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ADAPTIVE ESTIMATION OF PLANAR CONVEX SETS

BY T. TONY CAI∗,1, ADITYANAND GUNTUBOYINA†,2 AND YUTING WEI†

University of Pennsylvania∗ and University of California, Berkeley†

In this paper, we consider adaptive estimation of an unknown planar
compact, convex set from noisy measurements of its support function. Both
the problem of estimating the support function at a point and that of estimat-
ing the whole convex set are studied. For pointwise estimation, we consider
the problem in a general nonasymptotic framework, which evaluates the per-
formance of a procedure at each individual set, instead of the worst case per-
formance over a large parameter space as in conventional minimax theory.
A data-driven adaptive estimator is proposed and is shown to be optimally
adaptive to every compact, convex set. For estimating the whole convex set,
we propose estimators that are shown to adaptively achieve the optimal rate
of convergence. In both of these problems, our analysis makes no smoothness
assumptions on the boundary of the unknown convex set.

1. Introduction. We study in this paper the problem of nonparametric esti-
mation of an unknown planar compact, convex set from noisy measurements of its
support function on a uniform grid. Before describing the details of the problem,
let us first introduce the support function. For a compact, convex set K in R

2, its
support function is defined by

hK(θ) := max
(x1,x2)∈K

(x1 cos θ + x2 sin θ) for θ ∈ R.

Note that hK is a periodic function with period 2π . It is useful to think about θ

in terms of the direction (cos θ, sin θ). The line x1 cos θ + x2 sin θ = hK(θ) is a
support line for K (i.e., it touches K and K lies on one side of it). Conversely,
every support line of K is of this form for some θ . The convex set K is completely
determined by the its support function hK because K = ⋂

θ {(x1, x2) : x1 cos θ +
x2 sin θ ≤ hK(θ)}.

The support function hK possesses the circle-convexity property (see, e.g., [33]):
for every α1 > α > α2 and 0 < α1 − α2 < π ,

(1)
hK(α1)

sin(α1 − α)
+ hK(α2)

sin(α − α2)
≥ sin(α1 − α2)

sin(α1 − α) sin(α − α2)
hK(α).
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Moreover, the above inequality characterizes hK , that is, any periodic function of
period 2π satisfying the above inequality equals hK for a unique compact, convex
subset K in R

2. The circle-convexity property (1) is clearly related to the usual
convexity property. Indeed, replacing sinα by α in (1) leads to the condition for
convexity. In spite of this similarity, (1) is different from convexity as can be seen
from the example of the function h(θ) = | sin θ |, which satisfies (1) but is clearly
not convex.

1.1. The problem, motivations and background. We are now ready to describe
the problem studied in this paper. Let K∗ be an unknown compact, convex set
in R

2. We study the problem of estimating K∗ or hK∗ from noisy measurements
of hK∗ . Specifically, we observe data (θ1, Y1), . . . , (θn, Yn) drawn according to the
model

(2) Yi = hK∗(θi) + ξi for i = 1, . . . , n,

where θ1, . . . , θn are fixed grid points in (−π,π ] and ξ1, . . . , ξn are i.i.d. Gaussian
random variables with mean zero and known variance σ 2. We focus on the dual
problems of estimating the scalar quantity hK∗(θi) for each 1 ≤ i ≤ n as well as
the convex set K∗. We propose data-driven adaptive estimators and establish their
optimality for both of these problems.

The problem considered here has a range of applications in engineering. The re-
gression model (2) was first proposed and studied by [29] who were motivated by
an application to Computed Tomography. Lele, Kulkarni and Willsky [25] showed
how solutions to this problem can be applied to target reconstruction from resolved
laser-radar measurements in the presence of registration errors. Gregor and Ran-
nou [15] considered application to Projection Magnetic Resonance Imaging. It is
also a fundamental problem in geometric tomography; see [12]. Another applica-
tion domain where this problem might plausibly arise is robotic tactical sensing
as has been suggested by [29]. Finally, this is a natural shape constrained estima-
tion problem and would fit right into the recent literature on shape constrained
estimation. See, for example, [18].

Most proposed procedures for estimating K∗ in this setting are based on least
squares minimization. The least squares estimator K̂ls is defined as any minimizer
of

∑n
i=1(Yi −hK(θi))

2 as K ranges over all compact convex sets. The minimizer in
this optimization problem is not unique and one can always take it to be a polytope.
This estimator was first proposed by [29] who also proposed an algorithm for
computing it based on quadratic programming. Further algorithms for computing
K̂ls were proposed in [13, 25, 29].

The theoretical performance of the least squares estimator was first considered
by [14] who mainly studied its accuracy for estimating K∗ under the natural fixed
design loss:

(3) Lf

(
K∗, K̂

) := 1

n

n∑
i=1

(
hK∗(θi) − h

K̂
(θi)

)2
.
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The key result of [14] (specialized to the planar case that we are studying) states
that Lf (K∗, K̂ls) = O(n−4/5) as n → ∞ almost surely provided K∗ is contained
in a ball of bounded radius. This result is complemented by the minimax lower
bound in [21] where it was shown that n−4/5 is the minimax rate for this problem.
These two results together imply minimax optimality of K̂ls under the loss func-
tion Lf . No other theoretical results for this problem are available outside of those
in [14] and [21].

As a result, the following basic questions are still unanswered:

1. How to optimally and adaptively estimate hK∗(θi) for a fixed i ∈
{1, . . . , n}? This is the pointwise estimation problem. In the literature on shape
constrained estimation, pointwise estimation has been well studied. Prominent ex-
amples include [4, 7, 8, 16, 17, 24, 34] for monotonicity constrained estimation
and [5, 19, 20, 23, 27] for convexity constrained estimation. For the problem con-
sidered here however, nothing is known about pointwise estimation. It may be
noted that the result Lf (K∗, K̂ls) = O(n−4/5) of [14] does not say anything about
the accuracy of h

K̂ls
(θi) as an estimator for hK∗(θi).

2. How to construct minimax optimal estimators for the set K∗ that also adapt
to polytopes? Polytopes with a small number of extreme points have a much sim-
pler structure than general convex sets. In the problem of estimating convex sets
under more standard observation models different from the one studied here, it is
possible to construct estimators that converge at faster rates for polytopes com-
pared to the overall minimax rate (see [3] for a summary of this theory). Similar
kinds of adaptation has been recently studied for monotonicity and convexity con-
strained estimation problems; see [2, 9, 22]. Based on these results, it is natural to
expect minimax estimators that adapt to polytopes in this problem. This has not
been addressed previously.

1.2. Our contributions. We answer both the above questions in the affirmative
in this paper. The main contributions can be summarized as follows:

1. We study the pointwise adaptive estimation problem in detail in the deci-
sion theoretic framework where the focus is on the performance at every function,
instead of the maximum risk over a large parameter space as in the conventional
minimax theory in nonparametric estimation literature. This framework, first in-
troduced in [6] and [5] for shape constrained regression, provides a much more
precise characterization of the performance of an estimator than the conventional
minimax theory does.

In the context of the present problem, the difficulty of estimating hK∗(θi) at a
given K∗ and θi can be expressed by means of a benchmark Rn(K

∗, θ), which is
defined as follows [below EL denotes expectation taken with respect to the joint
distribution of Y1, . . . , Yn generated according to the model (2) with K∗ replaced
by L]:

(4) Rn

(
K∗, θ

) = sup
L

inf
h̃

max
(
EK∗

(
h̃ − hK∗(θ)

)2
,EL

(
h̃ − hL(θ)

)2)
,
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where the supremum above is taken over all compact, convex sets L while the
infimum is over all estimators h̃. In our first result for pointwise estimation, we
establish, for each i ∈ {1, . . . , n}, a lower bound for the performance of every esti-
mator for estimating hK∗(θi). Specifically, it is shown that

(5) Rn

(
K∗, θi

) ≥ c · σ 2

k∗(i) + 1
,

where k∗(i) is an integer for which an explicit formula can be given in terms of
K∗ and i; and c is a universal positive constant. It will turn out that k∗(i) is related
to the smoothness of hK∗(θ) at θ = θi .

We construct a data-driven estimator, ĥi , of hK∗(θi) based on local smoothing
together with an optimization scheme for automatically choosing a bandwidth, and
show that the estimator ĥi satisfies

(6) EK∗
(
ĥi − hK∗(θi)

)2 ≤ C · σ 2

k∗(i) + 1

for a universal constant C > 0. Inequalities (5) and (6) [see also inequality (21)]
together imply that ĥi is, within a constant factor, an optimal estimator of hK∗(θi)

for every compact, convex set K∗. This optimality is much stronger than the tradi-
tional minimax optimality usually employed in nonparametric function estimation.
The quantity σ 2/(k∗(i) + 1) depends on the unknown set K∗ in a similar way that
the Fisher information depends on the unknown parameter in a regular parametric
model. In contrast, the optimal rate in the minimax paradigm is given in terms of
the worst case performance over a large parameter space and does not depend on
individual parameter values.

