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Privacy-preserving data analysis is a rising challenge in contemporary
statistics, as the privacy guarantees of statistical methods are often achieved at
the expense of accuracy. In this paper, we investigate the tradeoff between sta-
tistical accuracy and privacy in mean estimation and linear regression, under
both the classical low-dimensional and modern high-dimensional settings.
A primary focus is to establish minimax optimality for statistical estimation
with the (ε, δ)-differential privacy constraint. By refining the “tracing adver-
sary” technique for lower bounds in the theoretical computer science litera-
ture, we improve existing minimax lower bound for low-dimensional mean
estimation and establish new lower bounds for high-dimensional mean esti-
mation and linear regression problems. We also design differentially private
algorithms that attain the minimax lower bounds up to logarithmic factors.
In particular, for high-dimensional linear regression, a novel private itera-
tive hard thresholding algorithm is proposed. The numerical performance of
differentially private algorithms is demonstrated by simulation studies and
applications to real data sets.

1. Introduction. With the unprecedented availability of data sets containing sensitive
personal information, there are increasing concerns that statistical analysis of such data sets
may compromise individual privacy. These concerns give rise to statistical methods that pro-
vide privacy guarantees at the cost of statistical accuracy, which then motivates us to study
the optimal tradeoff between privacy and accuracy in fundamental statistical problems such
as mean estimation and linear regression.

A rigorous definition of privacy is a prerequisite for our study. Differential privacy, intro-
duced in [16], is arguably the most widely adopted definition of privacy in statistical data
analysis. The promise of a differentially private algorithm is protection of each individual’s
privacy from an adversary who has access to the algorithm’s output and possibly even the
rest of the data. Differential privacy has gained significant attention in academia [1, 15, 17,
19] and found its way into real world applications developed by Apple [45], Google [23],
Microsoft [11] and the U.S. Census Bureau [2].

A usual approach to developing differentially private algorithms is perturbing the output
of nonprivate algorithms by random noise [16, 17, 34], and naturally the processed output
suffers from some loss of accuracy, which has been extensively observed and studied in the
literature [5, 22, 31, 41, 48]. Our paper intends to characterize quantitatively the tradeoff
between differential privacy guarantees and statistical accuracy, under the statistical minimax
risk framework. Specifically, we study this tradeoff in mean estimation and linear regression
problems with the (ε, δ)-differential privacy constraint, which is formally defined as follows.
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DEFINITION 1 (Differential privacy [16]). A randomized algorithm M : X n → R is
(ε, δ)-differentially private if for every pair of adjacent data sets X,X′ ∈ X n that differ by
one individual datum and every (measurable) S ⊆ R,

P
(
M(X) ∈ S

) ≤ eε · P(
M

(
X′) ∈ S

) + δ,

where the probability measure P is induced by the randomness of M only.

According to the definition, the two parameters ε and δ control the level of privacy against
an adversary who attempts to detect the presence of a certain individual in the sample. The
privacy constraint becomes more stringent as ε, δ tend to 0.

Our contributions and related literature.

Lower bounds based on tracing attacks. We establish the necessary cost of privacy by
proving minimax risk lower bounds with the (ε, δ)-differential privacy constraint. Specifi-
cally, we improve existing minimax risk lower bounds for low-dimensional mean estimation
and prove new lower bounds for linear regression problems as well as high-dimensional1

mean estimation. These lower bound results are based on the tracing adversary argument,
which originated in the theoretical computer science literature [9, 42]. Early works in this
direction were primarily concerned with the accuracy of releasing in-sample quantities, such
as k-way marginals, with differential privacy constraints. Some more recent works [20, 27]
applied the idea to obtain lower bounds for estimating population quantities such as mean
vectors of discrete and Gaussian distributions. Below is a brief summary of our results as
compared to existing results; the details are in Sections 3 and 4.

