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Multiresolution wavelet transformation (MWT) and block thres-
holding is used to effectively suppress both background and noise
interference while minimally distorting Raman spectral features.
The performance of MWT as a spectral pre-processing algorithm
is demonstrated using both synthetic spectra and experimental hy-
per-spectral Raman images with large background and noise com-
ponents. The results are quanti� ed by comparing correlation coef-
� cients of synthetic spectra with either the same or different back-
grounds. The improved chemical imaging performance obtained us-
ing MWT is demonstrated by comparing principal component
analysis (PCA) channel images and spectral angle mapping (SAM)
classi� ed images before and after MWT pre-processing.

Index Headings : Raman imaging; Wavelet transform; Image classi-
� cation; Denoise; Block threshold.

INTRODUCTION

The utility of Raman microscopy in chemical imaging
of biological, organic, and inorganic materials is increas-
ingly becoming recognized.1–3 The power of this method
derives from the high chemical information content of
Raman spectra, while the most signi� cant obstacle to its
widespread application often results from interfering
noise and background (� uorescence) signals. This work
reports the application of a multiresolution wavelet trans-
formation (MWT) signal processing algorithm to ef� -
ciently separate noise and background signals from Ra-
man spectral features, for enhanced chemical classi� ca-
tion and imaging.

Previous methods used to eliminate � uorescence back-
ground include Spline � t subtraction (SFS),4 fast-Fourier
transformation (FFT) high-pass and low-pass � ltering,5
and Savitzky–Golay (SG) smoothing and derivation ex-
traction6,7 algorithms. Although each of these have prov-
en to be quite useful, they also have signi� cant limita-
tions. The SFS method often requires sample dependent
optimization in de� ning background regions. The FFT
method typically attenuates and distorts Raman spectral
features unless these are well separated from the Fourier
frequency components of the background and noise. The
SG based methods, although recently shown to be quite
useful for � uorescence and noise suppression,6 also in-
evitably distort Raman spectral features. The MWT meth-
od presented in this work is found to preserve Raman
spectral integrity while selectively rejecting noise and
background components. Thus, the MWT method ap-
pears to have many of the advantages with fewer of the
drawbacks of previously proposed Raman spectral pre-
processing methods.
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Wavelet transformation (WT) is a rapidly evolving
branch of applied mathematics that is increasingly rec-
ognized for its relevance to analytical chemistry.8 Unlike
FFT, which uses sinusoidal functions as basis sets, WT
uses localized wavelet functions that better represent
spectral bands, background, and noise features typically
encountered in spectroscopic data. Previous applications
of WT methods have demonstrated its utility in spectral
data compression ,9 removal of baseline drift and
noise,10,11 chemical classi� cation,12 and regression using
wavelet coef� cients.13 However, no previous studies have
applied WT to Raman image processing. Achieving this
goal requires a robust WT algorithm that can simulta-
neously process large numbers of spectra each containing
signi� cant variations in signal, noise, and background in-
tensity and shape.

Wavelet methods have demonstrated considerable suc-
cess in statistical function estimation in terms of spatial
adaptivity, computational ef� ciency, and asymptotic op-
timality. Wavelets are known for their excellent com-
pression and localization properties. In many cases of in-
terest, information about a signal is largely contained in
a relatively small number of large coef� cients. Standard
wavelet methods achieve adaptivity through term-by-
term thresholding of the empirical wavelet coef� cients.
Donoho and Johnstone’s VisuShrink18 is a well-known
example. It has been shown that one can further increase
estimation precision by utilizing information about neigh-
boring wavelet coef� cients. A block thresholding proce-
dure, proposed by Cai,19 thresholds the empirical wavelet
coef� cients in groups rather than individually. The pro-
cedure makes simultaneous decisions to retain or to dis-
card all the coef� cients within a block. The estimator
enjoys a higher degree of adaptivity than the standard
term-by-term thresholding methods. The improvement in
estimation accuracy can be quite signi� cant.