2. Using the optimal adaptive point estimators ĥ1, . . . , ĥn, we construct two
set estimators K̂ and K̂ ′. The details of this construction are given in Section 2.2.
In Theorems 3.7 and 3.9, it is shown that K̂ is minimax optimal for K∗ under
the loss function Lf while the estimator K̂ ′ is minimax optimal under the integral
squared loss function defined by

(7) L
(
K∗, K̂ ′) :=

∫ π

−π

(
h

K̂ ′(θ) − hK∗(θ)
)2

dθ.

The square root of the above loss function is often referred to as the McClure–
Vitale metric on the space of nonempty compact, convex sets (see, e.g., [28] and
[10]). In Theorem 3.7, we prove that

(8) EK∗Lf

(
K∗, K̂

) ≤ C

{
σ 2

n
+

(
σ 2

√
R

n

)4/5}

provided K∗ is contained in a ball of radius R. This, combined with the minimax
lower bound in [21], proves the minimax optimality of K̂ . An analogous result is
shown in Theorem 3.9 for EK∗L(K∗, K̂ ′). For the pointwise estimation problem
where the goal is to estimate hK∗(θi), the optimal rate σ 2/(k∗(i) + 1) can be as
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large as n−2/3; however, the bound (8) shows that the globally the risk is at most
n−4/5. The shape constraint given by convexity of K∗ ensures that the points where
pointwise estimation rate is n−2/3 cannot be too many. Note that we make no
smoothness assumptions for proving (8).

3. We show that our set estimators K̂ and K̂ ′ adapt to polytopes with bounded
number of extreme points. Already inequality (8) implies that EK∗Lf (K∗, K̂) is
bounded from above by the parametric risk Cσ 2/n provided R = 0 (note that
R = 0 means that K∗ is a singleton). Because σ 2/n is much smaller than n−4/5,
the bound (8) shows that K̂ adapts to singletons. Theorem 3.8 extends this adap-
tation phenomenon to polytopes and we show that EK∗Lf (K∗, K̂) is bounded by
the parametric rate (up to a logarithmic multiplicative factor of n) for all poly-
topes with bounded number of extreme points. An analogous result is also proved
for EK∗L(K∗, K̂ ′) in Theorem 3.9. It should be noted that the construction of
our estimators K̂ and K̂ ′ (described in Section 2.2) does not involve any special
treatment for polytopes; yet the estimators automatically achieve faster rates for
polytopes.

We would like to stress two features of this paper: (a) we do not make any
smoothness assumptions on the boundary of K∗ throughout the paper; in particu-
lar, note that we obtain the n−4/5 rate for the set estimators K̂ and K̂ ′ without any
smoothness assumptions, and (b) we go beyond the traditional minimax paradigm
by considering adaptive estimation in both the pointwise estimation problem and
the problem of estimating the entire set K∗. In particular, pointwise estimation is
studied in a general nonasymptotic framework, which evaluates the performance
of a procedure at each individual set K∗, not the worst case performance over a
large parameter space as in the conventional minimax theory.

1.3. Organization of the paper. The rest of the paper is structured as follows.
The proposed estimators are described in detail in Section 2. The theoretical prop-
erties are analyzed in Section 3; Section 3.1 gives results for pointwise estimation
while Section 3.2 deals with set estimators. Section 4 considers optimal estima-
tion of some special compact convex sets K∗ where we explicitly compute the
associated rates of convergence. A simulation study is given in Section 5 where
we compare the performance of our estimators to other existing estimators in the
literature. In Section 6, we summarize our main results and discuss potential open
problems for future work. The proofs of the main results are given in Section 7.
Proofs of other results together with additional technical results as well as addi-
tional simulations are given in the Supplementary Material [32].

2. Estimation procedures. Recall the regression model (2), where we ob-
serve noisy measurements (θ1, Y1), . . . , (θn, Yn) with θi = 2πi/n−π, i = 1, . . . , n

being fixed grid points in (−π,π ]. In this section, we first describe in detail our es-
timate ĥi for hK∗(θi) for each i. Subsequently, we will put together these estimates
ĥ1, . . . , ĥn to yield set estimators for K∗.
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2.1. Estimators for hK∗(θi) for each fixed i. Fix 1 ≤ i ≤ n. Our construction
of the estimator ĥi for hK∗(θi) is based on the key circle-convexity property (1) of
the function hK∗(·). Let us define, for φ ∈ (0, π/2) and θ ∈ (−π,π ], the following
two quantities:

l(θ,φ) := cosφ
(
hK∗(θ + φ) + hK∗(θ − φ)

) − hK∗(θ + 2φ) + hK∗(θ − 2φ)

2

and

u(θ,φ) := hK∗(θ + φ) + hK∗(θ − φ)

2 cosφ
.

The following lemma states that for every θ , the quantity hK∗(θ) is sandwiched
between l(θ,φ) and u(θ,φ) for every φ. This will be used crucially in defining ĥ.
The proof of this lemma is a straightforward consequence of (1) and is given in the
Supplementary Material [32], Section A.6.

LEMMA 2.1. For every 0 < φ < π/2 and every θ ∈ (−π,π ], we have
l(θ,φ) ≤ hK∗(θ) ≤ u(θ,φ).

For a fixed 1 ≤ i ≤ n, Lemma 2.1 implies that l(θi,
2πj
n

) ≤ hK∗(θi) ≤ u(θi,
2πj
n

)

for every 0 ≤ j < 
n/4�. Note that when j = 0, we have l(θi,0) = hK∗(θi) =
u(θi,0). Averaging these inequalities for j = 0,1, . . . , k where k is a fixed inte-
ger with 0 ≤ k < 
n/4�, we obtain

(9) Lk(θi) ≤ hK∗(θi) ≤ Uk(θi) for every 0 ≤ k < 
n/4�,
where

Lk(θi) := 1

k + 1

k∑
j=0

l

(
θi,

2πj

n

)
and Uk(θi) := 1

k + 1

k∑
j=0

u

(
θi,

2πj

n

)
.

We are now ready to describe our estimator. Fix 1 ≤ i ≤ n. Inequality (9) says
that the quantity of interest, hK∗(θi), is sandwiched between Lk(θi) and Uk(θi) for
every k. Both Lk(θi) and Uk(θi) can naturally be estimated by unbiased estimators.
Indeed, let

l̂(θi,2jπ/n) := cos(2jπ/n)(Yi+j + Yi−j ) − Yi+2j + Yi−2j

2
,

û(θi,2jπ/n) := Yi+j + Yi−j

2 cos(2jπ/n)

and take

(10) L̂k(θi) := 1

k + 1

k∑
j=0

l̂(θi,2jπ/n), Ûk(θi) := 1

k + 1

k∑
j=0

û(θi,2jπ/n).
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Obviously, in order for the above to be meaningful, we need to define Yi even for
i /∈ {1, . . . , n}. This is easily done in the following way: for any i ∈ Z, let s ∈ Z be
such that i − sn ∈ {1, . . . , n} and take Yi := Yi−sn.

As k increases, one averages more terms in (10), and hence the estimators
L̂k(θi) and Ûk(θi) become more accurate. Let �̂k(θi) := Ûk(θi) − L̂k(θi) which
is the same as

(11) �̂k(θi) = 1

k + 1

k∑
j=0

(
Yi+2j + Yi−2j

2
− cos(4jπ/n)

cos(2jπ/n)

Yi+j + Yi−j

2

)
.

Because of (9), a natural strategy for estimating hK∗(θi) is to choose k for which
�̂k(θi) is the smallest and then use either L̂k(θi) or Ûk(θi) at that k as the estimator.
This is essentially our estimator with one small difference in that we also take into
account the noise present in �̂k(θi). Formally, our estimator for hK∗(θi) is given
by

(12) ĥi = Û
k̂(i)

(θi) where k̂(i) := argmin
k∈I

{(
�̂k(θi)

)
+ + 2σ√

k + 1

}

and I := {0} ∪ {2j : j ≥ 0 and 2j ≤ 
n/16�}.
Our estimator ĥi can be viewed as an angle-adjusted local averaging estimator.

It is inspired by the estimator of [5] for convex regression. The number of terms
averaged equals k̂(i) + 1 and this is analogous to the bandwidth in kernel-based
smoothing methods. Our k̂(i) is determined from an optimization scheme. Notice
that unlike the least squares estimator h

K̂ls
(θi), the construction of ĥi for a fixed i

does not depend on the construction of ĥj for j = i.

2.2. Set estimators for K∗. We next present estimators for the set K∗. The
point estimators ĥ1, . . . , ĥn do not directly give an estimator for K∗ because
(ĥ1, . . . , ĥn) is not necessarily a valid support vector, that is, (ĥ1, . . . , ĥn) does
not always belong to the following set:

H := {(
hK(θ1), . . . , hK(θn)

) : K ⊆R
2 is compact and convex

}
.

To get a valid support vector from (ĥ1, . . . , ĥn), we need to project it onto H to
obtain

(13) ĥP := (
ĥP

1 , . . . , ĥP
n

) := argmin
(h1,...,hn)∈H

n∑
i=1

(ĥi − hi)
2.

The superscript P here stands for projection. An estimator for the set K∗ can now
be constructed immediately from ĥP

1 , . . . , ĥP
n via

(14) K̂ := {
(x1, x2) : x1 cos θi + x2 sin θi ≤ ĥP

i for all i = 1, . . . , n
}
.
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In Theorems 3.7 and 3.8, we prove upper bounds on the accuracy of K̂ under the
loss function Lf given in (3).

