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Abstract

In this supplement we prove the additional technical lemmas stated in Section 7.1

which are used in the proofs of the main results.

Lemma 4 The function H−1 defined in Section 2.1 is concave and nondecreasing. It is

strictly increasing for all x where H−1(x) < 1
2 . Moreover for C ≥ 1 it satisfies

H−1(Ct) ≤ C
2
3H−1(t). (60)

The function K defined in Section 2.1 is also increasing and satisfies for C ≥ 1

C
2
3K(t) ≤ K(Ct) ≤ CK(t). (61)

Proof of Lemma 4: First note that H is a nondecreasing convex function. Moreover

there is a unique point x0 such that it is strictly increasing on some open interval (x0,
1
2)

where fs(x0) = 0. The inverse function H−1(x) is thus strictly increasing on the interval

(0, H(12)). In this interval H−1(x) < 1
2 . For x > H(12), H−1(x) = 1

2 . It follows that H−1 is

nondecreasing. The concavity of H−1 is guaranteed because it is the inverse of an increasing

convex function.

Now let C ≥ 1. Then since fs is convex and fs(0) = 0 it follows that whenever

C2/3y ≤ 1
2 ,

C2/3fs(y) ≤ fs(C2/3y)

and hence also

CH(y) = C
√
yfs(y) ≤ C1/3√yfs(C2/3y) = H(C2/3y).

∗The research of Tony Cai was supported in part by NSF Grant DMS-0604954 and NSF FRG Grant

DMS-0854973.

1



Now let y = H−1(t). Clearly if C2/3H−1(t) ≥ 1
2 then (60) must hold. Hence suppose that

C2/3H−1(t) < 1
2 . In this case let y = H−1(t) Then

CH(H−1(t)) ≤ H(C2/3H−1(t))

and hence

Ct ≤ H(C2/3H−1(t)).

Consequently,

H−1(Ct) ≤ H−1(H(C2/3H−1(t))) = C2/3H−1(t)

which establishes (60) in this other case.

Note that for C ≥ 1,

K(Ct) =
Ct√

H−1(Ct)
≥ Ct

C1/3
√
H−1(t)

.

The first inequality in equation (61) and the fact that K is increasing immediately follows.

On the other hand,

K(Ct) =
Ct√

H−1(Ct)
≤ Ct√

H−1(t)
= CK(t),

which yields the second inequality in equation (61).

Lemma 5 Let f be a nonnegative convex function on [−1
2 ,

1
2 ]. For d > 0 let t be the

supremum over all y with fs(y) ≤ d where fs defined in Section 2.1 is the symmetrized and

centered version of f . Then there is a convex function g with g(0)−f(0) = d and for which∫ 1
2

− 1
2

(g(x)− f(x))2dx ≤ 9

4
d2t. (62)

It follows that for each 0 ≤ t ≤ 1
2 there is a convex function g with g(0)− f(0) = fs(t) such

that ∫ 1
2

− 1
2

(g(x)− f(x))2dx ≤ 9

4
H2(t) (63)

where the function H is defined in Section 2.1 Moreover for any convex h with h(0)−f(0) =

d > 0 ∫ 1
2

− 1
2

(h(x)− f(x))2dx ≥ 2

3
d2t. (64)

Remark: The constants 9
4 and 2

3 in (62) and (64) are sharp.
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Proof of Lemma 5: Throughout this proof we shall without loss of generality take f(0) =

0. First suppose that fs(
1
2) < d. Then t = 1

2 . In this case take g(x) = d and it is clear that∫ 1
2

−1/2
(g(x)− f(x))2dx ≤ 2d2

and in this case (62) holds.

We must now consider the situation where fs(t) = d and hence f(t) + f(−t) = 2d.

We shall consider two cases. In the first max(f(t), f(−t)) ≥ 3d
2 and in the second case

d ≤ max(f(t), f(−t)) < 3d
2 . In the first case for the moment assume that f(t) ≥ 3d

2 . Then

take g(x) = max(f(x), d + d
2tx). Note that g is convex as it is a maximum of two convex

functions. Also g(x) = f(x) at least for x ≤ −2t and x ≥ t. Moreover since f is nonnegative

It is also clear that g(x)− f(x) ≤ d+ d
2tx. Hence in this case∫ 1

2

− 1
2

(g(x)− f(x))2dx ≤
∫ t

−2t
(d+

d

2t
x)2dx =

9

4
d2t.

Similarly when f(−t) ≥ 3d
2 an entirely similar argument can be applied to the function

g(x) = max(f(x), d− d
2tx). Equation (62) of the lemma thus holds under the first case.

