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Abstract: We develop adaptive estimation and inference methods for high-dimensional Gaussian

copula regression that achieve the same optimal performance without the knowledge of the marginal

transformations as that for high-dimensional linear regression. Using a Kendall’s tau based co-

variance matrix estimator, an `1 regularized estimator is proposed and a corresponding de-biased

estimator is developed for the construction of the confidence intervals and hypothesis tests. Theo-

retical properties of the procedures are studied and the proposed estimation and inference methods

are shown to be adaptive to the unknown monotone marginal transformations. Prediction of the

response for a given value of the covariates is also considered. The procedures are easy to imple-

ment and perform well numerically. The methods are also applied to analyze the Communities and

Crime Unnormalized Data from the UCI Machine Learning Repository.
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1. Introduction

Finding the relationship between a response and a set of covariates is a ubiquitous problem

in scientific studies. Linear regression analysis, which occupies a central position in statistics, is

arguably the most commonly used method. It has been well studied in both the conventional

low-dimensional and contemporary high-dimensional settings. However, the assumption of linear

relationship between the predictors and the response is often too restrictive and unrealistic. Data

transformations, such as the Box-Cox transformation, Fisher’s z transformation, and variance stabi-

lization transformation, have been frequently used to improve the linear fit and to correct violations

of model assumptions such as constant error variance. These transformations are often required to

be prespecified before applying the linear regression analysis. See, for example, Carroll and Rupert

[6] for detailed discussions on transformations.

For a response Y and predictors X1, ..., Xp, the following functional form of the relationship

has been widely used in a range of applications,

fλ0(Y ) = β0 +

p∑
j=1

βjfλj (Xj) + ε, (1.1)

where fλj (·) are univariate functions and λj is the parameter associated with fλj . Examples of

this model include the additive regression model, single index model, copula regression model, and
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semiparametric proportional hazards models [36, 26, 47, 29, 46, 45, 9, 24, 33, 22]. For applications

in econometrics, computational biology, criminology, and natural language processing, see for ex-

ample [15, 25, 32, 42, 21]. In particular, [47] and [45] established the convergence rates for the

minimax estimation risk under the high-dimensional additive regression model and single index

model respectively. For data transformations, it is natural to consider the transformations that

are continuous and one to one on an interval. Indeed, the functions satisfying these two conditions

must be strictly monotonic [39].

In the present paper, we consider adaptive estimation and statistical inference for high-dimensional

sparse Gaussian copula regression. The model can be formulated as follows. Suppose we have an

independent and identically distributed random sample Z1 = (Y1,X1), ..., Zn = (Yn,Xn) ∈ Rp+1

where Yi ∈ R are the responses and Xi ∈ Rp are the covariates. Set d = p + 1. We say

(Yi,Xi) satisfies a Gaussian copula regression model, if there exists a set of strictly increasing func-

tions f = {f0, f1, ..., fp} such that the marginally transformed random vectors Z̃i = (Ỹi, X̃i) :=

(f0(Yi), f1(Xi1), ..., fp(Xip)) satisfy Z̃i
i.i.d∼ Nd(0,Σ) for some positive-definite covariance matrix

Σ ∈ Rd×d with diag(Σ) = 1. The condition diag(Σ) = 1 is for identifiability because the scaling

and shifting are absorbed in the marginal transformations. Note that under the Gaussian copula

regression model, one has the following linear relationship for the transformed data:

Ỹi = X̃i
>
β + εi, i = 1, 2, ..., n, (1.2)

where β ∈ Rp and εi are i.i.d zero-mean Gaussian variables. Writing in terms of the covariances,

one has β = Σ−1

X̃X̃
Σ
X̃Ỹ

and εi
i.i.d∼ N(0, 1 − Σ

Ỹ X̃
Σ−1

X̃X̃
Σ
X̃Ỹ

), where Σ
X̃X̃

= Cov(X̃1, X̃1) and

Σ
X̃Ỹ

= Cov(X̃1, Ỹ1). We focus on the high-dimensional setting where p is comparable to or much

larger than n and β is sparse. The fundamental difference between the Gaussian copula regression

model and the conventional linear regression model (1.2) is that one observes {Y1,X1), ..., (Yn,Xn)},
not {(Ỹ1, X̃1), , , , , (Ỹn, X̃n)} as the transformations fi are unknown.

The Gaussian copula regression model has been widely used and well studied in the classical

low-dimensional setting [40, 7, 24, 30]. For example, [24] developed a systematic framework to

make inference and implement model validation for the Gaussian copula regression model. [30]

proposed a plug-in approach for estimating a regression function based on copulas, and presents

the asymptotic normality of the estimator. However, their model and analysis are restricted to the

low-dimensional setting and not well adapted to the high-dimensional case. In high dimensional

setting, [42] applied the Gaussian copula regression model to predict the financial risks, but the

theoretical guarantees are still unclear.

The goal of the present paper is to develop adaptive estimation and inference methods that

achieve the optimal performance in terms of the convergence rates without the knowledge of the

marginal transformations. The rank-based Kendall’s tau is used to extract the covariance infor-

mation on the transformed data that does not require estimation of the transformations. Based

on the covariance matrix estimator, an `1 regularized estimator is proposed to estimate β and
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a corresponding de-biased estimator is developed for the construction of the confidence intervals

and hypothesis tests. In addition, prediction of the response for a given value of the covariates

is also considered. One of the main technical challenges is that in the high-dimensional Gaussian

copula model, the procedure in [13] does not apply and new method as well as new technical

analysis are needed. To achieve the same inferential results as the de-biased LASSO estimator for

high-dimensional linear regression, the de-biasing procedure needs to be modified carefully.

Theoretical properties of the procedures for estimation, prediction, and statistical inference

are studied. The proposed estimator is shown to be rate-optimal under regularity conditions. The

proposed estimation and inference methods share similar properties as those optimal procedures for

the high-dimensional linear regression. They are more flexible in the sense that they are adaptive

to unknown monotone marginal transformations. For example, it is of practical interest to test

whether a given covariate Xi is related to the response Y . The proposed testing procedure enables

one to test this hypothesis without the need of knowing or estimating the marginal transformations.

In addition, the procedures are easy to implement and perform well numerically. The methods are

also applied to analyze the Communities and Crime Unnormalized Data from the UCI Machine

Learning Repository.

Compared with other methods such as those for the additive regression model and single index

model, a significant advantage for our proposed estimation and inference procedures is that they do

not require estimation of the marginal transformations. For example, one can select the important

variables xi without any knowledge of the transformations fi. This makes the methods more

flexible and adaptive. The estimator achieves the same optimal rate as that for high-dimensional

linear regression. It is noteworthy to compare our methods and results to the existing literature

on the Gaussian copula graphical model such as [10], where estimation and inference methods

for individual entries of the precision matrix Ω = Σ−1 are proposed, based on the observed data

{(Xi1, ..., Xip)}ni=1. The inferential result in [10] requires (f1(Xi1), ..., fp(Xip)) ∼ N(0,Σ) and Ω to

be sparse. Such a matrix sparsity condition is not needed in the present paper. In addition, we use

a different method to construct the confidence interval. In the present paper, we use the de-biased

estimator, while the confidence interval in [10] was based on the Wald test.

The rest of the paper is organized as follows. After basic notations and definitions are in-

troduced, Section 2 presents the `1 penalized minimization procedure for estimating β that uses

a rank-based correlation matrix estimator. Prediction is also considered. Section 3 constructs

a de-biased estimator and establishes an asymptotic normality result. Confidence intervals and

hypothesis tests are developed based on the limiting distribution. Numerical performance of the

proposed estimator and inference procedures are investigated in Section 4. A brief discussion is

given in Section 5 and the main results are proved in Section 6.

2. Adaptive Estimation and Prediction

We consider adaptive estimation and prediction in this section. We first introduce the rank-
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based correlation matrix estimator to extract covariance information on the transformed data that

does not require estimation of the marginal transformations, and then present the estimation and

prediction procedures and their theoretical properties.