In this paper, we extend the block thresholding method
for function estimation to chemical classi� cation and im-
aging. We demonstrate the use of MWT and block thres-
holding in suppressing both � uorescence background and
noise interference, while minimally attenuating or dis-
torting the Raman spectral features of interest. After de-
scribing the theoretical basis of the method, its perfor-
mance is tested using both synthetic and experimental
Raman spectral data. Synthesized data sets are used to
quantify the separation of noise, background, and spectral
features. Experimental application of MWT is demon-
strated using Raman imaging data collected from micro-
scopic samples of commercial drugs, on a substrate pro-
ducing a strongly wavelength dependent background in-
terference. Chemical classi� cation of the resulting images
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FIG. 1. Multiresolution decomposition feature of MWT is used to re-
move a slowly varying background from a simulated spectrum (see text
for details).

is achieved by combining MWT pre-processing with
principal component analysis (PCA) and spectral angle
mapping (SAM) post-processing algorithms. 2,14

WAVELET PREPROCESSING

The approach we take in implementing MWT is to � rst
identify and remove the smooth background, then remove
the random noise contamination, and � nally chemically
classify the material by measuring the distance between
the processed spectrum and standard library spectra. We
begin by brie� y outlining the MWT method, followed by
separate discussions of the MWT background removal
and noise removal procedures.

Wavelet bases are special orthonormal functions in L2

space. They offer a degree of localization both in space
and in frequency. Wavelet series provide a simpler and
more ef� cient way to analyze signals that have been tra-
ditionally studied by means of Fourier series. Wavelets
provide excellent compression and localization properties
and thus promise to be very useful for Raman imaging
applications, which may generate large data � les contain-
ing relatively sharp (localized) spectral features.

A one-dimensional orthonormal wavelet basis is gen-
erated from dyadic dilation and integer translation of two
basic functions, a ‘‘father’’ wavelet f and a ‘‘mother’’
wavelet c. More speci� cally, let

fj,k(x) 5 2 j/2f(2 jx 2 k) and cj,k(x) 5 2 j/2c(2 jx 2 k)

with both j and k integers. The functions cj,k are obtained
by � rst translating (or moving) the mother wavelet c
along the line by k units and then squeezing the translated
c by a factor of 2 j. The collection {fj0,k, 1 # k # 2 j0} <
{cj,k, 1 # k # 2 j, j $ j 0} forms an orthonormal wavelet
basis in which fj0,k captures the gross smooth structure
of the signal, and the cj,k functions (with j 5 j 0, j 0 1 1,
. . .) represent progressively � ner scale deviations from
the smooth behavior.

Furthermore, the functions f and c can be chosen to
be compactly supported. That is, the functions are non-
zero only within a � nite interval and vanish everywhere
outside the interval. An orthonormal wavelet basis gen-
erated from compactly supported wavelets has an asso-
ciated exact orthogonal discrete wavelet transform that
transforms a discrete signal into the wavelet coef� cient
domain in linear time, which is even faster than the FFT.

The MWT algorithm is a multiresolution decomposi-
tion WT procedure that decomposes a signal into orthog-
onal resolution components at different scales. The � ne
scale features are captured by the wavelet coef� cients at
� ne resolution levels (and labeled D i, where i 5 1, 2, 3,
. . .). The smooth component is captured by the coef� -
cients at the coarse level (and labeled S i, where i 5 1, 2,
3, . . .). For more on wavelets and multiresolution anal-
ysis, the reader is referred to previous papers and books
by Mallat, Daubechies, and Meyer.15–17

Background Removal Procedure. Figure 1 illustrates
the use of the multiresolution decomposition procedure
for background removal. Panel (a) shows a synthesized
spectrum and a smooth broadband background. The
background is a sinusoid and the signal consists of a se-
quence of sharp spikes that resembles actual Raman spec-

tra observed in practice. The analytic formula for the sig-
nal is, as given in Ref. 18,

f (x) 5 15.0769 · h K ((x 2 x )/w )O j j j

24with K (x) 5 (1 1 zx z)