There is another reasonable way of constructing a set estimator for K∗ based on
the point estimators ĥ1, . . . , ĥn. We first interpolate ĥ1, . . . , ĥn to define a function
ĥ′ : (−π,π ] → R as follows:

(15) ĥ′(θ) := sin(θi+1 − θ)

sin(θi+1 − θi)
ĥi + sin(θ − θi)

sin(θi+1 − θi)
ĥi+1 for θi ≤ θ ≤ θi+1.

Here, i ranges over 1, . . . , n with the convention that θn+1 = θ1 + 2π (and θn ≤
θ ≤ θn+1 should be identified with −π ≤ θ ≤ −π + 2π/n). Based on this function
ĥ′, we can define our estimator K̂ ′ of K∗ by

(16) K̂ ′ := argmin
K

∫ π

−π

(
ĥ′(θ) − hK(θ)

)2
dθ.

The existence and uniqueness of K̂ ′ can be justified in the usual way by the Hilbert
space projection theorem. In Theorem 3.9, we prove bounds on the accuracy of K̂ ′
as an estimator for K∗ under the integral loss L given in (7).

Let us now briefly comment on the algorithms for computing our set estimators
K̂ and K̂ ′. The expression (14) shows how to write K̂ in terms of ĥP

i , i = 1, . . . , n

and, therefore, we only need to be able to compute ĥP
i , i = 1, . . . , n for comput-

ing K̂ . This can be done via quadratic programming because the set H can ex-
plicitly written as {h ∈ R

n : aT
i h ≤ 0, i = 1, . . . , n} for some collection of vectors

a1, . . . , an in R
n (see, e.g., [29], Theorem 1). To compute K̂ ′, we take a fine uni-

form grid of points α1, . . . , αM in (−π,π ] for a large value of M and approximate
K̂ ′ via

argmin
K

M∑
i=1

(
ĥ′(αi) − hK(αi)

)2
.

More precisely, one can take K̂ ′ := {(x1, x2) : x1 cosαi + x2 sinαi ≤ h̃i for all i =
1, . . . ,M} where

(h̃1, . . . , h̃M) := argmin
(h1,...,hM)∈HM

M∑
i=1

(
ĥ′(αi) − hi

)2

with HM := {(hK(α1), . . . , hK(αM)) : K ⊆ R
2 is compact and convex}. This esti-

mator can then be computed in an analogous way as K̂ by quadratic programming.
We present simulation examples in Section 5 where one can see that there is often
not much difference between K̂ and K̂ ′ in practice.

3. Main results. We now investigate the accuracy of the proposed point and
set estimators. The proofs of these results are given in Section 7.



1026 T. T. CAI, A. GUNTUBOYINA AND Y. WEI

3.1. Accuracy of the point estimator. As mentioned in the Introduction, we
evaluate the performance of the point estimator ĥi at individual functions, not
the worst case over a large parameter space. This provides a much more pre-
cise characterization of the accuracy of the estimator. Let us first recall inequality
(9) where hK∗(θi) is sandwiched between Lk(θi) and Uk(θi). Define �k(θi) :=
Uk(θi) − Lk(θi).

THEOREM 3.1. Fix i ∈ {1, . . . , n}. There exists a universal constant C > 0
such that the risk of ĥi as an estimator of hK∗(θi) satisfies the inequality,

(17) EK∗
(
ĥi − hK∗(θi)

)2 ≤ C · σ 2

k∗(i) + 1
,

where

(18) k∗(i) := argmin
k∈I

(
�k(θi) + 2σ√

k + 1

)
.

REMARK 3.1. It turns out that the bound in (17) is linked to the level of
smoothness of the function hK∗ at θi . However, for this interpretation to be cor-
rect, one needs to regard hK∗ as a function on R

2 instead of a subset of R. This is
further explained in Remark 4.1.

Theorem 3.1 gives an explicit bound on the risk of ĥi in terms of the quantity
k∗(i) defined in (18). It is important to keep in mind that k∗(i) depends on K∗
even though this is suppressed in the notation. In the next theorem, we show that
σ 2/(k∗(i) + 1) also presents a lower bound on the accuracy of every estimator for
hK∗(θi). This implies, in particular, optimality of ĥi as an estimator of hK∗(θi).

One needs to be careful in formulating the lower bound in this setting. A first
attempt might perhaps be to prove that, for a universal constant c > 0,

inf
h̃

EK∗
(
h̃ − hK∗(θi)

)2 ≥ c · σ 2

k∗(i) + 1
,

where the infimum is over all possible estimators h̃. This, of course, would not be
possible because one can take h̃ = hK∗(θi), which would make the left hand side
zero. A formulation of the lower bound which avoids this difficulty was proposed
by [5] in the context of convex function estimation. Their idea, translated to our
setting of estimating the support function hK∗ at a point θi , is to consider, instead
of the risk at K∗, the maximum of the risk at K∗ and the risk at L∗ which is most
difficult to distinguish from K∗ in term of estimating hK∗(θi). This leads to the
benchmark Rn(K

∗, θi) defined in (4).

THEOREM 3.2. For any fixed i ∈ {1, . . . , n}, we have

(19) Rn

(
K∗, θi

) ≥ c · σ 2

k∗(i) + 1
for a universal constant c > 0.
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Theorems 3.1 and 3.2 together imply that σ 2/(k∗(i) + 1) is the optimal rate
of estimation of hK∗(θi) for a given compact, convex set K∗. The results show
that our data driven estimator ĥi for hK∗(θi) performs uniformly within a constant
factor of the ideal benchmark Rn(K

∗, θi) for every i. This means that ĥi adapts to
every unknown set K∗ instead of a collection of large parameter spaces as in the
conventional minimax theory commonly used in nonparametric literature.

REMARK 3.2 (A stronger upper bound on the risk of ĥi ). From the proof of
Theorem 3.2, it can be seen that the following statement is true: there exists a
compact, convex set L∗ such that

(20) inf
h̃

max
(
EK∗

(
h̃ − hK∗(θi)

)2
,EL∗

(
h̃ − hL∗(θi)

)2) ≥ cσ 2

k∗(i) + 1

the infimum above being over all estimators h̃ of hK∗(θi). In light of this, it is
natural to ask whether the following inequality:

(21) max
(
EK∗

(
ĥi − hK∗(θi)

)2
,EL∗

(
ĥi − hL∗(θi)

)2) ≤ Cσ 2

k∗(i) + 1

holds for the same L∗ where ĥi refers to our estimator defined in (12) and C

represents a universal constant. Note that this is a stronger inequality than (17).
It turns out that (21) is indeed a true inequality and we provide a proof in the
Supplementary Material [32], Section A.3.

Given a specific set K∗ and 1 ≤ i ≤ n, the quantity k∗(i) is often straightforward
to compute up to constant multiplicative factors. Several examples are provided in
Section 4. From these examples, it will be clear that the size of σ 2/(k∗(i) + 1)

is linked to the level of smoothness of the function hK∗ at θi . However, for this
interpretation to be correct, one needs to regard hK∗ as a function on R

2 instead of
a subset of R. This is explained in Remark 4.1.

The following corollaries shed more light on the quantity σ 2/(k∗(i) + 1).
The proofs of these corollaries are given in the Supplementary Material [32],
Section A.4. The first corollary below shows that σ 2/(k∗(i) + 1) is at most
C(σ 2R/n)−2/3 for every i and K∗ (C is a universal constant) provided K∗ is
contained in a ball of radius R. In Example 4.3, we provide an explicit choice of
i and K∗ for which σ 2/(k∗(i) + 1) ≥ c(σ 2R/n)−2/3 (c is a universal constant).
This implies that the conclusion of the following corollary cannot in general be
improved.

COROLLARY 3.3. Suppose K∗ is contained in some closed ball of radius R.
Then for every i ∈ {1, . . . , n}, we have, for a universal constant C > 0,

(22)
σ 2

k∗(i) + 1
≤ C

{(
σ 2R

n

)2/3
+ σ 2

n

}
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and

(23) E
(
ĥi − hK∗(θi)

)2 ≤ C

{(
σ 2R

n

)2/3
+ σ 2

n

}
.

Note that the above corollary implies the consistency of ĥi as an estimator for
hK∗(θi) for every i and K∗. It turns out that ĥi is a minimax optimal estimator
of hK∗(θi) over the class of all compact convex sets K∗ contained in some closed
ball of radius R. This is proved in the next result.

PROPOSITION 3.4. For R ≥ 0, let K(R) denote the class of all compact, con-
vex sets that are contained in some fixed closed ball of radius R. Then for every
i ∈ {1, . . . , n}, we have

(24) sup
K∗∈K(R)

EK∗
(
ĥi − hK∗(θi)

)2 ≤ C

{
σ 2

n
+

(
σ 2R

n

)2/3}

for a universal constant C. We further have

(25) inf
h̃

sup
K∗∈K(R)

EK∗
(
h̃ − hK∗(θi)

)2 ≥ c

{
σ 2

n
+

(
σ 2R

n

)2/3}

for a universal constant c > 0 where the infimum is taken over all possible estima-
tors h̃ of hK∗(θi).