We begin with the basic notation and definitions. Throughout the paper, we use bold-faced

letters for vectors. For a vector u ∈ Rp and 1 ≤ q ≤ ∞, the `q norm is defined as ||u||q =

(
∑p

i=1 |ui|q)1/q, with ||u||∞ = maxi |ui|. In addition, u[i : j] denotes the entries of u from i-th to

j-th coordinates and supp(u) is the support of u. For a matrix A ∈ Rp×p and 1 ≤ q ≤ ∞, the

matrix `q operator norm is is defined as ||A||q = sup‖u‖q=1 ||Au||q. The spectral norm of A is the

`2 operator norm and the `1 norm is the maximum absolute column sum. For an integer 1 ≤ s ≤ p,
the s-restricted spectral norm of A is defined as ||A||2,s = supu∈Sp−1,|u|0=s ||Au||2, where Sp−1 is the

unit ball in Rp. The vector `∞ norm on matrix A is |A|∞ = maxi,j |Aij |. For a symmetric matrix

A, we use λmax(A) and λmin(A) to denote respectively the largest and smallest eigenvalue of A,

and κ(A) = λmax(A)/λmin(A) is the condition number. Further, we denote the restricted condition

number by κs(Σ) := sup{λmax(ΣS,S)/λmin(ΣS,S) : S ∈ [n], |S| = s} ≤ Ms. We write A � 0 if A is

semidefinite positive. In addition, ◦ denotes the matrix element-wise multiplication, and ⊗ is the

Kronecker product. Moreover, vec(·) maps an m × n matrix A to a Rmn vector by laying out the

columns of A one by one. For a set of indices I,J , we let AI,J denote the submatrix formed by

the rows in I and columns in J . Ip×p is the p by p identity matrix. e
(n)
i is the i-th unit vector in

Rn with entries e
(n)
ij = I{j=i}, for j = 1, ..., n. Φ(·) denotes the cumulative distribution function

of a standard normal distribution. Br(x) denotes the Eucilidean ball centered at x with radius r.

For two sequences of nonnegative real numbers, an . bn implies that there exists a constant C not

depending on n, such that an ≤ Cbn. Finally, we use [d] to denote the set {1, 2, ..., d}.

2.1 Rank-Based Estimator of Correlation Matrix

Recall the model (1.2), we use (Y , X) to denote the observed data, with Y ∈ Rn and X ∈ Rn×p

the design matrix with rowsX>1 , ...,X
>
n , and (Ỹ , X̃) to be the original data who possesses the linear

relationship. In addition, Z>i := (Yi,X
>
i ) and Z̃>i := (Ỹi, X̃

>
i ). An essential quantity in estimation

of β and inference for the Gaussian copula regression model (1.2) is the covariance matrix (or

correlation matrix as the diagonal is 1) Σ. Since the marginal transformations fi’s are unknown and

thus (Ỹ , X̃) are not directly accessible, the conventional sample covariance matrix is not available

as an estimate of Σ. We thus need an alternative method to estimate the covariance/correlation

matrix Σ.

Our approach is to use the rank-based Kendall’s tau, which can be well estimated from the

observed data (Y1,X
>
1 ), ..., (Yn,X

>
n ). This estimator is based on the following fact (see Section 3

of [16]). Set d = p+ 1. If Z̃i
i.i.d.∼ Nd(0,Σ) with Σ = (σjk)1≤j,k≤d, then

σjk = sin
(π

2
τjk

)
, (2.1)
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where τjk is called Kendall’s tau and defined as

τjk = E[sgn(z̃1j − z̃2j)sgn(z̃1k − z̃2k)], (2.2)

with Z̃i = (z̃i1, z̃i2, ..., z̃id)
>, i = 1, 2, being two independent copies of Nd(0,Σ).

Note that τjk given in (2.2) is invariant under strictly increasing marginal transformations.

This leads to an estimate of τij based on the observed data Z1, ..., Zn under the Gaussian copula

regression model

τ̂jk =
2

n(n− 1)

∑
1≤i1<i2≤n

sgn(Z̃i1j − Z̃i2j)sgn(Z̃i1k − Z̃i2k)

=
2

n(n− 1)

∑
1≤i1<i2≤n

sgn(Zi1j − Zi2j)sgn(Zi1k − Zi2k), 1 ≤ j, k ≤ d.
(2.3)

Denote by T̂ = (τ̂jk)d×d the Kendall’s tau sample correlation matrix, and its population version

T = (τjk)d×d. Let Si,i′ = (sgn(Zi1 − Zi′1), ..., sgn(Zid − Zi′d))>, then

T̂ = (τ̂jk)d×d =
1

n(n− 1)

n∑
i 6=i′

Si,i′S
>
i,i′ . (2.4)

Based on the Kendall’s tau, (2.1) immediately leads to the following estimator for the correlation

matrix Σ,

Σ̂ = (σ̂jk)d×d with σ̂jk = sin
(π

2
τ̂jk

)
. (2.5)

We shall divide Σ into four sub-matrices, denoted by ΣXX ,ΣXY , ΣY X ,ΣY Y , and their cor-

responding Kendall’s tau based estimators are Σ̂Y Y , Σ̂Y X , Σ̂XY , Σ̂XX , with Σ̂Y X = Σ̂>XY and

ΣY X = Σ>XY .

2.2 Estimation of β

We now introduce the procedure for estimating the sparse coefficient vector β in (1.2). If the

marginal transformations fi, i = 0, 1, ..., p were given, then (Ỹi, X̃
>
i ) are available and in this case

a natural approach to estimating β is to use the Lasso estimator

β̂Lasso = arg min
β∈Rp

{ 1

2n
||Ỹ − X̃β||22 + λ||β||1}.

Rewriting the objective function yields

β̂Lasso = arg min
β∈Rp

{ 1

2n
(β>X̃>X̃β − 2Ỹ >X̃) + λ||β||1}. (2.6)

Since (Ỹi, X̃i) are not directly accessible as the transformations fi’s are unknown, the estimator

given in (2.6) cannot be used. The quantities X̃>X̃/n and Ỹ >X̃/n in (2.6) can be viewed as

estimators of the covariances ΣXX and ΣY X respectively. From this perspective, it is natural to

replace X̃>X̃/n and Ỹ >X̃/n in (2.6) with the alternative covariance estimators Σ̂XX and Σ̂Y X
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based on Kendall’s τ as discussed in Section 2.1. We thus propose the following `1 penalized

minimization procedure for estimating β.

Algorithm 1 Adaptive estimator of β

Input: Observed pairs (Y1,X
>
1 ), ..., (Yn,X

>
n ), parameter λ > 0.

Output: Regularized estimator β̂(λ).

1: Construct Kendall’s tau based covariance estimators Σ̂XX and Σ̂XY .

2: Set

β̂(λ) = arg min
β∈Rp

{1

2
(β>Σ̂XXβ − 2Σ̂Y Xβ) + λ||β||1}. (2.7)

Remark 1. Note that Σ̂XX may not be positive semidefinite (PSD) and as a consequence the

optimization (2.7) may not be convex. Theorem 1 in [20] developed theory for this nonconvex

optimization problem, and showed that the solution obtained by the standard projected gradient

descent method lies within statistical error of the true β. Alternatively, one can also project Σ̂XX

onto the cone of the PSD matrices, that is Σ̂+
XX = arg minΣ�0 ‖Σ̂XX − Σ‖2,s. Here we use the

‖ · ‖2,s norm instead of the spectral norm due to theoretical considerations for the results given in

Theorem 1. This projection would increase the loss by a factor at most two, so in practice Σ̂+
XX

can be used in place of Σ̂XX .

We now consider the properties of the estimator β̂(λ) given in Algorithm 1. We first define

the Restricted Strong Convexity (RSC) condition introduced in [28].

Definition 1 (RSC). For a given sparsity level s ≤ p and constant α ≥ 1, define the set C(s, α) :=

{θ ∈ Rp : ||θSc ||1 ≤ α||θS ||1, S ⊂ {1, ..., p}, |S| ≤ s}. We say a matrix Σ ∈ Rp×p satisfies the

restricted strong convexity (RSC) condition with constants (γ1, s, α), if

θ>Σθ ≥ γ1||θ||22 for all θ ∈ C(s;α).

The RSC condition is related to the restricted eigenvalue condition [2] used in the analysis of

high-dimensional linear regression. See [28] for more detailed discussion on the RSC.

Theorem 1. Assume that β is s-sparse. Suppose that κs(Σ) ≤ M for some M > 0, and ΣXX

satisfies the RSC with constants (γ1, s, 3). Let β̂(λ) be defined as (2.7). If s = o( n
log p), and the

tuning parameter λ = C1

√
log p
n is chosen with C1 > 2M , then with probability at least 1− 2p−1,

||β̂(λ)− β||2 .

√
s log p

n
and ||β̂(λ)− β||1 . s

√
log p

n
. (2.8)

Furthermore, if |ΣXS ,XSc |∞ ≤ 1 − α for some constant α > 0, where S = supp(β) and XS is its

corresponding index set in Σ, mini∈S |βi| ≥ 8M
γ1

(1 + 4(2−α)
α )

√
s log p
n , then for λ = 8M(2−α)

α

√
s log p
n ,

with probability at least 1− 2p−1,

sgn(β) = sgn(β̂(λ)). (2.9)
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The convergence rates of β̂(λ) under the `1 and `2 norm losses given in (2.8) match the minimax

lower bounds for high-dimensional linear regression [35]. This implies that β̂(λ) is minimax rate

optimal under the Gaussian copula regression model and achieves the same optimal rate attained

by the regular Lasso for linear regression. In other words, the proposed procedure is adaptive to the

unknown marginal transformations and gains this added flexibility for free in terms of convergence

rate. The result given in (2.9) shows that, under regularity conditions, β̂(λ) is sign consistent.

