̂ is a function of X, we have 1

n
ûᵀXᵀε |

X ∼ N(0, σ 2 ûᵀ�̂û
n

), and

Pε|X
(

1

n
ûᵀXᵀε ∈

(
−
√

ûᵀ�̂û

n
σzα/2,

√
ûᵀ�̂û

n
σzα/2

) ∣∣∣X)= 1 − α.

By (7.39), we have Pε|X(ξᵀβ ∈ CI0(Z, k) | X) = 1 − α, where

CI0(Z, k) =
[
μ̃ − (

ξᵀ − ûᵀ�̂
)
(β̂ − β) −

√
ûᵀ�̂û

n
σzα/2,

μ̃ − (
ξᵀ − ûᵀ�̂

)
(β̂ − β) +

√
ûᵀ�̂û

n
σzα/2

]
.

Integrating with respect to X, we have

(7.40) Pθ

(
ξᵀβ ∈ CI0(Z, k)

)= ∫
Pε|x

(
ξᵀβ ∈ CI0(Z, k) | x)f (x) dx = 1 − α.

Since |(ξᵀ− ûᵀ�̂)(β̂−β)| ≤ ‖ξᵀ− ûᵀ�̂‖∞‖β̂−β‖1, on the event S∩G, Lemma 5
and the constraint in (3.5) lead to

(7.41)
∥∥ξᵀ − ûᵀ�̂

∥∥∞‖β̂ − β‖1 ≤ λn(2 + 2ε0)

√
n

min‖X·j‖2
l(Z, k),

where l(Z, k) is defined in (7.36). On the event G∩S, we also have σ ≤ (1+ ν0)σ̂

and σ ora ≤ (1 + ν0)

√
1 + 2

√
logp

n
+ 2 logp

n
σ̂ . We define the following confidence

interval to facilitate the discussion, CI1(Z, k) = (μ̃ − lk, μ̃ + lk), where lk = (1 +
ν0)

√
ûᵀ�̂û

n
zα/2σ̂ + C1(X, k)‖ξ‖2k

logp
n

σ̂ . On the event G ∩ S, we have

(7.42) CI0(Z, k) ⊂ CI1(Z, k).

On the event S2, if p ≥ exp(2M2), then σ̂ ≤ 1
1−ν0

σ ≤ 1
1−ν0

M2 < logp. Hence, the

event A holds and CISα(ξᵀβ,Z) = [μ̃ − ρ1(k), μ̃ + ρ1(k)]. By Lemma 6, on the
event G ∩ S ∩ B1, if p ≥ max{p0, exp(2M2)}, we have ρ1(k) = lk , and hence

(7.43) CI1(Z, k) = CISα
(
ξᵀβ,Z

)
.
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We have the following bound on the coverage probability:

Pθ

({
ξᵀβ ∈ CISα

(
ξᵀβ,Z

)})≥ Pθ

({
ξᵀβ ∈ CI0(Z, k)

}∩ S ∩ G ∩ B1
)

≥ Pθ

({
ξᵀβ ∈ CI0(Z, k)

})− Pθ

(
(S ∩ G ∩ B1)

c)
= 1 − α − Pθ

(
(S ∩ G ∩ B1)

c)
= Pθ (S ∩ G ∩ B1) − α,

where the first inequality follows from (7.42) and (7.43) and the first equality fol-
lows from (7.40). Combined with Lemma 4, we establish (7.26). We control the
expected length as follows:

(7.44)

EθL
(
CISα

(
ξᵀβ,Z

))
= EθL

(
CISα

(
ξᵀβ,Z

))
1A

= EθL
(
CISα

(
ξᵀβ,Z

))
1A∩(S∩G∩B1)

+EθL
(
CISα

(
ξᵀβ,Z

))
1A∩(S∩G∩B1)

c

≤ C‖ξ‖2

(
k

logp

n

1√
n

)
σ

+ ‖ξ‖2(logp)2
(

1√
n

+ k logp

n

)
Pθ

(
(S ∩ G ∩ B1)

c)
≤ C‖ξ‖2

(
k

logp

n
+ 1√

n

)
× (

σ + C
(
p1−min{δ0,C1,c0C

2
0 } + c′ exp(−cn)

)
(logp)2),

where the first inequality follows from (7.37) and second inequality follows from
Lemma 4. If logp

n
≤ c, then (p1−min{δ0,C1,c0C

2
0 } + c′ exp(−cn))(logp)2 → 0, and

hence EθL(CISα(ξᵀβ,Z)) ≤ C‖ξ‖2(k
logp

n
+ 1√

n
)M2.
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SUPPLEMENTARY MATERIAL

Supplement to “Confidence intervals for high-dimensional linear regres-
sion: Minimax rates and adaptivity” (DOI: 10.1214/16-AOS1461SUPP; .pdf).
Detailed proofs of the adaptivity lower bound and minimax upper bound for con-
fidence intervals of the linear functional ξᵀβ with a dense loading ξ are given.
The minimax rates and adaptivity of confidence intervals of the linear functional
ξᵀβ are established when there is prior knowledge that 	 = I and σ = σ0. Extra
propositions and technical lemmas are also proved in the supplement.

http://dx.doi.org/10.1214/16-AOS1461SUPP
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