In the second case we have max(f(t), f(−t)) ≤ 3d
2 . In this case take g(x) = max(f(x), d+

f(t)−f(−t)
2t x). In this case g(x) = f(x) for |x| ≥ t and otherwise g(x)−f(x) ≤ d+ f(t)−f(−t)

2t x.

It follows that ∫ 1
2

− 1
2

(g(x)− f(x))2dx ≤
∫ t

−t
(d+

f(t)− f(−t)
2t

x)2dx

=
2t

3

(
3d2 +

(f(t)− f(−t))2

4

)
≤ 2t

3

(
3d2 +

d2

4

)
=

13

6
d2t.

Thus equation (62) of the lemma also holds in the second case since 13
6 ≤

9
4 . Equation

(63) follows immediately on taking d = f(t) and noting that t2f(t) = H(t). We now turn

to the proof of (64). For any pair of convex functions f and h let f̃(x) = f(x)+f(−x)
2 and

h̃(x) = h(x)+h(−x)
2 be symmetrized versions. Note that∫ 1

2

− 1
2

(h(x)− f(x))2dx ≥
∫ 1

2

− 1
2

(h̃(x)− f̃(x))2dx.

Note that since h̃ is convex and symmetric with h̃(0) = d it follows that h̃(x) ≥ d for all

x ∈ [−1/2, 1/2]. Hence h̃(x) ≥ d. Note also that fs(t) ≤ d and hence for |x| ≤ t it follows

that f̃(x) ≤ |x|t d and hence∫ 1
2

− 1
2

(h̃(x)− f̃(x))2dx ≥
∫ t

−t
(d− |x|

t
d)2dx =

2

3
d2t
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and (64) also follows.

Lemma 6 Let f and g be convex functions with f(0)−g(0) = a > 0. Let t be the supremum

of all y for which fs(y) ≤ a. Then∫ 1/2

−1/2
(f(x)− g(x))2dx ≥ 0.3ta2. (65)

The proof of this lemma requires an additional technical result which will be stated and

proved in Lemma 11 at the end of this supplement.

Proof of Lemma 6: Note that, since as in the proof of lemma 5,∫ 1/2

−1/2
(f̃(x)− g̃(x))2dx ≤

∫ 1/2

−1/2
(f(x)− g(x))2dx

where f̃(x) = f(x)+f(−x)
2 and g̃(x) = g(x)+g(−x)

2 , it suffices to prove the lemma for all

symmetric convex functions f and g. Hence we shall assume f and g to be convex, even

functions and without loss of generality we shall also take f(0) = 0 and hence g(0) = −a and

f(t) ≤ a. First suppose that g(x) ≤ 0 for 0 ≤ x ≤ t
2 . Then for 0 ≤ x ≤ t

2 , g(x) ≤ 2a
t (x− t

2).

In this case ∫ 1/2

−1/2
(f(x)− g(x))2dx ≥

∫ t/2

−t/2

4a2

t2
(x− t

2
)2dx =

1

3
ta2

and the Lemma would hold in this case. So suppose that g(t1) = 0 where t1 <
t
2 . In

this case f and g must meet in one and only one point. Suppose that f(t2) = g(t2).

Now let h(x) = −a + f(t2)+a
t2

x. Note that g(x) ≤ h(x) ≤ f(x) for 0 ≤ x ≤ t2 and that

g(x) ≥ h(x) ≥ f(x) for t2 ≤ x ≤ 1
2 . It follows that∫ 1/2

−1/2
(f(x)− g(x))2dx = 2

∫ 1/2

0
(f(x)− g(x))2dx ≥ 2

∫ t

0
(f(x)− h(x))2dx.

Now let

k(x) = max

{
f(t)− f(t2)

t− t2
(x− t) + f(t), 0

}
.

Since f(x) ≥ k(x) ≥ h(x) for 0 ≤ x ≤ t2 and h(x) ≥ k(x) ≥ f(x) for t2 ≤ t it follows that∫ 1/2

−1/2
(f(x)− g(x))2dx ≥ 2

∫ t

0
(k(x)− h(x))2dx

Now let y = x
t . Note that k(0) = 0 and h(0) = −a and that k and h are of the form of the

functions in Lemma 11. It then follows from this lemma that

2

∫ t

0
(k(x)− h(x))2dx = 2

∫ 1

0
(k(ty)− h(ty))2tdy ≥ 2 ∗ 0.1572ta2 ≥ 0.3ta2
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Lemma 7 Set σj∗ = 2(j∗−1)/2
√
n

. Let j∗ be defined as in Section 4, then

ETj∗ ≤ min(Eδj∗ − f(0), σj∗). (66)

For k ≥ 1,

Eδj∗−k − f(0) ≥ 2k−
3
2σj∗ (67)

and

ETj∗−k ≥
2k−1√

6
σj∗ . (68)

Proof of Lemma 7: The proof of this lemma will partly use Lemma 4. First note that

Lemma 4 gives ETj∗ ≤ Eδj∗ − f(0) and so (66) is clear in the case that Eδj∗ − f(0) ≤ σj∗ .
In the case Eδj∗ − f(0) = λσj∗ where λ > 1 note that since δj∗ has the smallest mean

squared error it follows that

Eδj∗+1 − f(0) ≥
√

(λ2 − 1)σj∗

and hence

ETj∗ = Eδj∗ − Eδj∗+1 ≤ (λ−
√

(λ2 − 1))σj∗ .