It is clear from the definition (18) that k∗(i) ≤ n for all i and K∗. In the next
corollary, we prove that there exist sets K∗ and i for which k∗(i) ≥ cn for a con-
stant c. For these sets, the optimal rate of estimating hK∗(θi) is therefore paramet-
ric.

For a fixed i and K∗, let φ1(i) and φ2(i) be such that φ1(i) ≤ θi ≤ φ2(i) and
such that there exists a single point (x1, x2) ∈ K∗ with

(26) hK∗(θ) = x1 cos θ + x2 sin θ for all θ ∈ [
φ1(i), φ2(i)

]
.

The following corollary says that if the distance of θi to its nearest end-point in
the interval [φ1(i), φ2(i)] is large (i.e., of constant order), then the optimal rate of
estimation of hK∗(θi) is parametric. This situation happens usually for polytopes
(polytopes are compact, convex sets with finitely many vertices); see Examples 4.1
and 4.3 for specific instances of this phenomenon. For nonpolytopes, it can often
happen that φ1(i) = φ2(i) = θi in which case the conclusion of the next corollary
is not useful.

COROLLARY 3.5. For every i ∈ {1, . . . , n}, we have

(27) k∗(i) ≥ cnmin
(
θi − φ1(i), φ2(i) − θi, π

)
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for a universal constant c > 0. Consequently,

(28) E
(
ĥi − hK∗(θi)

)2 ≤ Cσ 2

1 + nmin(θi − φ1(i), φ2(i) − θi, π)

for a universal constant C > 0.

From the above two corollaries, it is clear that the optimal rate of estimation
of hK∗(θi) can be as large as n−2/3 and as small as the parametric rate n−1. The
rate n−2/3 is achieved, for example, in the setting given in Example 4.3 while the
parametric rate is achieved, for example, for polytopes.

The next corollary argues that bounding k∗(i) in specific examples requires only
bounding the quantity �k(θi) from above and below. This corollary will be useful
in Section 4 while working out k∗(i) in specific examples.

COROLLARY 3.6. Fix 1 ≤ i ≤ n. Let {fk(θi), k ∈ I} and {gk(θi), k ∈ I} be
two sequences which satisfy gk(θi) ≤ �k(θi) ≤ fk(θi) for all k ∈ I . Also let

(29) k̆(i) := max
{
k ∈ I : fk(θi) <

(
√

6 − 2)σ√
k + 1

}

and

(30) k̃(i) := min
{
k ∈ I : gk(θi) >

6(
√

2 − 1)σ√
k + 1

}

as long as there is some k ∈ I for which gk(θi) > 6(
√

2 − 1)σ/
√

k + 1; otherwise
take k̃(i) := maxk∈I k. We then have k̆(i) ≤ k∗(i) ≤ k̃(i) and

(31) EK∗
(
ĥi − hK∗(θi)

)2 ≤ C
σ 2

k̆(i) + 1

for a universal constant C > 0.

3.2. Accuracy of set estimators. We now turn to study the accuracy of the set
estimators K̂ [defined in (14)] and K̂ ′ [defined in (16)]. The accuracy of K̂ will be
investigated under the loss function Lf [defined in (3)] while the accuracy of K̂ ′
will be studied under the loss function L [defined in (7)].

In Theorem 3.7 below we prove that EK∗Lf (K∗, K̂) is bounded from above by
a constant multiple of n−4/5 as long as K∗ is contained in a ball of radius R. The
discussions following the theorem shed more light on its implications.

THEOREM 3.7. If K∗ is contained in some closed ball of radius R ≥ 0, then

(32) EK∗Lf

(
K∗, K̂

) ≤ C

{
σ 2

n
+

(
σ 2

√
R

n

)4/5}

for a universal constant C > 0. Note here that R = 0 is allowed (in which case K∗
is a singleton).
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Note that as long as R > 0, the right-hand side in (32) will be dominated by the
(σ 2

√
R/n)−4/5 term for all large n. This would mean that

(33) sup
K∗∈K(R)

EK∗Lf

(
K∗, K̂

) ≤ C

(
σ 2

√
R

n

)4/5
,

where K(R) denotes the set of all compact convex sets contained in some fixed
closed ball of radius R.

The minimax rate of estimation over the class K(R) was studied in [21]. In [21],
Theorems 3.1 and 3.2, it was proved that

(34) inf
K̃

sup
K∗∈K(R)

EK∗Lf

(
K∗, K̂

) �
(

σ 2
√

R

n

)4/5
,

where � denotes equality up to constant multiplicative factors. From (33) and (34),
it follows that K̂ is a minimax optimal estimator of K∗. We should mention here
that an inequality of the form (33) was proved for the least squares estimator K̂ls
by [14], which implies that K̂ls is also a minimax optimal estimator of K∗.

The n−4/5 minimax rate here is quite natural in connection with estimation of
smooth functions. Indeed, this is the minimax rate for estimating twice differen-
tiable one-dimensional functions. Although we have not made any smoothness as-
sumptions here, we are working under a convexity-based constraint and convexity
is associated, in a broad sense, with twice smoothness (see, e.g., [1]).

REMARK 3.3. Because of the formula (3) for the loss function Lf , the risk
EK∗Lf (K∗, K̂) can be seen as the average of the risk of K̂ for estimating hK∗(θi)

over i = 1, . . . , n. We have seen in Section 3.1 that the optimal rate of estimating
hK∗(θi) can be as high as n−2/3. Theorem 3.7, on the other hand, can be inter-
preted as saying that, on average over i = 1, . . . , n, the optimal rate of estimating
hK∗(θi) is at most n−4/5. Indeed, the key to proving Theorem 3.7 is to establish
the following inequality:

σ 2

n

n∑
i=1

1

k∗(i) + 1
≤ C

{
σ 2

n
+

(
σ 2

√
R

n

)4/5}
.

Under the assumption that K∗ is contained in a ball of radius R. Therefore, even
though each term σ 2/(k∗(i) + 1) can be as large as n−2/3, on average, their size is
at most n−4/5.

REMARK 3.4. Theorem 3.7 provides different qualitative conclusions when
K∗ is a singleton. In this case, one can take R = 0 in (32) to get the parametric
bound Cσ 2/n for EK∗Lf (K∗, K̂). Because this is smaller than the nonparametric
n−4/5 rate, it means that K̂ adapts to singletons. Singletons are simple examples
of polytopes and one naturally wonders here if K̂ also adapts to other polytopes as



ADAPTIVE ESTIMATION OF PLANAR CONVEX SETS 1031

well. This is, however, not implied by inequality (32), which gives the rate n−4/5

for every K∗ that is not a singleton. It turns out that K̂ indeed adapts to other
polytopes and we prove this in the next theorem. In fact, we prove that K̂ adapts
to any K∗ that is well approximated by a polytope with not too many vertices. It
is currently not known if the least squares estimator K̂ls has such adaptivity.

We next prove another bound for EK∗Lf (K∗, K̂). This bound demonstrates
adaptivity of K̂ as described in the previous remark. Recall that polytopes are
compact, convex sets with finitely many extreme points (or vertices). The space of
all polytopes in R

n will be denoted by P . For a polytope P ∈P , we denote by vP ,
the number of extreme points of P . Also recall the notion of Hausdorff distance
between two compact, convex sets K and L defined by

(35) 	H (K,L) := sup
θ∈R

∣∣hK(θ) − hL(θ)
∣∣.

This is not the usual way of defining the Hausdorff distance. For an explanation
of the connection between this and the usual definition, see, for example, [30],
Theorem 1.8.11.

THEOREM 3.8. There exists a universal constant C > 0 such that

(36) EK∗Lf

(
K∗, K̂

) ≤ C inf
P∈P

[
σ 2vP

n
log

(
en

vP

)
+ 	2

H

(
K∗,P

)]
.

REMARK 3.5 (Near-parametric rates for polytopes). The bound (36) implies
that ĥ has the parametric rate (up to a logarithmic factor of n) for estimating poly-
topes. Indeed, suppose that K∗ is a polytope with v vertices. Then using P = K∗
in the infimum in (36), we have the risk bound

(37) EK∗Lf

(
K∗, K̂

) ≤ Cσ 2v

n
log

(
en

v

)
.

This is the parametric rate σ 2v/n up to logarithmic factors and is smaller than the
nonparametric rate n−4/5 given in (32).

REMARK 3.6. When v = 1, inequality (37) has a redundant logarithmic fac-
tor. Indeed, when v = 1, we can use (32) with R = 0 which gives (37) without the
additional logarithmic factor. We do not know if the logarithmic factor in (37) can
be removed for values of v larger than one as well.

Now consider the second set estimator K̂ ′. The next theorem gives an upper
bound on its accuracy under the integral loss function L [defined in (7)].
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THEOREM 3.9. Suppose K∗ is contained in some closed ball of radius R ≥ 0.
The risk EK∗L(K∗, K̂ ′) satisfies both the following inequalities:

(38) EK∗L
(
K∗, K̂ ′) ≤ C

{
σ 2

n
+

(
σ 2

√
R

n

)4/5
+ R2

n2

}
and

(39) EK∗L
(
K∗, K̂ ′) ≤ C inf

P∈P

[
σ 2vP

n
log

(
en

vP

)
+ 	2

H

(
K∗,P

) + R2

n2

]
.