(x ) 5 (.1, .13, .15, .23, .25, .40, .44, .65, .76, .78, .81)j

(h ) 5 (4, 5, 3, 4, 5, 4.2, 2.1, 4.3, 3.1, 5.1, 4.2)j

(w ) 5 (.005, .005, .006, .01, .01, .03, .01, .01, .005,j

.008, .005)

The simulated signal is the superposition of the two com-
ponents, and the objective is to remove the broadband
background. To do that, we decompose the total signal
into different scale components (panel (c)). We then use
the smooth component at the lowest resolution level (S1)
as our estimate of the broadband background (panel (d ),
solid line). It is smooth and comes very close to the true
background (panel (d ), dotted line). This procedure is
automatic, as it does not assume any knowledge of the
particular structure of the background except that it is
smooth and of low frequency (slowly varying).

Furthermore, the above procedure is robust against ran-
dom noise contamination. In Fig. 2 we add Gaussian
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FIG. 2. The MWT background removal algorithm works equally well
in the presence of noise (compare to Fig. 1).

noise to the signal and apply the same procedure to the
simulated noisy spectra (panels (b) and (c)). The smooth
component at the lowest resolution level is virtually un-
changed (see panel (d )). This robustness clearly makes
the MWT background removal procedure valuable for
our problem.

Noise Removal Procedure. Wavelet methods have
also demonstrated considerable success in nonparametric
function estimation where one wishes to remove noise
and recover the true signal based on noisy observations.
In contrast to the traditional linear procedures, wavelet
methods achieve (near) optimal performance over large
function classes and enjoy excellent performance when
used to estimate functions that are spatially inhomoge-
neous.

Wavelets are known for their excellent compression
and localization properties. In many cases of interest, in-
formation about a function is essentially contained in a
relatively small number of large coef� cients. Standard
wavelet methods achieve adaptivity through term-by-
term thresholding of the empirical wavelet coef� cients.
There, each individual empirical wavelet coef� cient is
compared with a predetermined threshold. A wavelet co-
ef� cient is retained if its magnitude is above the threshold
level and is discarded otherwise. A well-known example
of term-by-term thresholding is Donoho and Johnstone’s
VisuShrink.18

Cai19 has recently shown that one can increase esti-

mation accuracy by utilizing information about neigh-
boring wavelet coef� cients. A block thresholding proce-
dure, called BlockJS, proposed by Cai, thresholds the em-
pirical wavelet coef� cients in groups rather than individ-
ually. The procedure makes simultaneous decisions to
retain or to discard all the coef� cients within a block. As
shown by Cai,19 the block thresholding estimator simul-
taneously achieves three objectives: adaptivity, spatial ad-
aptivity, and computational ef� ciency. The estimator en-
joys a higher degree of adaptivity than the standard term-
by-term thresholding methods. The BlockJS procedure
can be described in three steps:

(1) Transform the data into the wavelet domain via the
discrete wavelet transform.

(2) At each resolution level j, group the empirical
wavelet coef� cients ( jk) into disjoint b of lengthjũ i

L 5 log n. Let l 5 4.5053 and S 5 .2 2jS ũji ( j, k)Îb j,ki

Within each block b , estimate the coef� cients si-j
i

multaneously via a shrinkage rule

j,k 5 (1 2 lLs2 /S ) 1 j,k, for all ( j, k) Î b2 jũ ũji i (1)

(3) Apply the inverse discrete wavelet transform to the
denoised wavelet coef� cients to yield the estimate
of the function.

The block length L 5 log n and the thresholding con-
stant l 5 4.5053 are chosen based on theoretical consid-
erations. The BlockJS estimator enjoys excellent asymp-
totic and � nite-sample performance.