2.3 Prediction

In addition to estimation of β, another problem of signficant practical interest is predicting

the response Y ∗ for a given value of the covariates x∗ = (x∗1, ..., x
∗
p) based on the Gaussian copula

regression model (1.2). In the oracle setting where the transformations f0, ..., fp and the coefficient

vector β are known, the optimal prediction of the response is

µ∗ = f−1
0 (

p∑
i=1

fi(x
∗
i )βi).

Our goal is to construct a predictor µ̂∗, based only on the observed data (Y1,X1), ..., (Yn,Xn), that

is close to the oracle predictor µ∗.

Let F0 be the cumulative distribution function of Y and let Fi be the cumulative distribution

function of Xi for i = 1, ..., p. As for the sample version, let F̂0 be the empirical cumulative

distribution function of {Y1, ..., Yn} and let F̂i be the empirical cumulative distribution function of

{Xi1, ..., Xin} for i = 1, ..., p. Set

f̂0(t) = Φ−1(F̃0(t)), i = 1, 2, ..., n; (2.10)

f̂i(t) = Φ−1(F̂i(t)), i = 1, 2, ..., n, (2.11)

where F̃0(t) = 1
n2 I(F̂0(t) < 1/n2) + F̂0(t)I(F̂0(t) ∈ [1/n2, 1− 1/n2]) + n2−1

n2 I(F̂0(t) > 1− 1/n2).

For a given value of the covariates x∗ = (x∗1, ..., x
∗
p), we define the predictor

µ̂∗ = f̂−1
0 (

p∑
i=1

f̂i(x
∗
i )β̂(λ)i), (2.12)

where β̂(λ) is the estimator given in (2.7) and f̂−1
0 is the generalized inverse of f̂0:

f̂−1
0 (t) = inf{x ∈ R : f̂0(x) ≥ t}.

Recall that Br(x) denotes the Eucilidean ball centered at x with radius r. We have the following

result for the predictor µ̂∗.

Theorem 2. Suppose for some constant c > 0, |f0(v1) − f0(v2)| ≥ c|v1 − v2| for all v1, v2 ∈
f−1

0 (Br(f0(µ∗))) with r ≥ Cs
√

log d/n for a sufficiently large constant C, f0(µ∗) < M , and

maxi=1,...,p Fi(x
∗
i ) ∈ (δ∗, 1 − δ∗) for some constant M > 0, δ∗ ∈ (0, 1). If s = o(

√
n

log p), then
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under the conditions of Theorem 1 the predictor µ̂∗ given in (2.12) satisfies, with probability at

least 1− p−1 − n−1,

|µ̂∗ − µ∗| . s

√
log p

n
.

This error bound is tight. f−1
0 (µ∗) =

∑p
i=1 fi(x

∗
i )βi can be viewed as a linear functional of

β with unknown weights fi(x
∗
i ) (as the marginal transformations fi’s are unknown). For high-

dimensional linear regression, inference on the linear functionals of β with known weights has been

considered in [4], where a lower bound of order s
√

log p
n was established for estimation error and for

the expected length of confidence intervals for linear functionals with “dense” weight vectors.

3. Statistical Inference

We turn in this section to statistical inference for the Gaussian copula regression model. The

Lasso estimator is inherently biased as it is essential to trade variance and bias in order to achieve

the optimal estimation performance. For statistical inference such as confidence intervals and

hypothesis tests, it is desirable to use (nearly) unbiased pivotal estimators. Such an approach has

been used in the construction of confidence intervals for high-dimensional linear regression in the

recent literature. See, for example, [14, 41, 48, 4]. We follow the same principle to de-bias the

estimator β̂(λ) given in Algorithm 1.

We begin by noting that β̂(λ) satisfies the Karush-Kuhn-Tucker (KKT) condition

Σ̂XX β̂(λ)− Σ̂XY + λ∂||β̂(λ)||1 = 0, (3.1)

where ∂||β̂(λ)||1 is the subgradient of the `1 norm || · ||1. Equation (3.1) can be rewritten as

Σ̂XX(β̂(λ)− β) + λ∂||β̂(λ)||1 = Σ̂XY − Σ̂XXβ.

Suppose one has a good approximation of the “inverse” of Σ̂XX , say M , and multiply M on the

left:

M Σ̂XX(β̂(λ)− β) + λM∂||β̂(λ)||1 = M(Σ̂XY − Σ̂XXβ).

Then it follows

(β̂(λ) + λM∂||β̂(λ)||1)− β = M(Σ̂XY − Σ̂XXβ) + (I −M Σ̂XX)(β̂(λ)− β). (3.2)

By inspection, let β̂u = β̂(λ) + λM∂||β̂(λ)||1, this leads to

√
n(β̂u − β(λ)) =

√
n(M Σ̂XY −M Σ̂XXβ) +

√
n(I −M Σ̂XX)(β − β̂(λ)) (3.3)

=
√
n(M Σ̂XY −M Σ̂XXβ) + o(1), (3.4)

where the second equality use the assumption that M approximate the “inverse” of Σ̂XX well and

thus (I −M Σ̂XX)(β̂(λ)− β) is negligible. Then
√
n(M Σ̂XY −M Σ̂XXβ) plays a major role in the

limiting distribution of
√
nβ̂u and later we will show its asymptotic normality (Theorem 3).
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This analysis suggests the following de-biasing procedure:

β̂u =β̂(λ) + λM∂||β̂(λ)||1 = β̂(λ) +M(Σ̂XY − Σ̂XX β̂(λ)),

where the second equality is from (3.1).

We then need to construct the matrix M that is a good approximation of the “inverse” of

Σ̂XX . We proceed with two objectives in mind: One is to control |M Σ̂XX − Ip×p|∞ and another is

to control the variance of β̂ui . The latter is for the precision of the statistical inference procedures.

For example, the length of the confidence intervals for βi is proportional to the standard deviation

of β̂ui .

In the following, we are going to estimate the variance of β̂ui , and solve for M that minimize

this variance. Assuming that (I −M Σ̂XX)(β̂(λ) − β) is negligible, by (3.3), the variance of β̂ui is

determined by that of m>i (Σ̂XY − Σ̂XXβ), where mi is the i-th column of M . Let ui = (0,m>i )>

and v0 = (1,−β>)> ∈ Rd, then one has

m>i (Σ̂XY − Σ̂XXβ) = uiΣ̂v
>
0 .

It will be shown in Lemma 1 in Section 6 that the asymptotic variance of
√
nuiΣ̂v

>
0 is

π2σ2
g1(ui)

:= π2Var(g1(Z;ui)), (3.5)

where g1(Z;ui) = E[g(Z,Z ′;ui)|Z], and g(Z,Z ′;ui) is defined as

g(Z,Z ′;ui) = sgn(Z −Z ′)>(uiv
>
0 ◦ cos(

π

2
T ))sgn(Z −Z ′)

for Z,Z ′
i.i.d∼ Nd(0,Σ) and ui ∈ Rd.

Therefore, in order to estimate the variance of β̂ui , we need a good estimate of σ2
g1(ui)

. Note

that (3.5) can be further expressed as

σ2
g1(ui)

=Var(g1(Z;ui)) = vec(uiv
>
0 ◦ cos(

π

2
T ))> · ΣhZ · vec(uiv

>
0 ◦ cos(

π

2
T )), (3.6)

where ΣhZ = Var(hZ(Z)) ∈ Rd2×d2 is the covariance matrix of hZ(Z) = E[sgn(Z −Z ′)⊗ sgn(Z −
Z ′)|Z] ∈ Rd2 . Then we estimate ΣhZ by

Σ̂hZ =
1

n

n∑
i=1

(ĥZ(Zi)−
1

n

n∑
i′=1

ĥZ(Zi′))(ĥZ(Zi)−
1

n

n∑
i′=1

ĥZ(Zi′))
>, (3.7)

where ĥZ(Zi) = 1
n−1

∑n
i′ 6=i sgn(Zi −Zi′)⊗ sgn(Zi −Zi′).