The only difference between the inequalities (38) and (39) on one hand and (32)
and (36) on the other is the presence of the R2/n2 term. This term is usually very
small and does not change the qualitative behavior of the bounds. However, note
that inequality (36) did not require any assumption on K∗ being in a ball of radius
R while this assumption is necessary for (39).

REMARK 3.7. The rate (σ 2
√

R/n)4/5 is the minimax rate for this problem
under the loss function L. Although this has not been proved explicitly anywhere,
it can be shown by modifying the proof of [21], Theorem 3.2, appropriately. The-
orem 3.9 therefore shows that K̂ ′ is a minimax optimal estimator of K∗ under the
loss function L.

4. Examples. We now investigate the results given in the last section for spe-
cific choices of K∗. It is useful here to note that �k(θi) = Uk(θi) − Lk(θi) has the
following alternative expression:

(40)
1

k + 1

k∑
j=0

(
hK∗(θi ± 4jπ/n) − cos(4jπ/n)

cos(2jπ/n)
hK∗(θi ± 2jπ/n)

)
,

where we write hK∗(θi ± φ) for (hK∗(θi + φ) + hK∗(θi − φ))/2 with φ =
2jπ/n,4jπ/n.

EXAMPLE 4.1 (Single point). Suppose K∗ := {(x1, x2)} for a fixed point
(x1, x2) ∈R

2. In this case,

(41) hK∗(θ) = x1 cos θ + x2 sin θ for all θ .

It can then be directly checked from (40) that �k(θi) = 0 for every k ∈ I and
i ∈ {1, . . . , n}. As a result, it follows that k∗(i) = maxk∈I k ≥ cn for a constant
c > 0. Theorem 3.1 then says that the point estimator ĥi satisfies

(42) EK∗
(
ĥi − hK∗(θi)

)2 ≤ Cσ 2

n

for a universal constant C > 0. One therefore gets the parametric rate here.
Also, Theorem 3.7 and inequality (38) in Theorem 3.9 can both be used here

with R = 0. This implies that the set estimators K̂ and K̂ ′ both converge to K∗ at
the parametric rate under the loss functions Lf and L, respectively.
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EXAMPLE 4.2 (Ball). Suppose K∗ is a ball centered at (x1, x2) with radius
R > 0. It is then easy to verify that

(43) hK∗(θ) = x1 cos θ + x2 sin θ + R for all θ .

As a result, for every k ∈ I and i ∈ {1, . . . , n}, we have

(44) �k(θi) = R

k + 1

k∑
j=0

(
1 − cos 4πj

n

cos 2πj
n

)
≤ R

(
1 − cos 4πk/n

cos 2πk/n

)
.

Because k ≤ n/16 for all k ∈ I , it is easy to verify that �k(θi) ≤ 8R sin2(πk/n) ≤
8Rπ2k2/n2. Taking fk(θi) = 8Rπ2k2/n2 in Corollary 3.6, we obtain that k∗(i) ≥
c min(n, (n2σ/R)2/5) for a constant c. Also since the function 1− cos(2x)/ cos(x)

is a strongly convex function on [−π/4, π/4] with second derivative lower
bounded by 3, we have

�k(θi) = R

k + 1

k∑
j=0

(
1 − cos 4πj

n

cos 2πj
n

)
≥ R

k + 1

k∑
j=0

3

2

(
2πj

n

)2
= Rπ2k(2k + 1)

n2 .

This gives k∗(i) ≤ C min(n, (n2σ/R)2/5) as well for a constant C. We thus have
k∗(i) � (n2σ/R)2/5 for every i. Theorem 3.1 then gives

(45) EK∗
(
ĥi − hK∗(θi)

)2 ≤ C

{
σ 2

n
+

(
σ 2

√
R

n

)4/5}

for every i ∈ {1, . . . , n}. Theorem 3.7 and inequality (38) prove that the set estima-
tors K̂ and K̂ ′ also converge to K∗ at the n−4/5 rate.

In the preceding examples, we saw that the optimal rate σ 2/(k∗(i) + 1) for
estimating hK∗(θi) did not depend on i. Next, we consider asymmetric examples
where the rate changes with i.

EXAMPLE 4.3 (Segment). Let K∗ be the vertical line segment joining (0,R)

and (0,−R) for a fixed R > 0. Then hK∗(θ) = R| sin θ | for all θ . Assume that n is
even and consider i = n/2 so that θn/2 = 0. It can be verified that

�k(θn/2) = �k(0) = R

k + 1

k∑
j=0

tan
2πj

n
for every k ∈ I .

Because j �→ tan(2πj/n) is increasing, it is straightforward to deduce from above
that 3πRk/(8n) ≤ �k(0) ≤ 4πRk/n. Corollary 3.6 then gives

(46)
σ 2

k∗(n/2) + 1
� σ 2

n
+

(
σ 2R

n

)2/3
.

It was shown in Corollary 3.3 that the right-hand side above represents the maxi-
mum possible value of σ 2/(k∗(i) + 1) when K∗ lies in a closed ball of radius R.
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Therefore, this example presents the situation where estimation of hK∗(θi) is the
most difficult. See Remark 4.1 for the connection to smoothness of hK∗(·) at θi .

Now suppose that i = 3n/4 (assume that n/4 is an integer for simplicity) so
that θi = π/2. Observe then that hK∗(θ) = R sin θ (without the modulus) for θ =
θi ± 4jπ/n for every 0 ≤ j ≤ k, k ∈ I . Using (40), we have �k(θi) = 0 for every
k ∈ I . This immediately gives k∗(i) = 
n/16�, and hence

(47)
σ 2

k∗(3n/4) + 1
� σ 2

n
.

In this example, the risk for estimating hK∗(θi) changes with i. For i = n/2, we
get the n−2/3 rate while for i = 3n/4, we get the parametric rate. For other values
of i, one gets a range of rates between n−2/3 and n−1.

Because K∗ is a polytope with 2 vertices, Theorem 3.8 and inequality (39)
imply that the set estimators K̂ and K̂ ′ converge at the near parametric rate
σ 2 logn/n. It is interesting to note here that even though for some θi , the opti-
mal rate of estimation of hK∗(θi) is n−2/3, the entire set can be estimated at the
near parametric rate.

EXAMPLE 4.4 (Half-ball). Suppose K∗ := {(x1, x2) : x2
1 + x2

2 ≤ 1, x2 ≤ 0}.
One then has hK(θ) = 1 for −π ≤ θ ≤ 0 and hK(θ) = | cos θ | for 0 < θ ≤ π .
Assume n is even and take i = n/2 so that θi = 0. It can be checked that

�k(0) = 1

2(k + 1)

k∑
j=0

(
1 − cos 4πj/n

cos 2πj/n

)
.

This is exactly as in (44) with R = 1 and an additional factor of 1/2. Arguing as in
Example 4.2, we obtain that

σ 2

k∗(n/2) + 1
� σ 2

n
+

(
σ 2

n

)4/5
.

Now take i = 3n/4 (assume n/4 is an integer) so that θi = π/2. Observe then that
hK∗(θ) = | cos θ | for θ = θi ± 4jπ/n for every 0 ≤ j ≤ k, k ∈ I . The situation is
therefore similar to (46) and we obtain

σ 2

k∗(3n/4) + 1
� σ 2

n
+

(
σ 2

n

)2/3
.

Similar to the previous example, the risk for estimating hK∗(θi) changes with i

and varies from n−2/3 to n−4/5. On the other hand, Theorem 3.7 states that the set
estimator K̂ still estimates K∗ at the rate n−4/5.

REMARK 4.1 (Connection between risk and smoothness). The reader may
observe that the support functions (41) and (43) in the two examples above differ
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only by the constant R. It might then seem strange that only the addition of a
nonzero constant changes the risk of estimating hK∗(θi) from n−1 to n−4/5. It
turns out that the function (41) is much more smoother than the function (43); the
right way to view smoothness of hK∗(·) is to regard it as a function on R

2. This is
done in the following way. Define, for each z = (z1, z2) ∈ R

2,

hK∗(z) = max
(x1,x2)∈K∗(x1z1 + x2z2).

When z = (cos θ, sin θ) for some θ ∈ R, this definition coincides with our defini-
tion of hK∗(θ). A standard result (see, e.g., Corollary 1.7.3 and Theorem 1.7.4 in
[30]) states that the subdifferential of z �→ hK∗(z) exists at every z = (z1, z2) ∈ R

2

and is given by

F
(
K∗, z

) := {
(x1, x2) ∈ K∗ : hK∗(z) = x1z1 + x2z2

}
.

In particular, z �→ hK∗(z) is differentiable at z if and only if F(K∗, z) is a single-
ton.

Studying hK∗ as a function on R
2 sheds qualitative light on the risk bounds

obtained in the examples. In the case of Example 4.1 when K∗ = {(x1, x2)}, it is
clear that F(K∗, z) = {(x1, x2)} for all z. Because this set does not change with z,
this provides the case of maximum smoothness (because the derivative is constant),
and thus we get the n−1 rate.