In Eq. 1 the quantity s is the noise level that is esti-
mated as the median absolute deviation of the wavelet
coef� cients at the � nest level divided by 0.6745. For fur-
ther details, see Cai19 as well as Donoho and Johnstone.18

Figure 3 shows an example of BlockJS in action. The
simulated noisy signal is shown in panel (a). We � rst
apply the wavelet transform to the noisy signal and the
empirical wavelet coef� cients are displayed in panel (b).
The coef� cients are organized in the natural multireso-
lution style. The block shrinkage rule (Eq. 1) is applied
to the empirical coef� cients and the resulting estimate of
the true wavelet coef� cients are displayed in panel (c).
The inverse wavelet transform of the estimated wavelet
coef� cients is the estimate of the true signal and is shown
in panel (d) (solid line). The dotted line in panel (d ) is
the true signal. It is clear that the BlockJS estimator cap-
tures both the smooth and the peaked features of the true
signal well.

Chemical Classi� cation Procedure. In Raman chem-
ical classi� cation and imaging, the observed signals are
typically contaminated by both random noise and smooth
broadband background components. The random noise
contamination in Raman spectra is typically heterosce-
dastic. In other words, the noise varies from wavelength
to wavelength and typically has a variance equal to the
mean signal at each wavelength. This creates additional
dif� culties because standard noise removal procedures
are mainly restricted to homoscedastic (wavelength in-
dependent) noise. Furthermore, in Raman spectroscopic
applications the � uorescence background is often larger
than the true Raman spectral features. Therefore we can
use the � uorescence background spectra as good esti-
mates of the variances of the random noise and use this
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FIG. 3. Wavelet thresholding MWT is used to remove noise from a
simulated spectrum (see text for details).

FIG. 4. Simulated Raman spectra with Gaussian spectral and back-
ground features and Poisson noise. Spectra A1, B1, and C1 contain
three different Raman spectra (A, B, C) with the same � uorescence
background (1), while A2, B2, and C2 contain the same three Raman
spectra with a different � uorescence background (2).

FIG. 5. Correlation coef� cients between the spectra shown in Fig. 4
before (a) and after (b) the MWT pre-processing.

information to renormalize the signal and make the noise
more nearly homoscedastic.

The following three steps summarize the procedure we
use to implement multiresolution analysis and block
thresholding for chemical classi� cation of Raman images.

(1) Use the multiresolution decomposition procedure
to remove background by separating the observed
Raman spectra into two components. The � rst
component is the estimated smooth broadband
background and the second is the difference be-
tween the observed spectra and the estimated back-
ground spectra, which is assumed to be the ‘‘true’’
Raman spectrum contaminated with random noise.

(2) Normalize the second component by dividing it by
the square root of the estimated background spec-
tra. The random noise in the normalized signal is
now nearly homoscedastic. Apply the BlockJS
procedure to remove the random noise. Then re-
normalize the estimated signal by multiplying it by
the square root of the estimated background spec-
tra to obtain the � nal processed spectra.

(3) Chemically classify the spectrum by measuring its
distance from a set of standard library spectra (e.g.,
using the SAM algorithm).

Synthesized Spectral Analysis. The class separability
improvement achievable using the MWT method is dem-

onstrated with a set of six synthesized spectra shown in
Fig. 4. These are the same synthetic spectra that have
previously been used by Zhang and Ben–Amotz in dem-
onstrating the performance of the SG second derivative
(SGSD) pre-processing algorithm.6 Since SGSD was
found to be a very effective method for suppressing noise
and � uorescence interference and enhancing the chemical
classi� cation of Raman images, the present comparison
is a valuable test of the MWT method. These synthetic
spectra have been generated by combining three different
model Raman spectra A, B, and C with two model back-
grounds 1 and 2, as described previously.6 The input
spectra are shown in the upper six panels of Fig. 4 and
resulting MWT pre-processed output spectra are shown
in the lower six panels of Fig. 4.

For a successful classi� cation, spectra A1 and A2, B1
and B2, and C1 and C2 should be classi� ed into three
distinct groups based on their similarity. The similarity
between two spectra is measured by their correlation co-
ef� cient, with a larger correlation coef� cient (near 1) in-
dicating stronger similarity. The bar graph in Fig. 5
shows the correlation coef� cients obtained among nine
spectral pairs before (Fig. 5a) and after (Fig. 5b) MWT
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FIG. 6. Representative Raman spectra obtained from a single image
pixel containing Aleve (upper) or Bayer (lower) on a glass substrate
with large broadband background interference. The left frames contain
raw spectra, and the right frames contain the corresponding MWT pre-
processed spectra.