Consequently, a good estimate of σ2
g1(ui)

is given by

σ̂2
g1(ui)

= vec(uiv̂
> ◦ cos(

π

2
T̂ ))>Σ̂hZvec(uiv̂

> ◦ cos(
π

2
T̂ )), (3.8)

with v̂ = (1, β̂(λ)>)>, and this determines the estimate of the variance of β̂ui .
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We are ready to present the de-biasing procedure, which controls |M Σ̂XX − Ip×p|∞ and min-

imizes the variance of β̂ui , where the latter is equivalent to minimizing σ̂2
g1(ui)

. To simplify the

notation, we define x(u) : Rd → Rd2 , with x(u) = vec(uv>0 ◦ cos(π2T )), and x̂(u) : Rd → Rd2 , with

x̂(u) = vec(uv̂> ◦ cos(π2 T̂ )). Then (3.5) and (3.8) can be simplified to

σ2
g1(u) = x(u)>ΣhZx(u) and σ̂2

g1(u) = x̂(u)>Σ̂hZ x̂(u). (3.9)

Let K = cos(π2 T̂ ) = (K1, ...,Kd) and ǔ = (u>, ...,u>)> ∈ Rd2 . Denote L = (Id×d, Id×d, ..., Id×d) ∈
Rd×d2 and rewrite ǔ = L>u. Define Ď = diag(v1 diag(K1), ..., vd diag(Kd)) and set

MΣ = LĎΣ̂hZ ĎL
>. (3.10)

Then σ̂2
g1(u) can be rewritten as a convex function of u

σ̂2
g1(u) = x̂(u)>Σ̂hZ x̂(u) = ǔ>ĎΣ̂hZ Ďǔ = u>LĎΣ̂hZ ĎL

>u = u>MΣu. (3.11)

Algorithm 2 De-biased estimator of β

Input: Observed pairs (Y1,X
>
1 ), ..., (Yn,X

>
n ), parameters a ∈ (0, 1

12 ), b > 0, µ > 0, λ > 0.

Output: De-biased estimator β̂u.

1: Construct Kendall’s tau based covariance estimators Σ̂XY and Σ̂XX , and calculate MΣ by (3.10).

2: Let

β̂(λ) = min
β∈Rp

{1

2
(β>Σ̂XXβ − 2Σ̂Y Xβ) + λ||β||1}. (3.12)

3: for i = 1, 2, . . . , p do

4: Let ui be a solution of

minimize
u∈Rp

u>MΣu

subject to ||Σ̂XXu[2 : d]− e(p)
i ||∞ ≤ µ

e
(d)>
1 u = 0

b−1n−a ≤ ||u||2 ≤ ||u||1 ≤ bna/2

(3.13)

5: Set M = (u1[2 : d], ...,up[2 : d]). If any of the above problems is not feasible, then set M = Ip×p.

6: Define β̂u as

β̂u = β̂(λ) +M(Σ̂XY − Σ̂XX β̂(λ)). (3.14)

Note that (3.13) is a convex program and can be solved efficiently. Since σ̂2
g1(u) is convex with

respect to u, and the constraints of (3.13) construct a convex set of u, these two facts together

imply that (3.13) is a convex program. Note that the first constraint in (3.13) is to make sure that

M is a good approximation of Σ̂−1
XX , and the third constraint is for the convenience of theoretical

analysis, in practice b can be chosen sufficiently large so that it does not affect the numerical

performance of the algorithm.

The following theorem states the distributional property of β̂u that will serve as the basis for

the construction of statistical inference procedures.
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Theorem 3. Suppose for some constants Mi > 0, i = 1, 2, 3, that 1
M1
≤ λmin(Σ) ≤ λmax(Σ) ≤M1,

||Σ−1||1 < M2, and λmin(ΣhZ ) > M3. Suppose s = o(
√
n

log p) and µ = a
√

log p
n , and λ = c

√
log p
n in

Algorithm 2 are chosen with a > 4M2 and c > 2M2
1 . Then for any fixed 1 ≤ i ≤ p and for all

x ∈ R,

lim
n→∞

sup
β∈Rp−1,||β||0≤s

∣∣∣∣∣∣P
 √

n(β̂ui − βi)

π
√
x̂(ui)>Σ̂hZ x̂(ui)

≤ x

− Φ(x)

∣∣∣∣∣∣ = 0. (3.15)

Theorem 3 shows that the estimator β̂u possesses the similar distributional property as that

of the de-biased Lasso estimator in [14], although the observed data here have a linear relationship

only after unknown transformations.

The asymptotic normality result given in (3.15) can be used to construct confidence intervals

and hypothesis tests for any given coordinate βi. Let zα/2 = Φ−1(1− α/2).

Corollary 1. Suppose the conditions of Theorem 3 hold. Then for any given 1 ≤ i ≤ p,

CIi =

βui − zα/2π
√
x̂(ui)>Σ̂hZ x̂(ui)

n
, βui + zα/2π

√
x̂(ui)>Σ̂hZ x̂(ui)

n

 (3.16)

is an asymptotically (1− α) level confidence interval for βi.

It is of practical interest to test whether a given covariate Xi is related to the response Y . In

the context of the Gaussian copula regression model, this can be formulated as testing an individual

null hypothesis H0,i : βi = 0 versus the alternative H1,i : βi 6= 0. To test H0,i against H1,i at the

nominal level α for some 0 < α < 1, based on the asymptotic normality result given in Theorem 3,

we introduce the test

Ψ̂i = I

 √
n|β̂ui |

π
√
x̂(ui)>Σ̂hZ x̂(ui)

> zα/2

 . (3.17)

Let Ψi be any test for testing H0,i : βi = 0 versus H1,i : βi 6= 0. Define αn(Ψi) be the size of the

test over the collection of s-sparse vectors, i.e.,

αn(Ψi) = sup{Pβ(Ψi = 1) : β ∈ Rp, ||β||0 ≤ s,βi = 0}.

For the power of the test, we consider the collection of s-sparse vectors with |βi| ≥ γ for some given

γ > 0 and define the power

ζn(Ψi; γ) = inf{Pβ(Ψi = 1) : β ∈ Rp, ||β||0 ≤ s, |βi| ≥ γ}.

Corollary 2. Suppose the conditions of Theorem 3 hold. The test Ψ̂i defined in (3.17) satisfies

lim
n→∞

αn(Ψ̂i) ≤ α and lim inf
n→∞

ζn(Ψ̂i; γ)

ζ∗n(γ)
≥ 1, (3.18)
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where ζ∗n(γ) := G(α,
√
nγ

πσg1(u)
) with the function G(·, ·) defined by

G(α, u) = 2− Φ(zα/2 + u)− Φ(zα/2 − u).

for 0 < α < 1 and u ∈ R+.

Consider the problem of testing an individual null hypothesis H0,i : βi = 0 versus the alternative

H1,i : βi 6= 0 under the linear model

Ỹi = X̃i
>
β + εi, i = 1, 2, ..., n, (3.19)

with X̃i
i.i.d∼ N(0,ΣXX) and εi ∼ N(0, σ2). As shown in [13], for any test Ψi, if αn(Ψi) ≤ α, then

lim sup
n→∞

ζn(Ψi; γ) ≤ G(α,

√
nγ

σd
),

where

σd =
σ√

σii − Σi,SΣ−1
S,SΣS,i

.

Hence, our test Ψ̂i has nearly optimal power in the following sense: it has power at least as large

as the power of any other test Ψi based on a sample of size n
Cd

, where the factor Cd =
πσg1(ui)

σd
.

The results show that the proposed confidence intervals and hypothesis tests share the similar

properties as those optimal procedures for the high-dimensional linear regression. They are more

flexible in the sense that they are adaptive to unknown monotone marginal transformations.

4. Numerical Performance

The proposed estimation and inference procedures are easy to implement. We investigate in

this section the numerical performance of the adaptive estimator (2.7), denoted by β̂Copula(Y , X)

in this section, as well as the confidence procedure through simulations. The procedures are also

applied to the analysis of the Communities and Crime Unnormalized Data from the UCI Machine

Learning Repository.

4.1 Simulation Results for Estimation Accuracy

We first consider the performance of the the proposed estimator β̂Copula(Y , X) by comparing

its estimation `2 loss and model selection error with those of the oracle Lasso estimator β̂Lasso(Ỹ , X̃)

that is performed on the transformed data (Ỹ , X̃), in which case we assume the marginal trans-

formations fi are known and Ỹ is linear in X̃. Then we compare β̂Copula(Y , X) with the regular

Lasso estimator β̂Lasso(Y , X) and the elastic-net estimator β̂enet(Y , X), proposed in [50], that are

performed on (Y , X) directly.