In Example 4.2 when K∗ is a ball centered at x = (x1, x2) with radius R, it can
be checked that F(K∗, z) = {x + Rz/‖z‖} for every z = 0. Since F(K∗, z) is a
singleton for each z = 0, it follows that z �→ hK∗(z) is differentiable for every z.
For R = 0, the set F(K∗, z) changes with z and thus here hK∗ is not as smooth as
in Example 4.1. This explains the slower rate in Example 4.2 compared to 4.1.

Finally, in Example 4.3, when K∗ is the vertical segment joining (0,R) and
(0,−R), it is easy to see that F(K∗, z) = K∗ when z = (1,0). Here, F(K∗, z) is
not a singleton, which implies that hK∗(z) is nondifferentiable at z = (1,0). This
is why one gets the slow rate n−2/3 for estimating hK∗(θn/2) in Example 4.3.

5. Simulations. In this section, we compare the performance of our estima-
tors to other existing estimators for both the pointwise estimation and set estima-
tion problems. We shall refer to our estimator ĥi [defined in (12)] as the local
averaging estimator (LAE). The set estimator K̂ [defined in (14)] will be referred
to as LAE with projection and the set estimator K̂ ′ [defined in (16)] will be referred
to as LAE with infinite projection.

Note that our estimators require knowledge of the noise level σ (which we
have assumed to be known for our theoretical analysis). In practice, σ is typi-
cally unknown and needs to be estimated. Under the setting of the present pa-
per, σ is easily estimable by using the median of the consecutive differences. Let
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δi = Y2i − Y2i−1, i = 1, . . . , 
n
2�. A simple robust estimator of the noise level σ is

the following median absolute deviation (MAD) estimator:

(48) σ̂ = mediani |δi − medianj (δj )|√
2�−1(0.75)

≈ 1.05 × mediani

∣∣δi − medianj (δj )
∣∣.

We use this estimate of σ in our simulations.
Let us now briefly describe the other estimators to which our estimators will

be compared. The first of these is the least squares estimator [29], which we
have already described in the paper. The other estimators come from [11], Sec-
tion 2, where the authors propose four different estimators for K∗. These are:
(A) a second-order local linear method; (B) a second-order Nadaraya–Watson ker-
nel method; (C) a third-order local quadratic estimator and (D) a fourth-order
Nadaraya–Watson kernel method. As remarked in [11], Section 3, their method
(D) is always inferior to (C) [even when the smoothing parameters for (D) were
chosen optimally]. Therefore, we only compare our estimators with the first three
methods from [11]. We shall denote these estimators by FHTW-A, FHTW-B and
FHTW-C. respectively (FHTW is an acronym for the author names of [11]). In our
simulations, we allow these three estimators to have knowledge of the true noise
level σ .

In total therefore, we evaluate the performance of seven estimators in this sec-
tion: three estimators proposed in this paper (LAE, LAE with projection and LAE
with infinite projection), the least squares estimator (LSE) and the three estimators
from [11] (FHTW-A, FHTW-B and FHTW-C).

In the interest of space, we present simulation results here for only two cases:
K∗ is (a) the unit ball, and (b) the segment joining (0,−3) to (0,+3). Simulation
results for other choices of K∗ including square, ellipsoid and random polytope
are given in the Supplementary Material [32], Section B.

5.1. Pointwise estimation. In this section, we evaluate the performances of the
seven pointwise estimators hK∗(θi) for fixed 1 ≤ i ≤ n. We measure the perfor-
mance of each estimator h̃ by the mean squared error (MSE) EK∗(h̃ − hK∗(θi))

2.
For every fixed n, we simulate 200 random ensembles according to the model (2)
and then approximate the expectation by the average of error (h̃ − hK∗(θi))

2. In
simulations, σ = 0.5 and n ranges over {20,50,100,200,300,500}. We plot the
risk as a function of n.

Ball: We start with the case when K∗ is a ball. Without loss of generality then,
we can assume that the ball is the standard unit ball whose support function always
equals one. By rotation invariance of the ball, it is enough to study the case when
θi = 0. In the following plot, we draw the mean squared errors of all the estimators
against the sample size n.

From Figure 1, it is clear that the behaviors of LSE and both the LAE projection
estimators (LAE with projection and LAE with infinite projection) are almost the
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FIG. 1. Point estimation error when K∗ is a ball.

same, while the performance of LAE is quite comparable. When n is large, the per-
formance of LAE is as good as that of LSE and the LAE projection estimators, that
is, in this case, projecting the LAE onto the support function space is unnecessary.
Here, the LAE, which only uses local information, is quite similar to that of the
LSE. Also note that the best performance in this setting is achieved by the three
FHTW estimators.

Segment: Our second example is when K∗ is the segment from (0,−3) to
(0,+3) and we study the MSE when θi equal to 0, π/4, π/2 (in this example,
the performance of various estimators will vary with θi). The support function of
K∗ here equals 3| sin θ | (this function is plotted in the first plot of Figure 2); the
three choices of θi are indicated in this plot in red. The mean squared errors of all
estimators against n are plotted in the last three subplots of Figure 2 for each of
the three choices of θi .

Observe that similar to the case of the ball, the behaviors of LSE and both the
LAE projection estimators are almost the same. The LAE has comparable perfor-
mance. An interesting fact is that if one looks at the range of the y-axis in the
last three subplots of Figure 2, although the mean squared error is decreasing at
each θi , the rate of decay varies with θi . It may be noted that this phenomenon is
predicted in our theoretical analysis because the benchmark Rn(K

∗, θi) is adaptive
to the structure of hK∗ at θi .

Note that, in this example, the FHTW estimators perform poorly unlike the case
of the ball. The reason is that in [11], the support function is assumed to be twice
differentiable and so is the fitted ĥ. On the other hand, in this example, the true
support function is nondifferentiable, which explains their poor performance. Note
that, in contrast, our local averaging estimator requires no assumptions on the local
smoothness and as we have seen, the estimator actually adapts to local smoothness.

Analogous plots for other choices of K∗ are given in the Supplementary Mate-
rial [32]. These plots reveal the same story as the previous two settings.
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FIG. 2. Point estimation error when K∗ is a segment.

5.2. Set estimation. We now turn to set estimation. Recall that we proposed
two estimators for set estimation: the LAE with projection estimator K̂ [defined
in (14)] and the LAE with infinite projection estimator K̂ ′ [defined in (16)]. We
compare these two estimators to the LSE and the FHTW estimators from [11]. In
our simulations, we found that FHTW-B works much better compared to FHTW-A
and FHTW-C, which can also be seen from the simulations for point estimation
above. So we only present the results for FHTW-B among all the three FHTW
estimators.

For a set of specific choices of K∗ and n, we compute the expected squared
errors EK∗Lf (K̂,K∗) and EK∗L(K̂,K∗) for each of the estimators, where Lf

and L are defined in (3) and (7), respectively. Similar to the point estimation case,
these two expectations are approximated by the empirical average of 200 random
ensembles according to the model (2). For our LAE projection estimators which
require the value of σ , we estimate σ via (48). For the FHTW-B estimator which
also requires σ , we take σ to be its true value.

We plot EK∗Lf (K̂,K∗) and EK∗L(K̂,K∗) for each estimator K̂ as a function
of n. For visualizing the set estimator, we picked an ensemble randomly from the
200 ensembles and plotted each estimator. Note that, for the LAE with infinite pro-
jection, as we mentioned before, we take a finer uniform grid of points α1, . . . , αM

on (−π,π ] for a large value of M and approximate the set by the intersection of
M hyperplanes. In this case, M is set to be 1000.
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FIG. 3. Set estimation when K∗ is a ball.

Ball: Figure 3 presents the simulation results when K∗ is the unit ball. It shows
that the performance of the LAE projection estimator is almost identical to the that
of the LSE. The three set estimators LSE, LAE with projection and LAE with infinite
projection all look alike in the last subplot. Observe that for the LAE with infinite
projection estimator, there are many more support lines compared to the LAE with
projection estimator. This is because of the infinite nature of the projection that is
used to define the LAE with infinite projection estimator. The best estimator in this
example is the FHTW-B estimator because it captures the geometry of K∗ exactly.

Segment: Our second example takes K∗ to be the segment from (0,−3) to
(0,+3). The plots are given in Figure 4. Similar to the ball case, our LAE projec-
tion estimators are comparable to that of the LSE. Note that the FHTW-B estima-
tor, which assumes smoothness of the support function, becomes quite off (much
higher risk) in this case.

From both these figures (as well as other set estimation figures in [32]), it is
clear that both our set estimators (K̂ and K̂ ′) look quite similar and have near
identical performance.