This last expression is a decreasing function in λ when λ ≥ 1 and so

ETj∗ ≤ σj∗

showing (66) in this other case. Now suppose that

Eδj∗ − f(0) = λσj∗ .

Then

(Eδj∗−1 − f(0))2 +
2j∗−2

n
≥ (Eδj∗ − f(0))2 +

2j∗−1

n

and hence

Eδj∗−1 − f(0) ≥
√

1

2
+ λ2σj∗

and

ETj∗−1 ≥ (

√
1

2
+ λ2 − λ)σj∗ .

Then equation (67) immediately follows from Lemma 4. Note also that Lemma 4 also

yields ETj∗−1 ≥ λσj∗ . Now the function

h(λ) = (

√
1

2
+ λ2 − λ).

is decreasing in λ and so the maximum of h(λ) and λ occurs when h(λ) = λ which has a

solution of λ = 1√
6

It then follows that ETj∗−1 ≥ 1√
6

and it follows from Lemma 4 that for

k ≥ 1 ETj∗−1 ≥ 2k−1 1√
6

yielding equation (68).
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Lemma 8 For b > 0 let tb be the supremum over all t where fs(t) ≤ br
1
2
n (f). Then

tb ≤
2

4− b2
1

nrn(f)
(69)

and for b ≥ 2√
3
,

tb ≤
b3
√

3

8nrn(f)
. (70)

Proof of Lemma 8: For b > 0 let tb be the supremum of all points t where fs(t) ≤ br
1
2
n (f).

Note that
1

2ntb
+
b2rn(f)

4
≥ 1

2ntb
+ (

1

tb

∫ tb

0
fs(t)dt)

2 ≥ rn(f).

Hence

tb ≤
2

4− b2
1

nrn(f)

establishing (69).

Now for b ≥ 2√
3

the convexity of fs as well as the fact that fs(0) = 0 also gives the

bound tb ≤
√
3b
2 t 2√

3
and subsituting the bound from (69) for t 2√

3
then yields (70).

Lemma 9 Let λ =
√

2 and let h(x) be the function given by

h(x) = P (Z ≤ λ− x

2
) +

0.649

1 + x2
+

1

4

x2

1 + x2

+
1

1 + x2

∞∑
m=1

(2m
√

3 + 2−m/22x)

(
P (Z ≤ λ)

m−1∏
l=0

P (Z > λ− 2−3l/2 min(x, 1))

)1/2

.

Then

sup
0≤x≤ 2√

3

h(x) ≤ 4.7.

Proof of Lemma 9: Note that h(x) is a univariate continuous function. This bound can

be verified through direct numerical calculations.

Lemma 10 Let gm(x, y) = (x2 + 2−m)P (Z ≤ λ − 2m/2(x − y)). Then for m ≥ 2 and

y ≥ 2m−3/2

sup
x≥2y

gm(x, y) = (4y2 + 2−m)P (Z ≤ λ− 2m/2y) (71)

sup
x≥2y,y≥2m−3/2

gm(x, y) = (22m−1 + 2−m)P (Z ≥ 23(m−1)/2 − λ). (72)
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Moreover

sup
x≥2y,y≥

√
2

g2(x, y) ≤ 0.649 (73)

sup
x≥max( 1√

2
,2y),y≥0

g1(x, y)

1 + y2
≤ 1.2. (74)

Proof of Lemma 10: For fixed m ≥ 2 and y ≥ 2m−3/2, write gm(x, y) as a function of x,

gm(x, y) = x2P (Z ≤ (λ+ 2m/2y)− 2m/2x) + 2−mP (Z ≤ (λ+ 2m/2y)− 2m/2x)

= h1(x) + h2(x).

The second term h2(x) is clearly decreasing in x and hence for x ≥ 2y,

sup
x≥2y

h2(x) = 2−mP (Z ≤ λ− 2m/2y).

Now let us consider h1(x). Set τ = 2m/2 and γ = λ+2m/2y. Then h1(x) = x2P (Z > τx−γ).

Then

h′1(x) = 2xP (Z > τx− γ)− τx2φ(τx− γ).