The detailed simulation settings are as follows. Eight different combinations of the sample size,

dimension, and sparsity with (n, p, s)=(100, 500, 10), (100, 500, 20), (100, 1000, 10), (100, 1000,

20), (200, 500, 10), (200, 500, 20), (200, 1000, 10) and (200, 1000, 20), are analyzed. In each case,

we consider three different models for the covariance matrix Σ:



HIGH-DIMENSIONAL GAUSSIAN COPULA REGRESSION

Model 1. Random Gaussian matrix: We begin with a random Gaussian matrixA = (ai,j)1≤i,j≤d

where d = p+1 and ai,j
i.i.d.∼ N(0, 1), and then make the last p−s columns of A orthogonal to

the first column of A via the Gram-Schmidt process, and obtain matrix B. The covariance

matrix Σ is defined as Σ = D−1/2(B>B + I)−1D−1/2, where D = diag((B>B + I)−1).

Model 2. AR(1) matrix: We first generate a random orthogonal matrix A = (ai,j)1≤i,j≤d where

d = p+ 1. We then create a new d× d matrix B with the k-th column Bk =
√

1− ρ2Ak +

ρAk−1, for k = 2, 3, ..., d. The first column of B is the projection of A1 onto the orthogonal

complement of the span of the last p − s columns of B. Define the covariance matrix

Σ = D−1/2(B>B)−1D−1/2, where D = diag((B>B)−1). From this procedure the resulting

covariance matrix ΣXX is the first-order autoregressive (AR(1)) matrix with autocorrelation

ρ. In the simulation we set ρ = 0.5.

Model 3. Compound symmetric matrix: In this case we start with a random orthogonal

matrix A = (ai,j)1≤i,j≤d where d = p+1, and create a new d×d matrix B with k-th column

Bk =
√

1− ρ2Ak + ρA1 for k = 2, 3, ..., d. We then generate a new random vector Ã1 ∼
Nd(0, Id) and the first column of B is the projection of Ã1 onto the orthogonal complement of

the span of the last p−s columns of B. Let the covariance matrix Σ = D−1/2(B>B)−1D−1/2,

where D = diag((B>B)−1). From this procedure the resulting covariance matrix ΣXX is

the compound symmetric matrix with correlation ρ. In the simulation we set ρ = 0.5.

After generating Σ from the above models, we then obtain n samples (Ỹi, X̃
>
i )

i.i.d.∼ Nd(0,Σ).

For each choice of (n, p, s), we consider two settings. In the first setting, we set Yi = exp(Ỹi),

X1j = Φ(X̃ij)
5, Xij = 2X̃5

ij + 1 for j = 2, .., 10, Xij = − exp(X̃ij) for j = 11, 12, .., 30, except for

Xi,21 = Φ(X̃i,21), bounded by 0 and 1, while in the second setting we constrain Yi ∈ [0, 1] and set

Yi = Φ(Ỹi) with Xij ’s transformed the same way as in the first setting.

In each setting, the simulation is repeated Nsim = 500 times and the tuning parameter λ is

selected via 5-fold cross validation. The accuracy of the estimators is measured by the average `2

loss

eest =
1

Nsim

Nsim∑
i=1

||β̂ − β||2,

and the model selection error

eselection =
1

Nsim

Nsim∑
i=1

1

p

p∑
j=1

I
(
I(β̂j = 0) 6= I(βj = 0)

) .

The simulation results under the first model for the three different estimates β̂Copula(Y , X), β̂Lasso(Ỹ , X̃)

and β̂Lasso(Y , X) are summarized in Table 4.1. Results under the second and third models are given

in the Supplement [5].

Table 4.1 shows that the performance of the proposed estimator β̂Copula(Y , X), which does

not require the knowledge of the marginal transformations fi, is as good as the oracle estimator
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Model 1

SNR β̂Copula(Y , X) β̂Lasso(Ỹ , X̃) β̂Lasso(Y , X) β̂enet(Y , X)

(n, p, s) eselection eest eselection eest eselection eest eselection eest

(100, 500, 10)1 129.1 0.0033 0.0526 0.0115 0.0351 0.0174 0.8835 0.0157 0.7954

(100, 500, 10)2 129.1 0.0033 0.0526 0.0115 0.0351 0.0152 2.0468 0.0155 0.9489

(100, 500, 20)1 81.6 0.0096 0.0840 0.0138 0.0562 0.0149 0.5452 0.0197 0.6647

(100, 500, 20)2 81.6 0.0096 0.0840 0.0138 0.0562 0.0184 0.4282 0.0142 0.5168

(100, 1000, 10)1 246.7 0.0018 0.0406 0.0090 0.0276 0.0147 1.1532 0.0129 1.0428

(100, 1000, 10)2 246.7 0.0018 0.0406 0.0090 0.0276 0.0126 0.6369 0.0125 0.4932

(100, 1000, 20)1 148.0 0.0052 0.0740 0.0081 0.0379 0.0276 0.8315 0.0142 0.8147

(100, 1000, 20)2 148.0 0.0052 0.0740 0.0081 0.0379 0.0270 2.8695 0.0820 1.6456

(200, 500, 10)1 125.3 0.0030 0.0484 0.0111 0.0251 0.0292 5.1155 0.0162 2.0187

(200, 500, 10)2 125.3 0.0030 0.0484 0.0111 0.0251 0.0308 0.4595 0.0740 0.6657

(200, 500, 20)1 88.8 0.0092 0.0706 0.0132 0.0485 0.0274 3.4115 0.0184 2.7923

(200, 500, 20)2 88.8 0.0092 0.0706 0.0132 0.0485 0.0234 0.4748 0.0842 0.6532

(200, 1000, 10)1 234.5 0.0017 0.0605 0.0092 0.0326 0.0267 4.0319 0.0128 5.6237

(200, 1000, 10)2 234.5 0.0017 0.0605 0.0092 0.0326 0.0260 0.5675 0.0159 0.5145

(200, 1000, 20)1 156.8 0.0044 0.0648 0.0085 0.0258 0.0438 0.6622 0.0141 0.8360

(200, 1000, 20)2 156.8 0.0044 0.0648 0.0085 0.0258 0.0610 0.5130 0.0224 0.4036

Table 4.1: Simulation results for the synthetic data described under Model 1 in Section 4. The results

corresponds to model selection error eselection and estimation error eest for β̂Copula(Y , X), β̂Lasso(Ỹ , X̃),

β̂Lasso(Y , X) and β̂enet(Y , X). The subscript i (i = 1, 2) in (n, p, s)i denotes the i-th setting of transforma-

tions

β̂Lasso(Ỹ , X̃), which assumes the full knowledge of the transformations fi. As expected, applying

the Lasso and elastic-net estimator directly to the observed data leads to severely problematic

model selection and parameter estimation.

4.2 Simulation Results for Statistical Inference

We now consider the performance of the proposed confidence interval CIi for the i-th coordinate

βi given in (3.16) based on the observed data (Yi,X
>
i ) in terms of the coverage probability and

expected length. In this section we denote the de-biased estimator in (3.14) as β̂uCopula(Y , X).

The confidence interval is compared with the confidence interval proposed in [14] based on the

transformed data (Yi,X
>
i ) with de-biased estimator β̂uLasso(Y , X), and that of β̂uLasso(Ỹ , X̃) on the

original data (Ỹi, X̃
>
i ) while assuming the marginal transformations fi are known. In all simulations

we set the significance level α = 0.05, and consider eight cases: (n, p, s)=((100, 500, 10), (100, 500,

20), (100, 1000, 10), (100, 1000, 20), (200, 500, 10), (200, 500, 20), (200, 1000, 10) and (200, 1000,

20).

In each setting, the simulation is repeated 500 times. The tuning parameter λ are selected

via 5-fold cross validation, and µ, a, b in Algorithm 2 are manually set to be 1
2

√
log p
n , 1

13 and 10
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respectively. We discover that the result is robust with respect to the choice of µ, a and b. Recall

that the β is constructed with first s elements nonzero, we construct the 95% confidence intervals

for the nonzero (active) coefficient β1. The simulation results under Model 1 are summarized in

Table 4.2, and the results under Model 2 and 3 are given in Supplement [5].

Table 4.2 summarizes the empirical coverage probability of the nominal 95% confidence inter-

vals and the corresponding average lengths of β1. The results show that the empirical coverage

probability of β̂uCopula(Y , X) is very close to the desired confidence level, while it is problematic to

construct confidence intervals based on β̂uLasso(Y , X). The desired confidence level for the confi-

dence intervals of an active coefficient is always small when we apply the de-biased Lasso estimator

directly to the data. The confidence interval constructed by β̂uCopula(Y , X) performs as good as that

constructed by β̂uLasso(Ỹ , X̃), which needs additional information of the transformations. In par-

ticular, our method tends to have stable confidence interval lengths, while the length of confidence

intervals constructed by β̂uLasso(Y , X) varies a lot according to the scale of data.