6. Discussions. In this paper, we study the problems of estimating both the
support function at a point, hK∗(θi), and the whole convex set K∗. Data-driven
adaptive estimators are constructed and their optimality is established. For point-
wise estimation, the quantity k∗(i), which appears in both the upper bound (17)
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FIG. 4. Set estimation when K∗ is a segment.

and the lower bound (19), is related to the smoothness of hK∗(θ) at θ = θi . The
construction of ĥi is based on local smoothing together with an optimization algo-
rithm for choosing the bandwidth. Smoothing methods for estimating the support
function have previously been studied by [11]. Specifically, working under certain
smoothness assumptions on the true support function hK∗(θ), [11], estimated it
using periodic versions of standard nonparametric regression techniques such as
local regression, kernel smoothing and splines. They evade the problem of band-
width selection however by assuming that the true support function is sufficiently
smooth. Our estimator comes with a data-driven method for choosing the band-
width automatically and we do not need any smoothness assumptions on the true
convex set. The fact that our pointwise estimator uses only local information (i.e.,
for computing ĥi , we only use information on Yj corresponding to θj near θi)
is quite advantageous in that the computational complexity can be substantially
reduced by parallelizing the computation.

It was noted that the construction of our estimators K̂ and K̂ ′ given in Sec-
tion 2.2 does not involve any special treatment for polytopes; yet we obtain faster
rates for polytopes. Such automatic adaptation to polytopes has been observed in
other contexts: isotonic regression where one gets automatic adaptation for piece-
wise constant monotone functions (see [9]) and convex regression where one gets
automatic adaptation for piecewise affine convex functions (see [22]).
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Finally, we note that because σ 2/(k∗(i)+ 1) gives the optimal rate in pointwise
estimation, it can potentially be used as a benchmark to evaluate other estimators
for hK∗(θi) such as the least squares estimator h

K̂ls
(θi). From our simulations in

Section 5, it seems that the least squares estimator is also optimal in our strong
sense for pointwise estimation. It is however difficult to prove accuracy results for
the least squares estimator for pointwise estimation. The main difficulty comes
from the fact that the least squares estimator is technically a nonlocal estimator
[meaning that h

K̂ls
(θi) can depend on the values of Yj for θj far from θi ]. This

and the other fact that there is no closed-form expression for the least squares
estimator makes it very hard to study its pointwise estimation properties. In the
related problem of convex function estimation, pointwise properties of the least
squares estimator have been studied in [19]. But their results are asymptotic in
nature and, more importantly, they make certain smoothness assumptions on the
true function. In the generality considered in the present paper, studying the least
squares estimator seems difficult; it will probably require new techniques which
are beyond the scope of the current paper. This is an interesting topic for future
research.

7. Proofs of the main results. This section contains the proofs of the main
theorems stated in Section 3. The proofs of the corollaries of Section 3.1 are given
in the Supplementary Material [32], Section A.4. Some technical lemmas are re-
quired for the proofs given below. These lemmas are also given in the Supplemen-
tary Material [32], Section A.6.

Please note that because of space constraints, for the first three proofs given
below (those of Theorem 3.1, Theorem 3.2 and Theorem 3.7), we only give a few
details here and relegate the complete argument to the Supplementary Material.

7.1. Proof of Theorem 3.1. We provide the proof of Theorem 3.1 here. The
proof uses three simple lemmas: Lemma A.2, A.3 and A.4, which are stated and
proved in the Supplementary Material [32], Section A.6. Due to space constraints,
we only provide the initial part of the proof here moving the rest to the Supple-
mentary Material [32], Section A.1.

Fix i = 1, . . . , n. Because ĥi = Û
k̂(i)

(θi), we write

(
ĥi − hK∗(θi)

)2 = ∑
k∈I

(
Ûk(θi) − hK∗(θi)

)2
I
{
k̂(i) = k

}
,

where I (·) denotes the indicator function. Taking expectations on both sides and
using Cauchy–Schwarz inequality, we obtain

EK∗
(
ĥi − hK∗(θi)

)2 ≤ ∑
k∈I

√
E

(
Ûk(θi) − hK∗(θi)

)4
√
PK∗

{
k̂(i) = k

}
.
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The random variable Ûk −hK∗(0) is normally distributed and we know that EZ4 ≤
3(EZ2)2 for every Gaussian random variable Z. We therefore have

EK∗
(
ĥi − hK∗(θi)

)2 ≤ √
3

∑
k∈I

E
(
Ûk(θi) − hK∗(θi)

)2
√
PK∗

{
k̂(i) = k

}
.

Because EK∗Ûk(θi) = Uk(θi) [defined in (9)], we have

EK∗
(
Ûk(θi) − hK∗(θi)

)2 = (
Uk(θi) − hK∗(θi)

)2 + var
(
Ûk(θi)

)
.

Because Lk(θi) ≤ hK∗(θi) ≤ Uk(θi), it is clear that Uk(θi) − hK∗(θi) ≤ Uk(θ) −
Lk(θi) = �k(θi). Also, Lemma A.4 states that the variance of Ûk is at most
σ 2/(k + 1). Putting these together, we obtain

EK∗
(
ĥi − hK∗(θi)

)2 ≤ √
3

∑
k∈I

(
�2

k(θi) + σ 2

k + 1

)√
PK∗

{
k̂(i) = k

}
.

The proof of (17) will therefore be complete if we show that

(49)
∑
k∈I

(
�2

k(θi) + σ 2

k + 1

)√
PK∗

{
k̂(i) = k

} ≤ C
σ 2

k∗(i) + 1

for a universal positive constant C. The proof of this inequality is technical and we
have moved it to the Supplementary Material [32], Section A.1.

7.2. Proof of Theorem 3.2. This subsection is dedicated to the proof of Theo-
rem 3.2. The proof is again long and we have moved most to the Supplementary
Material (see [32], Section A.2). The basic idea is presented below and is based
on a classical inequality due to [26], which states that for every estimator h̃ and
compact, convex set L∗, the quantity

max
[
EK∗

(
h̃ − hK∗(θi)

)2
,EL∗

(
h̃ − hL∗(θi)

)2]
is bounded from above by

(50) ≥ 1

4

(
hK∗(θi) − hL∗(θi)

)2(
1 − ‖PK∗ − PL∗‖TV

)
.

Here, PL∗ is the product of the Gaussian probability measures with mean hL∗(θi)

and variance σ 2 for i = 1, . . . , n. Also ‖P − Q‖TV denotes the total variation
distance between P and Q.

For ease of notation, we assume, without loss of generality, that θi = 0. We also
write �k for �k(θi) and k∗ for k∗(i).

Suppose first that K∗ satisfies the following condition: There exists some α ∈
(0, π/4) such that

(51)
hK∗(α) + hK∗(−α)

2 cosα
− hK∗(0) >

σ√
nα

,
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where nα denotes the number of integers i for which −α < 2iπ/n < α. This con-
dition will not be satisfied, for example, when K∗ is a singleton. We shall handle
such K∗ later. Observe that nα ≥ 1 for all 0 < α < π/4 because we can take i = 0.

Let us define, for each α ∈ (0, π/4),

(52) aK∗(α) :=
(

hK∗(α) + hK∗(−α)

2 cosα
,
hK∗(α) − hK∗(−α)

2 sinα

)
,

and let L∗ = L∗(α) be defined as the smallest convex set that contains both K∗
and the point aK∗(α). In other words, L∗ is the convex hull of K∗ ∪ {aK∗(α)}.

We now use Le Cam’s bound (50) with this choice of L∗. Details are given in
[32], Section A.2.

7.3. Proof of Theorem 3.7. Recall the definition of h̃P in (13) and the defini-
tion of the estimator K̂ in (14). The first thing to note is that

(53) h
K̂

(θi) = ĥP
i for every i = 1, . . . , n.

To see this, observe first that, because ĥP = (ĥP
1 , . . . , ĥP

n ) is a valid support vec-
tor, there exists a set K̃ with h

K̃
(θi) = ĥP

i for every i. It is now trivial (from the
definition of K̂) to see that K̃ ⊆ K̂ which implies that h

K̂(θi)
≥ h

K̃
(θi) = ĥP

i . On

the other hand, the definition of K̂ immediately gives h
K̂

(θi) ≤ ĥP
i .

The observation (53) immediately gives

EK∗Lf

(
K∗, K̂

) = EK∗
1

n

n∑
i=1

(
hK∗(θi) − ĥP

i

)2
.

It will be convenient here to introduce the following notation. Let hvec
K∗ denote the

vector (hK∗(θ1), . . . , hK∗(θn)). Also, for u, v ∈ R
n, let 	(u, v) denote the scaled

Euclidean distance defined by 	2(u, v) := ∑n
i=1(ui − vi)

2/n. With this notation,
we have

(54) EK∗Lf

(
K∗, K̂

) = EK∗	2(
hvec

K∗ , ĥP )
.

Recall that ĥP is the projection of ĥ := (ĥ1, . . . , ĥn) onto H. Because H is a closed
convex subset of Rn, it follows that (see, e.g., [31])

	2(h, ĥ) ≥ 	2(
ĥ, ĥP ) + 	2(

h, ĥP )
for every h ∈ H.

In particular, with h = hvec
K∗ , we obtain 	2(hvec

K∗ , ĥP ) ≤ 	2(hvec
K∗ , ĥ). Combining this

with (54), we obtain

(55) EK∗Lf

(
K∗, K̂

) ≤ EK∗	2(
hvec

K∗ , ĥ
) = 1

n

n∑
i=1

EK∗
(
ĥi − hK∗(θi)

)2
.