(1) Improved lower bound for low-dimensional mean estimation. In Section 3.1, we show
that the minimax squared �2 risk of sub-Gaussian mean estimation with (ε, δ)-differential

privacy is at least O(
d2 log(1/δ)

n2ε2 ) (Theorem 3.1), which improves the O( d2

n2ε2 ) minimax lower
bound by [27] and matches the deterministic worst case lower bound by [42]. It is further
shown that our lower bound is optimal as it can be attained by a differentially private algo-
rithm, the noisy sample mean (Algorithm 3.1; Theorem 3.2).

(2) New lower bounds for linear regression and high-dimensional mean estimation. To
the best of our knowledge, our minimax risk lower bounds for high-dimensional mean es-
timation and linear regression in both low and high dimensions are the first of their kind in
the literature. In these three problems, the minimax squared �2 risk lower bounds are of the

order O(
(s logd)2

n2ε2 ) (Theorem 3.3), O( d2

n2ε2 ) (Theorem 4.1) and O(
(s logd)2

n2ε2 ) (Theorem 4.3),
respectively, where n, d and s denote the sample size, the dimension and the sparsity of true
parameter vector.

For context, there exist several lower bound results for related but different problems:
[43] found that the sample complexity lower bound of selecting the top-k largest coordinates
of d-dimensional data depends linearly on k and only logarithmically on d; [5] established
an excess empirical risk lower bound of O( d

nε2 ) for (ε, δ)-differentially private empirical risk
minimization, by explicitly constructing a worst-case strongly convex and Lipschitz objective
function.

1In computer science literature, the term “high-dimension” refers to settings in which the dimension is allowed
to grow with the sample size, and asymptotic dependence on the dimension is of interest. In statistics literature,
including this paper, “high-dimension” typically implies that the dimension is greater than the sample size, so
sparsity assumptions are often introduced to make the problem feasible.
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Differentially private algorithms. We show that the lower bound results are sharp up to
logarithmic factors, by constructing differentially private algorithms with rates of conver-
gence matching the corresponding lower bounds.

In low-dimensional problems, the algorithms (Algorithms 3.1 and 4.1) are similar to ex-
isting algorithms, such as the noisy Gaussian sample mean [28] or noisy gradient descent
[5]. For low-dimensional regression, our contribution is in obtaining an upper bound of the

parameter estimation error E‖β̂private − β true‖2
2 = Õ(

d2 log(1/δ)

n2ε2 ) (Theorem 4.2) for the noisy
gradient descent algorithm, as opposed to the excess risk bound (or its empirical version)

by previous works [4, 5]: E[Ln(β̂private) −Ln(β̂nonprivate)] = O(
√

d log(1/δ)
nε

), where Ln is the
least-square objective function of linear regression.

For high-dimensional sparse estimation, our algorithms, to the best of our knowledge,
are the first results achieving optimal rates of convergence with the (ε, δ)-differential pri-
vacy constraint up to logarithmic factors. The high-dimensional mean estimation algorithm
(Algorithms 3.3) is based on a novel application of the “peeling” algorithm first proposed
by [21] for reporting top-k coordinates of a vector. The high-dimensional linear regression
algorithm (Algorithm 4.2) can be understood as a private version of iterative hard thresh-
olding [7, 25], which roughly speaking, is a projected gradient descent algorithm onto the
set of sparse vectors. The focus of our theoretical analysis is again on the parameter es-

timation error E‖β̂private − β true‖2
2 = Õ(

(s logd)2 log(1/δ)

n2ε2 ) (Theorems 3.4 and 4.4), as op-

posed to excess risk results such as E[Ln(β̂private) − Ln(β true)] = O(
s3 logd

nε
) in [30] and

E[Ln(β̂private) −Ln(β̂nonprivate)] = O(
logd+log(n/δ)

(nε)2/3 ) in [44].

Other related literature. In theoretical computer science, [41] showed that under strong
conditions for privacy parameters, some estimators attain the statistical convergence rates,
and hence privacy can be gained for free. [5, 22, 44] proposed differentially private algorithms
for convex empirical risk minimization, principal component analysis and high-dimensional
sparse regression, and investigated the convergence rates of excess risk.