Model 1

CI(β̂u
Copula(Y , X)) CI(β̂u

Lasso(Ỹ , X̃)) CI(β̂u
Lasso(Y , X))

(n, p, s) l(β1) C(β1) l(β1) C(β1) l(β1) C(β1)

(100, 500, 10)1 0.0223 0.956 0.0380 0.958 0.9398 0.332

(100, 500, 10)2 0.0223 0.956 0.0380 0.958 0.1700 0.428

(100, 500, 20)1 0.0241 0.948 0.0562 0.962 1.1152 0.462

(100, 500, 20)2 0.0241 0.948 0.0562 0.962 0.1331 0.574

(100, 1000, 10)1 0.0203 0.958 0.0275 0.956 0.8968 0.296

(100, 1000, 10)2 0.0203 0.958 0.0275 0.956 0.1227 0.092

(100, 1000, 20)1 0.0224 0.962 0.0378 0.962 0.9434 0.782

(100, 1000, 20)2 0.0224 0.962 0.0378 0.962 0.1297 0.294

(200, 500, 10)1 0.0138 0.946 0.0251 0.946 0.7472 0.230

(200, 500, 10)2 0.0138 0.946 0.0251 0.946 0.1301 0.442

(200, 500, 20)1 0.0154 0.952 0.0395 0.958 0.9163 0.068

(200, 500, 20)2 0.0154 0.952 0.0395 0.958 0.1081 0.294

(200, 1000, 10)1 0.0121 0.958 0.0326 0.956 0.7993 0.188

(200, 1000, 10)2 0.0121 0.958 0.0326 0.956 0.1164 0.098

(200, 1000, 20)1 0.0140 0.962 0.0257 0.952 0.8500 0.292

(200, 1000, 20)2 0.0140 0.962 0.0257 0.952 0.1071 0.104

Table 4.2: Simulation results for the synthetic data under Model 1 described in Section 4. The results

corresponds to 95% confidence intervals. C(β1) and l(β1) respectively stand for coverage probability and

average lengths of the confidence interval for β1. The subscript i (i = 1, 2) in (n, p, s)i denotes the i-th

setting of transformations.

4.3 Analysis of Communities and Crime Unnormalized Data

We now apply our estimation and inference procedures on a real data example. The Com-

munities and Crime Unnormalized Data from the UCI Machine Learning Repository combines
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socio-economic data from the 1990 Census, law enforcement data from the 1990 Law Enforcement

Management and Administration Stats survey, and crime data from the 1995 FBI UCR. This

dataset has been analyzed in [34, 3]. In this example, we will focus on explaining the response

variable, percentage of women who are divorced, using various community characteristics, such as

percentage of population that is African American and percent of people in owner occupied house-

holds, as well as law enforcement and crime information, such as percent of officers assigned to

drug units. In order to further explore the high-dimensional setting, we use the state-level data of

Pennsylvania, whose number of predictors is at least as large as the number of observations.

After removing the variables with NA’s and two variables directly related to the response (total

and male divorce percentages), the data has 101 observations and 114 predictors. To evaluate the

performance of the proposed methods, we randomly split the data into a training set with 90

observations, and a test set with 11 observations. We perform such splits 100 times. Each time the

proposed method and the regular Lasso are applied to the training set and the Root Mean Square

Errors (RMSE) of the prediction (2.12) are calculated on the test set. The tuning parameters for

both methods are selected via 5-fold cross validation over a grid λ ∈ {k ·
√

log p
n }k=1,2,...,20. The

average number of variables selected and RMSE are summarized in Table 4.3. The average RMSE

for our method is 1.66. In comparison, the regular Lasso yields an average RMSE 2.46.

RMSE Number of variable selected

Copula 1.66 (0.66) 4.61 (0.72)

LASSO 2.46 (0.43) 8.01 (0.70)

Table 4.3: Simulation results for the divorce percentage of women in the Pennsylvania Communities and

Crime Data.

In addition, we use the proposed method for model selection. Applying the procedure to the

whole Communities and Crime Unnormalized Data leads to four selected variables to explain the

percentage of women who are divorced: PctFam2Par (percentage of families that are headed by

two parents); PctKidsBornNeverMar (percentage of kids born to never married); PctPersOwnOccup

(percent of people in owner occupied households) and PctSameHouse85 (percent of people living

in the same house as in 1985). This selection procedure correctly exclude all the law enforcement

and crime information and irrelevant features in community characteristics, such as the percentage

of population that is African American and percentage of people 16 and over who are employed in

manufacturing. In addition, the variables selected are all about family/house, which are directly

related to divorce percentage.

5. Discussion

The Gaussian copula regression model is more flexible than the conventional linear model as it

allows for unknown marginal monotonic transformations. The present paper proposes procedures

for estimation and statistical inference that are adaptive to the unknown transformations. This
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is a significant advantage over other methods such as those for the additive regression model and

single index model. An important observation is that the objective function for the penalized least

squares in classical high-dimensional regression only requires the sample covariances among X and

Y , which can be replaced by a Kendall’s tau based estimator under the Gaussian copula regression

model.

This idea can also be generalized to the high-dimensional sparse multivariate regression. For

example, under the linear model, the regularized estimator proposed in [37] and the block-structured

regularized estimator introduced in [31] only require the knowledge of X>X and X>Y . These can

be replaced by the Kendall’s tau based estimator Σ̂XX and Σ̂XY under the Gaussian copula model.

Analogous analysis can be carried out to establish estimation consistency and inference results.

Similar ideas can be applied to other related models, such as the additive models in a Reproduc-

ing Kernel Hilbert Space (RKHS). In RKHS, the fitting procedure only requires the inner products

among data points, and the proposed Algorithm 2 can be modified, via dual representation, for the

construction of confidence intervals for additive models in RKHS. In addition, it is also possible

to extend the model to discrete data and mixed data, by using the similar idea in [8]. These are

interesting topics for future work.

Rank-based correlation matrix estimation has been studied in a number of settings, including

the nonparanormal graphical model [18, 44, 1], high dimensional structured covariance/precision

matrix estimation [44, 19, 18], and sparse PCA model [11, 27]. In the present paper, we only

consider Kendall’s tau-based estimator. Alternatively, one may use Spearman’s rho. The results

are similar and the same technique can be applied.

6. Proofs

We prove the main results in this section. We begin by collecting a few technical lemmas that

will be used in the proofs of the main results. These lemmas are proved at the end of this section.

6.1 Technical Tools

The first lemma captures the asymptotics of certain U -statistics, which will be used to establish

the asymptotic results for the proposed estimator.

Lemma 1. For i = 1, 2, ..., p, let Hi = ui[2 : d]>(Σ̂XY − Σ̂XXβ) = u>i Σ̂v0, where v0 = (1,−β>)>,

then the asymptotic variance of
√
nHi is π2σ2

g1(ui)
, and moreover,

lim
n→∞

sup
x∈R
|P (

√
n(Hi − E[Hi])

πσg1(ui)
≤ x)− Φ(x)| = 0,

where σg1(ui) is defined in (3.6).

Lemmas 2, 3, 4, and 5 control the vanishing terms in the construction of confidence intervals

for each coordinate βi, and all of these four lemmas are stated under the conditions of Theorem 3.

We use u to denote ui the solution to (3.13) for any fixed i.
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Lemma 2. If we take µ = C
√

log p
n and a, b > 0 in Algorithm 2 for large C, then with probability

at least 1− 2p−2, the optimization problem (3.13) is feasible when n is large, that is,

|Σ−1
XXΣ̂XX − I|∞ ≤ µ, and b−1n−a ≤ ||u||2 ≤ ||u||1 ≤ bna/2.

Lemma 3. Let ΣhZ = Var(hZ(Z)) ∈ Rd2×d2 be the covariance matrix of hZ(Z) = E[sgn(Z −
Z ′)⊗ sgn(Z −Z ′)|Z], with ⊗ being the Kronecker product, and its corresponding estimator Σ̂hZ is

Σ̂hZ = 1
n

∑
i(ĥZ(Zi)− 1

n

∑
i′ ĥZ(Zi′))(ĥZ(Zi)− 1

n

∑
i′ ĥZ(Zi′))

>, with ĥZ(Zi) = 1
n−1

∑
i′ 6=i sgn(Zi−

Zi′)⊗ sgn(Zi −Zi′). Then with probability at least 1− 5p−2,

|x(u)>(Σ̂hZ − ΣhZ )x(u)| .
√
s log p

n1−2a
.

Lemma 4. Let x(u) = vec(uv>0 ◦ cos(π2T )) and x̂(u) = vec(uv̂> ◦ cos(π2 T̂ )), then with probability

at least 1− p−2,

||x(u)− x̂(u)||1 . na
√
s log p

n
.