Hence g′(x) ≤ 0 if

P (Z > τx− γ) ≤ τx

2
φ(τx− γ).

It follows from the fact P (Z > z) ≤ z−1φ(z) for z > 0 that h′1(x) < 0 if

τx(τx− γ) ≥ 2.

This holds for

x ≥ γτ +
√
γ2τ2 + 8τ2

2τ2
=
γ +

√
γ2 + 8

2τ
. (75)

We only need to verify 2y ≥ γ+
√
γ2+8

2τ or equivalently

4τy ≥ γ +
√
γ2 + 8. (76)

Write z = 2m/2y. Then (76) is equivalent to

4z ≥ (
√

2 + z) +

√
(
√

2 + z)2 + 8

which is the same as z2 −
√

2z − 1 ≥ 0. This last inequality holds for all z ≥ (
√

2 +
√

6)/2.

Note that m ≥ 2 and so

z = 2m/2y ≥ 23m/2−3/2 ≥ 2
√

2 ≥ (
√

2 +
√

6)/2.
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This proves (71).

We have shown that h1(x) = x2P (Z > τx− γ) is decreasing for x ≥ γ+
√
γ2+8

2τ . It then

follows easily that (4y2 + 2−m)P (Z ≤ λ− 2m/2y) is decreasing in y for y ≥ 2m−3/2 and so

sup
y≥2m−3/2

(4y2 + 2−m)P (Z ≤ λ− 2m/2y) = (22m−1 + 2−m)P (Z ≥ 23(m−1)/2 − λ)

≤ 22m−1 + 2−m

23(m−1)/2 − λ
φ(23(m−1)/2 − λ),

where φ(·) is the density function of the standard normal distribution. It is also easy to

check that (4y2 + 2−2)P (Z ≤ λ− 2y) is also decreasing in y and so

sup
y≥
√
2

(4y2 + 2−2)P (Z ≤ λ− 2y) =
33

4
P (Z ≥

√
2) < 0.649.

For m = 1, (74) can be verified through direct numerical calculations.

Finally, we state and prove the following result which was used in the proof of Lemma

6. This lemma is useful in obtaining a lower bound for the local modulus of continuity. It

is helpful to first plot the functions involved.

t

0 0.2 0.4 0.6 0.8 1

f_u(t)= -a + ut  

g_v(t) = a(t-v)/(1-v) I(t>v)  
v

-a

0

a
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Lemma 11 Fix a > 0. Let u > 0 and 0 ≤ v < 1. Define fu(t) = −a + ut and gv(t) =
a

1−v (t− v) · I(t ≥ v). Then

inf
u≥0,0≤v<1

∫ 1

0
(fu(t)− gv(t))2dt ≥ 0.1572a2. (77)

Proof of Lemma 11: Set S =
∫ 1
0 (fu(t)− gv(t))2dt. Then

S =

∫ v

0
(−a+ ut)2dt+

∫ 1

v
(−a+ ut+

av

1− v
− at

1− v
)2dt

=

∫ v

0
(a2 − 2aut+ u2t2)dt

+
1

(1− v)2

∫ 1

v

(
(u− uv − a)2t2 + 2a(2v − 1)(u− uv − a)t+ a2(2v − 1)2

)
dt

= a2v − auv2 +
1

3
u2v3 +

1

1− v
·∆

where

∆ =
1

3
(u− uv − a)2(1 + v + v2) + a(2v − 1)(u− uv − a)(1 + v) + a2(2v − 1)2.

We shall first simplify ∆. Setting w = 1 − v. Tedious but straightforward algebra shows

that

∆ = w

{
1

3
(u2w − 2au)(w2 − 3w + 3) +

7

3
a2w + au(2w2 − 5w + 2)

}
.

Combining this with other terms yields

S = a2(1− w)− au(1− w)2 +
1

3
u2(1− w)3

+
1

3
(u2w3 − (2au+ 3u2)w2 + (6au+ 3u2)w − 6au)

+ 2auw2 + (
7

3
a2 − 5au)w + 2au

=
1

3
auw2 + (

4

3
a2 − au)w + (a2 − au+

1

3
u2).

Note that a is fixed and so S is a function of u and w. We wish to minimize S = S(u,w)

with respect to u and w. Setting the partial derivatives to 0, we have{
2
3auw + 4

3a
2 − au = 0

1
3aw

2 − aw − a+ 2
3u = 0

.

This yields {
u = (−1

2w
2 + 3

2w + 3
2)a

2w3 − 9w2 + 3w + 1 = 0
.

The cubic equation has a unique root between 0 and 1, w = 0.5986 and the corresponding

value of u is u = 2.2187a. The minimum value of S is S = S(2.2187, 0.5986) = 0.1572a2.
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