FIG. 7. Training spectra of Aleve and Bayer collected from a thick
layer of sample (with no substrate interference). The left frames contain
raw Raman spectra, and the right frames contain the corresponding
MWT pre-processed Raman spectra.

pre-processing. Ideally, the bars in the diagonal positions
should be close to 1 (indicating strong spectral similarity)
while the off diagonal bars should be small (indicating
insensitivity to background features).

The results obtained before MWT pre-processing (Fig.
5a) show that the spectra with the same background have
very high correlation coef� cients regardless of whether
the Raman features contained in these spectra are the
same or not. In other words, the large backgrounds over-
shadow the Raman spectral features.

The background correlation is ef� ciently eliminated af-
ter the MWT processing as demonstrated by the results
shown in Fig. 5b. The maximum off diagonal correlation
coef� cient is 0.03, while the minimum diagonal element
is 0.94. These results are better than those previously ob-
tained using the SGSD method, in which the minimum
diagonal (Raman spectral) correlation coef� cient was
0.89,6 and thus demonstrate the improved background
suppression and denoising of the MWT pre-processing
algorithm.

Raman Image Data Collection and Processing. Ra-
man images of commercial medications, Aleve (naprox-
en) and Bayer (aspirin), were collected with a near-IR
Raman imaging microscope (NIRIM).2,20 A single-frame
spectral image collected by the NIRIM consists of an 8
3 10 rectangle array of Raman spectra, each with 900
wavelength channels (spanning a 75 to 1850 cm21 Raman
shift window). The single frame � eld of view of 55 mm
3 44 mm is obtained when a 203 microscope objective
(Olympus IC-20) is used. All spectra were collected with
an integration time of 100 s. The sampled region was
globally illuminated with a 785 nm diode laser (SDL-
8360), and laser power reaching the active sample area
was about 80 mW (about 1 mW per image pixel).

After scratching off the coating on the surface of the
medication tablets, the powered medication was placed
on one of the two different substrates: (1) a 0.9 mm thick
glass microscope slide with a large broadband back-
ground emission or (2) a 22 3 50 mm quartz microscope
slide (Ted Pella Inc.) with low background emission. The

sample thickness was adjusted so as to produce relatively
high substrate background interference.

Representative individual Raman spectra collected
from two single image pixels containing Aleve (a) and
Bayer (b), respectively, are shown in Fig. 6. The left two
spectra are the raw data, and the right pair represent the
same spectra after MWT pre-processing. The � rst and last
100 data points in the processed spectra are truncated to
eliminate edge distortion produced by the MWT algo-
rithm.

Training spectra were acquired in order to implement
the SAM parametric classi� cation method for chemical
identi� cation. 2,14 The conditions used to collect the train-
ing spectra are identical to those used to collect Raman
images except for the longer integration time (300 s) and
thicker sample layer (about 1.5 mm). The left pair of
spectra shown in Fig. 7 are raw training spectra, and the
right pair are the same spectra after MWT processing.
Again, spectrum (a) is Aleve and (b) is Bayer. The back-
ground training spectra (not shown) are acquired with no
sample and no substrate. These training spectra represent
regions in which no sample is present, while avoiding
bias introduced by background spectra from some spe-
ci� c substrate.

After the four different single frame images were ac-
quired from two samples on two substrates, the four im-
ages were combined into a spectral data cube for pro-
cessing and analysis. Image classi� cation was performed
using the MultiSpec software package.14 This software
allows the creation of single or multiple channel chemical
images using either parametric methods such as the SAM
quadratic classi� er, nonparametric methods such as PCA,
or combined methods including feature selection.