Lemma 5. Let σg1(u) be defined as in (3.6) with u is the solution to (3.13) with any fixed i, then

σ2
g1(u) & n−2a.

In addition, we need a few technical results adapted from several papers [1, 12, 43, 49]. Lemma

6 below shows that the sign vector of a Gaussian random vector is sub-Gaussian.

Lemma 6. (An adapted version from [1]) If Z ∼ Nd(0,Σ), then sgn(Z) = (sgn(Z1), ..., sgn(Zd))
>

is a random vector with subgaussian constant less than π · κ(Σ), that is, for any w ∈ Sd−1,

E[et·w
>sgn(Z)] ≤ et2π·κ(Σ).

The next lemma characterizes the convergence rates of the Kendall’s tau based correlation

matrix estimator Σ̂ under different norms.

Lemma 7. (An adapted version from [12] and [43]) If Σ̂ is an estimator of Σ based on Kendall’s

tau, then

1. P (|Σ̂− Σ|∞ .
√

log p
n ) ≥ 1− 2p−2;

2. If κ(Σ) ≤M for some M > 0, then

P (||Σ̂− Σ||2 . max{
√
p+ t

n
,
p+ t

n
}) ≥ 1− e−t.

3. If κs(Σ) := sup{λmax(ΣS,S)/λmin(ΣS,S) : S ⊂ [n], |S| = s} ≤Ms for some Ms > 0, then

P (||Σ̂− Σ||2,s .
√
s log p

n
) ≥ 1− p−s.
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The following lemma provides a tight, pointwise deviation inequality of empirical cumulative

distribution function, which will be used to establish the consistency of the proposed predictor.

Lemma 8. (Adapted from [49]) Let f̂i be defined as (2.11) for i ∈ {1, , ..., p}, then for any ε ∈
(0,
√

2π], and γ ∈ (0, 2), and t ∈ R such that |fi(t)| ≤
√
γ log n, we have

P (|f̂i(t)− fi(t)| ≥ ε) ≤ 2 exp(− n1−γ/2

12π
√

2π
√
γ log n

ε2)− 3 log(8πnγ log n) exp(− 1

64
√

2π

n1−γ/2
√

log n
),

where Fi(t) = Φ(fi(t)).

Lemma 9. (Adapted from [23]) Let f̂0 be defined as (2.10) , then for any γ ∈ (0, 1), we define

In := [f−1
0 (−

√
2γ log n), f−1

0 (
√

2γ log n)],

then we have

P (sup
t∈In
|f̂i(t)− fi(t)| ≥ ε) ≤ 2 exp(− n1−γ

32π2γ log n
ε2) + exp(− 1

16πγ

n1−γ

log n
).

6.2 Proof of Theorem 1

This proof relies on the Corollary 1 in [28] and Theorem 3.4 in [17]:

Lemma 10. (An adapted version of Corollary 1 in [28] ) If the loss function

L(β) = β>Σ̂XXβ − 2Σ̂Y Xβ + 1

satisfies restricted strong convexity (RSC), that is

δL(∆,β) := L(β + ∆)− L(β)− 〈∇L(β),∆〉 ≥ κL||∆||22, (6.1)

for some κL > 0 and ∆ ∈ C(s) := {θ ∈ Rp : ||θSc ||1 ≤ 3||θS ||1, |S| ≤ s}.
Then for λ ≥ 2||∇L(β)||∞, any optimal solution β̂(λ) to the convex program (2.7) satisfies the

bound

||β̂(λ)− β||2 .
√
sλ, ||β̂(λ)− β||1 . sλ.

Lemma 11. (An adapted version of Theorem 3.4 in [17]) If we further assume |ΣXSXSc |∞ ≤
1 − α for some α > 0 and S = supp(β) and mini∈S |βi| ≥ 8

γ1
(1 + 4(2−α)

α )M
√

s log p
n , then for

λ = 8(2−α)
α M

√
s log p
n , with probability at least 1− 2p−1,

sgn(β) = sgn(β̂(λ)).

Therefore, to prove Theorem 1, it is sufficient to verify (6.1) and calculate ||∇L(β)||∞. We

divide these into two steps.

Step 1
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By the definition of δL(∆,β),

δL(∆,β) =L(β + ∆)− L(β)− 〈∇L(β),∆〉

=
1

2
(β + ∆)>Σ̂XX(β + ∆)− Σ̂Y X(β + ∆)− 1

2
β>Σ̂XXβ

+ Σ̂Y Xβ −∆>(Σ̂XXβ − Σ̂XY )

=
1

2
∆>Σ̂XX∆.

Before proving (6.1), we state the adapted version of reduction principle from [38].

Lemma 12. (The adapted version of Theorem 10 in [38]) Let δ ∈ (0, 1
5) and k0 = 3. Then there

exists a constant C0 that is not dependent with n, p, s, such that s̃ = C0s and let E(s̃) = {w ∈ Rp :

||w||0 = s̃} for s̃ < p and E = Rp otherwise. If Σ̂XX satisfies

∀w ∈ E(s̃) (1− δ)||w||22 ≤ w>Σ̂XXw ≤ (1 + δ)||w||22. (6.2)

Then for any w ∈ C(s),

(1− 5δ)||w||22 ≤ w>Σ̂XXw ≤ (1 + 3δ)||w||22 (6.3)

The above claim implies that it is sufficient to show, for ∆ ∈ E(s̃) = {w ∈ Rp : ||w||0 = s̃}
and some δ ∈ (0, 1/5),

|∆>Σ̂XX∆| ≥ (1− δ)||∆||2.

Then Lemma 7 together with the fact that the spectral norm of a submatrix is bounded by

the spectral norm of the whole matrix, for ∆ ∈ {w ∈ Rp : ||w||0 = s̃}, with probability at least

1− p−2, we have

|∆>Σ̂XX∆| =|∆>ΣXX∆ + ∆>(Σ̂XX − ΣXX)∆|

≥|∆>ΣXX∆| − |∆>(Σ̂XX − ΣXX)∆|

≥|∆>ΣXX∆| − ||Σ̂XX − ΣXX ||2,s̃ · ||∆||22

≥|∆>ΣXX∆| −
√
C0s log p

n
||∆||22

≥γ1||∆||22 −
√
C0s log p

n
||∆||22.

Therefore (6.1) holds when s log p/n→ 0.
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Step 2:

||∇L(β)||∞ = ||Σ̂XXβ − Σ̂XY ||∞ = ||Σ̂XXΣ−1
XXΣXY − Σ̂XY ||∞

=||(Σ̂XX − ΣXX)Σ−1
XXΣXY + ΣXY − Σ̂XY ||∞

=||(Σ̂XX − ΣXX)β + ΣXY − Σ̂XY ||∞
≤||(Σ̂− Σ)(1,−β>)>||∞ ≤ |Σ̂− Σ|∞||(1,−β>)>||1

≤
√

log p

n
· (1 + ||β||1) ≤

√
log p

n
· (1 +

√
s||β||2)

=

√
log p

n
· (1 +

√
s||Σ−1

XXΣXY ||2) ≤
√

log p

n
· (1 +

√
s||Σ−1

XX ||2||ΣXY ||2)

≤
√
s log p

n
M.

Therefore if we choose λ such that λ > 2M
√

s log p
n , then we have λn ≥ 2||∇L(β)||∞. Then it

follows from Theorem 10 that, when s log p/n→ 0, with probability at least 1− 2p−2,

||β̂(λ)− β||2 .
√
sλ .

√
s log p

n

||β̂(λ)− β||1 . sλ . s

√
log p

n

sgn(β) = sgn(β̂(λ)).

6.3 Proof of Theorem 2

According to Lemma 8 and by the union bound

P ( max
i∈{1,2,...,p}

|f̂i(t)− fi(t)| ≥ ε) ≤2 exp(log d− n1−γ/2

12π
√

2π
√
γ log n

ε2)

− 3 log(8πnγ log n) exp(log d− 1

64
√

2π

n√
nγ log n

).

Therefore by taking ε =
√

24π
√

2π
√
γ logn log d

n1−γ/2 , then for t ∈ R such that |fi(t)| ≤
√
γ log n, with

probability at least 1− d−1 − n−1,

max
i∈[0,1,2,...,p]

|f̂i(t)− fi(t)| .
(γ log n)1/4

√
log d

n1/2−γ/4 . (6.4)

Since maxi=1,...,p Fi(x
∗
i ) ∈ (δ∗, 1− δ∗), there exists some constant M∗ > 0, such that

max
i=1,...,p

fi(x
∗
i ) = max

i=1,...,p
Φ−1(Fi(x

∗
i )) < M∗.