In Theorem 3.1, we proved that

EK∗
(
ĥi − hK∗(θi)

)2 ≤ Cσ 2

k∗(i) + 1
for every i = 1, . . . , n.
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This implies that

EK∗Lf

(
K∗, K̂

) ≤ Cσ 2

n

n∑
i=1

1

k∗(i) + 1
.

For inequality (32), it is therefore enough to prove that

(56)
n∑

i=1

1

k∗(i) + 1
≤ C

{
1 +

(
R

√
n

σ

)2/5}
.

Proving the above inequality is the main part of the proof of Theorem 3.7. Because
of space constraints, we have moved this proof to [32], Section A.5. Our proof
of (56) is inspired by an argument due to [35], proof of Theorem 2.1, in a very
different context.

7.4. Proof of Theorem 3.8. Let us start with some notation. For every compact,
convex set P and i = 1, . . . , n, let kP∗ (i) denote the quantity k∗(i) with K∗ replaced
by P . More precisely,

(57) kP∗ (i) := argmin
k∈I

(
�P

k (θi) + 2σ√
k + 1

)
,

where �P
k (θi) is defined as in (40) with K∗ replaced by P . Lemma A.6 (stated and

proved in the Supplementary Material [32], Section A.6) will be used crucially in
the proof below. This lemma states that for every i = 1, . . . , n, the risk EK∗(ĥi −
hK∗(θi))

2 can be bounded from above by a combination of kP∗ (i) and how well
K∗ can be approximated by P . This result holds for every P . The approximation
of K∗ by P is measured in terms of the Hausdorff distance [defined in (35)].

We are now ready to prove Theorem 3.8. We first use inequality (55) from the
proof of Theorem 3.7 which states

EK∗Lf

(
K∗, K̂

) ≤ 1

n

n∑
i=1

EK∗
(
ĥi − hK∗(θi)

)2
.

An application of Lemma A.6, specifically inequality (147) for i = 1, . . . , n, now
implies the existence of a universal positive constant C such that

EK∗Lf

(
K∗, K̂

) ≤ C

(
σ 2

n

n∑
i=1

1

kP∗ (i) + 1
+ 	2

H

(
K∗,P

))

for every compact, convex set P . By restricting P to be in the class of polytopes,
we get

EK∗Lf

(
K∗, K̂

) ≤ C inf
P∈P

(
σ 2

n

n∑
i=1

1

kP∗ (i) + 1
+ 	2

H

(
K∗,P

))
.
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For the proof of (36), it is therefore enough to show that

(58)
n∑

i=1

1

kP∗ (i) + 1
≤ CvP log

en

vP

for every P ∈ P,

where vP denotes the number of extreme points of P and C is a universal positive
constant. Fix a polytope P with vP = k. Let the extreme points of P be z1, . . . , zk .
Let S1, . . . , Sk denote a partition of {θ1, . . . , θn} into k nonempty sets such that for
each j = 1, . . . ,m, we have

hP (θi) = zj (1) cos θi + zj (2) sin θi for all θi ∈ Sj ,

where zj = (zj (1), zj (2)). For (58), it is enough to prove that

(59)
∑

i:θi∈Sj

1

kP∗ (i) + 1
≤ C log(enj ) for every j = 1, . . . , k,

where nj is the cardinality of Sj . This is because we can write

n∑
i=1

1

kP∗ (i) + 1
=

k∑
j=1

∑
i:θi∈Sj

1

kP∗ (i) + 1
≤ C

k∑
j=1

log(enj ) ≤ Ck log
en

k
,

where we used the concavity of x �→ log(ex). We prove (59) below. Fix 1 ≤ j ≤ k.
The inequality is obvious if Sj is a singleton because kP∗ (i) ≥ 0. So suppose that
nj = m ≥ 2. Without loss of generality, assume that Sj = {θu+1, . . . , θu+m} where
0 ≤ u ≤ n − m. The definition of Sj implies that

hP (θ) = zj (1) cos θ + zj (2) sin θ for all θ ∈ [θu+1, θu+m].
We can therefore apply inequality (27) to claim the existence of a positive constant
c such that

kP∗ (i) ≥ cnmin(θi − θu+1, θu+m − θi) for all u + 1 ≤ i ≤ u + m.

The minimum with π in (27) is redundant here because θu+m − θu+1 < 2π . Be-
cause θi = 2πi/n − π , we get

kP∗ (i) ≥ 2πc min(i − u − 1, u + m − i) for all u + 1 ≤ i ≤ u + m.

Therefore, there exists a universal constant C such that

∑
i:θi∈Sj

1

kP∗ (i) + 1
≤ C

m∑
i=1

1

1 + min(i − 1,m − i)
≤ C

m∑
i=1

1

i
≤ C log(em).

This proves (59), thereby completing the proof of Theorem 3.8.
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7.5. Proof of Theorem 3.9. Recall the definition (16) of the estimator K̂ ′ and
that of the interpolating function (15). Following an argument similar to that used
at the beginning of the proof of Theorem 3.7, we observe that

EK∗L
(
K∗, K̂ ′) ≤

∫ π

−π
EK∗

(
hK∗(θ) − ĥ′(θ)

)2
dθ

(60)

=
n∑

i=1

∫ θi+1

θi

EK∗
(
hK∗(θ) − ĥ′(θ)

)2
dθ.

Now fix 1 ≤ i ≤ n, θi ≤ θ ≤ θi+1 and let u(θ) := EK∗(hK∗(θ)− ĥ′(θ))2. Using the
expression (15) for ĥ′(θ), we get that

u(θ) = EK∗
(
hK∗(θ) − sin(θi+1 − θ)

sin(θi+1 − θi)
ĥi − sin(θ − θi)

sin(θi+1 − θi)
ĥi+1

)2
.

We now write ĥi = ĥi − hK∗(θi) + hK∗(θi) and a similar expression for ĥi+1. The
elementary inequality (a + b + c)2 ≤ 3(a2 + b2 + c2) along with max(sin(θ −
θi), sin(θi+1 − θ)) ≤ sin(θi+1 − θi) then imply that

u(θ) ≤ 3EK∗
(
ĥi − hK∗(θi)

)2 + 3EK∗
(
ĥi+1 − hK∗(θi+1)

)2 + 3b2(θ),

where

b(θ) := hK∗(θ) − sin(θi+1 − θ)

sin(θi+1 − θi)
hK∗(θi) − sin(θ − θi)

sin(θi+1 − θi)
hK∗(θi+1).

Therefore, from (60) (remember that |θi+1 − θi | = 2π/n), we deduce

EK∗L
(
K∗, K̂ ′) ≤ 12π

n

n∑
i=1

EK∗
(
ĥi − hK∗(θi)

)2 + 3
∫ π

−π
b2(θ) dθ.

Now, to bound
∑n

i=1 EK∗(ĥi − hK∗(θi))
2 we can simply use the arguments from

the proofs of Theorems 3.7 and 3.8. Therefore, to complete the proof of Theo-
rem 3.9, we only need to show that

(61)
∣∣b(θ)

∣∣ ≤ CR

n
for every θ ∈ (−π,π ]

for some universal constant C. For this, we use the hypothesis that K∗ is contained
in a ball of radius R. Suppose that the center of the ball is (x1, x2). Define K ′ :=
K∗ − {(x1, x2)} := {(y1, y2) − (x1, x2) : (y1, y2) ∈ K∗} and note that hK ′(θ) =
hK∗(θ) − x1 cos θ − x2 sin θ . It is then easy to see that b(θ) is the same for both
K∗ and K ′. It is therefore enough to prove (61) assuming that (x1, x2) = (0,0).
In this case, it is straightforward to see that |hK∗(θ)| ≤ R for all θ and also that
hK∗ is Lipschitz with constant R. Now, because max(sin(θ − θi), sin(θi+1 − θ)) ≤
sin(θi+1 − θi), it can be checked that |b(θ)| is bounded from above by

∣∣hK∗(θ)
∣∣∣∣∣∣1 − sin(θi+1 − θ)

sin(θi+1 − θi)
− sin(θ − θi)

sin(θi+1 − θi)

∣∣∣∣ +
i+1∑
j=i

∣∣hK∗(θj ) − hK∗(θ)
∣∣.
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Because hK∗ is R-Lipschitz and bounded by R, it is clear that we only need to
show ∣∣∣∣1 − sin(θi+1 − θ)

sin(θi+1 − θi)
− sin(θ − θi)

sin(θi+1 − θi)

∣∣∣∣ ≤ C

n

in order to prove (61). For this, write α = θi+1 −θ and β = θ −θi so that the above
expression becomes∣∣∣∣1 − sinα + sinβ

sin(α + β)

∣∣∣∣ ≤ |1 − cosα| + |1 − cosβ| ≤ α2 + β2

2
≤ C

n2 ≤ C

n
.

This completes the proof of Theorem 3.9.

SUPPLEMENTARY MATERIAL

Supplement to “Adaptive estimation of planar convex sets”
(DOI: 10.1214/17-AOS1576SUPP; .pdf). Technical Appendix. Contains proofs of
some results in the main paper as well as additional technical results and simula-
tions.
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