Figure 8 shows the PCA score images obtained from
the same data set after spectral normalization, i.e., each
spectrum vector in the data set is scaled to the same
norm. The � rst column in the � gure is the bright � eld
image; the upper two are Aleve on glass slide and quartz
slide while the lower two are Bayer on glass slide and
quartz slide. The numbers shown above each column in-
dicate the PCA channel from which the score for each
spectrum is generated. Without the spectral normaliza-
tion, the PCA score images contain little chemical infor-
mation (not shown) because the spectral intensity � uc-
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FIG. 8. Bright � eld (BF) and PCA channel images obtained after nor-
malization of the image pixel spectra. Two distinct chemical compo-
nents, Aleve (upper two rows) and Bayer (lower two rows), are evident
in the second and third PCA channel images (see text for details).

FIG. 10. Bright � eld (BF) and SAM channel images obtained with raw
image spectra. Channels 1, 2, and 3 should represent background , Al-
eve, and Bayer, respectively, but chemical information content is largely
obscured by the strong � uorescence background .

FIG. 9. Bright � eld (BF) and PCA channe l images obtained after
MWT pre-processing and normalization of the image pixel spectra. Two
chemical components are clearly shown in the � rst two PCA channel
images (see text for details).

FIG. 11. Bright � eld (BF) and SAM channe l images obtained with
MWT pre-processed image spectra illustrating the effective components
of the corresponding spectral images. Channels 1, 2, and 3 representing
background , Aleve, and Bayer, respectively, are clearly segregated into
mutually exclusive classes.

tuation causes large channel score variation. Note that the
score images for the � rst PCA channel are not shown
because this PCA channel is in all cases dominated by
background and noise. Figure 8 clearly reveals the dif-
ferent chemical identities of the two medications (with
Bayer represented best by PCA channel 2 and Aleve by
PCA channel 3).

Because of the improved performance obtained when
using normalized spectra rather than raw data, all of the
subsequent MWT pre-processed spectra were normalized
prior to PCA analysis. Figure 9 shows the PCA channel
image after MWT processing. The image quality is im-
proved and the background is greatly reduced in both
cases. There is so little background after MWT pre-pro-

cessing that the � rst two channel score images in this
case contain almost all of the chemical component infor-
mation. Comparison of Figs. 8 and 9 reveals the im-
proved image quality (sharper sample boundaries and
greater contract) achieved after MWT pre-processing.

Figures 10 and 11 show the classi� ed raw data image
obtained using SAM before (Fig. 10) and after (Fig. 11)
MWT pre-processing. The SAM algorithm compares the
spectrum vector angle with that of the training spectrum
vector. If the angles are within a pre-set cut-off then the
corresponding image pixel is classi� ed (colored black) as
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the corresponding component. Channels 1, 2, and 3 rep-
resent regions classi� ed as background, Aleve, and Bayer
components, respectively. The greatly improved perfor-
mance SAM classi� cation obtained after MWT pre-pro-
cessing is even more clearly evident than in the PCA
images. In particular, the images in Fig. 10 are only
weakly correlated with the locations of the medication
samples, while those in Fig. 11 very closely track the
locations of the substrate and two medications.

SUMMARY AND DISCUSSION

It is evident that MWT processing can effectively sup-
press background and noise interference in Raman spec-
tral classi� cation applications. The background suppres-
sion capability of MWT may be viewed as an adaptive
background curve � tting method that does not require
speci� cation of background and signal containing re-
gions. Thus, MWT background subtraction may prove to
be useful for automated processing of large spectral data
sets and spectral images.

The computation time associated with MWT pre-pro-
cessing is not a signi� cant obstacle, since this algorithm
is equivalent to digital curve convolution. Although the
time required to perform an MWT is about 10 times more
than that required for SGSD pre-processing, MWT has
better noise suppression and introduces much lower spec-
tral distortion.

Further applications of MWT in Raman imaging in-
clude classi� cation in the wavelet domain by using the
MWT coef� cients as data channels. Such an approach
could signi� cantly improve classi� cation speed and re-
duce the memory required to store large hyperspectral

Raman data cubes. Thus, MWT shows signi� cant prom-
ise in large scale spectral data analysis, molecular iden-
ti� cation, and chemical imaging applications.
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