Therefore, if we let γ = M2
∗

logn , we have maxi=1,...,p fi(x
∗
i ) ≤

√
γ log n. Then by (6.4), with probability

at least 1− d−1 − n−1,

max
i∈{1,2,...,p}

|f̂i(x∗i )− fi(x∗i )| .
√

log d

n
. (6.5)
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In addition, use the fact in Theorem 1, with probability at least 1− d−1 − n−1,

|
p∑
i=1

f̂i(x
∗
i )β̂(λ)i − µ∗| = |

p∑
i=1

f̂i(x
∗
i )β̂(λ)i −

p∑
i=1

fi(x
∗
i )β(λ)i|

≤|
p∑
i=1

f̂i(x
∗
i )β̂(λ)i −

p∑
i=1

fi(x
∗
i )β̂(λ)i|+ |

p∑
i=1

fi(x
∗
i )β̂(λ)i −

p∑
i=1

fi(x
∗
i )β(λ)i|

.(||β||1 + s

√
log p

n
) · max

i∈{1,2,...,p}
|f̂i(t)− fi(t)|+ ||β̂(λ)− β||1

≤||β̂(λ)− β||1 + (s||β||2 + s

√
log p

n
) · max

i∈{1,2,...,p}
|f̂i(t)− fi(t)|

.s

√
log d

n
,

where the last inequality results from the fact β = Σ−1
XXΣXY , and then

||β||2 = ||Σ−1
XXΣXY ||2 ≤

λmax(Σ)

λmin(Σ)
≤M.

This implies with probability at least 1− d−1 − n−1,

p∑
i=1

f̂i(x
∗
i )β̂(λ)i ∈ f−1

0 (Br(f0(µ∗))). (6.6)

Further, use Lemma 9 and apply the similar derivation before, we obtain that, with probability

at least 1− d−1,

|f̂0(f−1
0 (

p∑
i=1

f̂i(x
∗
i )β̂(λ)i))− f0(f−1

0 (

p∑
i=1

f̂i(x
∗
i )β̂(λ)i))| .

√
log d

n
. (6.7)

Combining (6.5),(6.6) and (6.7), with probability at least 1− 2/n− 2/d− 1/ log n,

|µ∗ − µ̂∗| =|f̂−1
0 (

p∑
i=1

f̂i(x
∗
i )β̂(λ)i)− f−1

0 (

p∑
i=1

fi(x
∗
i )β(λ)i)|

≤|f̂−1
0 (

p∑
i=1

f̂i(x
∗
i )β̂(λ)i)− f−1

0 (

p∑
i=1

f̂i(x
∗
i )β̂(λ)i)|+ |f−1

0 (

p∑
i=1

f̂i(x
∗
i )β̂(λ)i)− f−1

0 (

p∑
i=1

fi(x
∗
i )β(λ)i)|

≤|f̂−1
0 (

p∑
i=1

f̂i(x
∗
i )β̂(λ)i)− f−1

0 (

p∑
i=1

f̂i(x
∗
i )β̂(λ)i)|+

1

c2
|
p∑
i=1

f̂i(x
∗
i )β̂(λ)i −

p∑
i=1

fi(x
∗
i )β(λ)i|

(i)

≤|f̂0(f−1
0 (

p∑
i=1

f̂i(x
∗
i )β̂(λ)i))− f0(f−1

0 (

p∑
i=1

f̂i(x
∗
i )β̂(λ)i)) +

1

c2
|
p∑
i=1

f̂i(x
∗
i )β̂(λ)i −

p∑
i=1

fi(x
∗
i )β(λ)i|

.

√
log d

n
+ s

√
log d

n

.s

√
log d

n
,
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where the inequality (i) is due to the following claim,

Claim: For two increasing functions f1, f2, if |f1(f−1
1 (t)) − f2(f−1

1 (t))| < c1 for some t ∈ R and

c1 > 0, and |f2(v1)− f2(v2)| ≥ c2|v1 − v2| for some c2 > 0, then

|f−1
1 (t)− f−1

2 (t)| ≤ c1

c2
.

In effect, if |f−1
1 (t)− f−1

2 (t)| > c1
c2

, then

|f1(f−1
1 (t))− f2(f−1

1 (t))| =|f1(f−1
1 (t))− f2(f−1

2 (t)) + f2(f−1
2 (t))− f2(f−1

1 (t))|

≥|f2(f−1
2 (t))− f2(f−1

1 (t))| − |f1(f−1
1 (t))− f2(f−1

2 (t))|

>c2 ·
c1

c2
− 0 = c1.

This leads to a contradiction.

6.4 Proof of Theorem 3

Before we proceed, we should determine µ to make the optimization problem (3.13) feasible.

By Lemma 2, it is sufficient to set µ = C
√

log p
n for some sufficient large constant C. According to

(3.14) in Algorithm 2,

β̂u = β̂(λ) +M(Σ̂XY − Σ̂XX β̂(λ))

= β − β + β̂(λ) +M Σ̂XY −M Σ̂XX β̂(λ)

= β + (M Σ̂XY −M Σ̂XXβ) + (M Σ̂XX − I)(β − β̂(λ)).

This implies

√
n(β̂u − β(λ)) =

√
n(M Σ̂XY −M Σ̂XXβ) +

√
n(I −M Σ̂XX)(β − β̂(λ)). (6.8)

We control the two terms on the right hand side separately.

Step 1: ||
√
n(I −M Σ̂XX)(β − β̂(λ))||∞ → 0 with high probability.

By Theorem 1 and Lemma 2, with probability at least 1− 3p−2,

||
√
n(I −M Σ̂XX)(β − β̂(λ))||∞ ≤

√
n||I −M Σ̂XX ||∞||β − β̂(λ)||1

≤
√
nµ · s

√
log p

n
.
√
n

√
log p

n
· s
√

log p

n
.

Therefore, when s log p√
n
→ 0, with probability at least 1− 3p−2,

||
√
n(I −M Σ̂XX)(β − β̂(λ))||∞ → 0.

Step 2: Asymptotics of
√
n(u′iΣ̂XY − u′iΣ̂XXβ).
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With Lemma 3, Lemma 4, and by |ΣhZ |∞ ≤ 1, when s log p√
n
→ 0, we have with probability at

least 1− p−2,

|σ2
g1(ui)

− σ̂2
g1(ui)

| = |x(ui)
>ΣhZx(ui)− x̂(ui)

>Σ̂hZ x̂(ui)|

≤ |(x(ui)− x̂(ui))
>ΣhZ (x(ui)− x̂(ui))|+ |x(ui)

>(Σ̂hZ − ΣhZ )x(ui)|

≤ ||x(ui)− x̂(ui)||21 + |x(ui)
>(Σ̂hZ − ΣhZ )x(ui)|

. n2a s log p

n
+

√
s log p

n1−2a
.

√
s log p

n1−2a

Lemma 5 shows σ2
g1(ui)

& n−2a. It follows |
σ̂2
g1(ui)

σ2
g1(ui)

− 1| .
√

s log p
n1−6a . In addition, due to the

positiveness of σg1 and σ̂g1 , when s log p√
n
→ 0 and a < 1

12 , σ̂g1(ui)/σg1(ui) → 1 in probability. Then

according to Lemma 1, for any ε > 0,

P (

√
n(Hi − E[Hi])

πσ̂g1(ui)
≤ x) =P (

σg1(ui)

σ̂g1(ui)

√
n(Hi − E[Hi])

πσg1(ui)
≤ x)

≤P (

√
n(Hi − E[Hi])

πσg1(ui)
≤ x

1− ε
) + P (

σ̂g1(ui)

σg1(ui)
≥ 1

1− ε
)

→Φ(
x

1− ε
) as n→∞,

where the last limit results from Lemma 1.

Let ε→ 0, we have

lim sup
n→∞

P (

√
n(Hi − E[Hi])

πσ̂g1(ui)
≤ x) ≤ Φ(x).

Similarly, we have

P (

√
n(Hi − E[Hi])

πσ̂g1(ui)
≤ x) ≥ P (

√
n(Hi − E[Hi])

πσg1(ui)
≤ x(1− ε))− P (

σ̂g1(ui)

σg1(ui)
≤ 1− ε)

This leads to

lim inf
n→∞

P (

√
n(Hi − E[Hi])

πσ̂g1(ui)
≤ x) ≥ Φ(x).

In conclusion, when s log p√
n
→ 0, we have

lim
n→∞

sup
x∈R
|P (

√
n(Hi − E[Hi])

πσ̂g1(ui)
≤ x)− Φ(x)| = 0.

7. Supplemental Materials

In supplemental materials, we provide the detailed proofs of auxiliary lemmas.
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