In the statistics literature, there has also been a series of works that studied differential pri-
vacy in statistical estimation. [48] observed that, locally differentially private schemes [29]
seem to yield slower convergence rates than the optimal minimax rates in general; [14] devel-
oped a framework for deriving statistical minimax rates with the α-local privacy constraint;
[39] proved several minimax optimal rates of convergence under α-local differential pri-
vacy and exhibited a mechanism that is minimax optimal for linear functionals based on ran-
domized response. It has also been observed that α-local privacy is a much stronger notion
of privacy than (ε, δ)-differential privacy that is hardly compatible with high-dimensional
problems [14]. As we shall see in this paper, the cost of (ε, δ)-differential privacy in high-
dimensional statistical estimation is quite different from that of α-local privacy.

Organization of the paper. The paper is organized as follows. Section 2 formally defines
the “cost of privacy” in terms of statistical minimax risk and introduces our technical tools
for upper and lower bounding the cost of privacy in various statistical problems. These tech-
nical tools are then applied to mean estimation and linear regression problems in Sections 3
and 4, respectively. The numerical performance of the mean estimation and linear regression
algorithms are demonstrated by simulated experiments in Section 5 and by real data analysis
in Section 6. Section 7 discusses implications of our results in other statistical estimation
problems with privacy constraints. The proofs of our theoretical results are in Section 8 and
the Supplementary Material [10].
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Notation. For real-valued sequences {an} and {bn}, we write an � bn if an ≤ cbn for
some universal constant c ∈ (0,∞), and an � bn if an ≥ c′bn for some universal constant
c′ ∈ (0,∞). We say an � bn if an � bn and an � bn. In this paper, c,C, c0, c1, c2, . . . , refer
to universal constants, and their specific values may vary from place to place.

For a positive integer k, we write [k] as shorthand for {1, . . . , k}. For a vector v ∈ R
d

and a subset S ⊆ [d], we use vS to denote the restriction of vector v to the index set S. We
write supp(v) := {j ∈ [d] : vj �= 0}. ‖v‖p denotes the vector �p norm for 1 ≤ p ≤ ∞, with
an additional convention that ‖v‖0 denotes the number of nonzero coordinates of v. For a
positive definite matrix �, we define ‖v‖� = √

v
�v. For v ∈ R
d and R > 0, let �R(v)

denote the projection of v onto the �2 ball {u ∈R
d : ‖u‖2 ≤ R}.

2. Problem formulation. In this section, we start with a formal definition of the “cost
of privacy” based on the minimax risk with differential privacy constraint in Section 2.1.
In Sections 2.2 and 2.3, we provide an overview of our technical tools for upper and lower
bounding the cost of privacy.

2.1. The cost of privacy. We quantify the cost of differential privacy in statistical estima-
tion via the minimax risk with differential privacy constraint, defined as follows.

Let P denote a family of distributions supported on a set X , and let θ : P → � ⊆ R
d

denote a population quantity of interest. The statistician has access to a data set of n i.i.d.
samples, X = (x1, . . . ,xn) ∈X n, drawn from some distribution P ∈ P .

With the data, we estimate a population parameter θ(P ) by an estimator M(X) : X n →
� that belongs to Mε,δ , the collection of all (ε, δ)-differentially private procedures. The
performance of M(X) is measured by its distance to the truth θ(P ): let ρ : �×� →R

+ be a
metric induced by a norm ‖·‖ on �, namely ρ(θ1, θ2) = ‖θ1 −θ2‖, and let l : R+ →R

+ be an
increasing function; the minimax risk of estimating θ(P ) with differential privacy constraint
is defined as

(2.1) inf
M∈Mε,δ

sup
P∈P

E
[
l
(
ρ

(
M(X), θ(P )

))]
.

The quantity characterizes the worst-case performance over P of the best (ε, δ)-differentially
private estimator. The difference between (2.1) and the usual, unconstrained minimax risk

(2.2) inf
M

sup
P∈P

E
[
l
(
ρ

(
M(X), θ(P )

))]
,

is the “cost of privacy”. As (2.2) is well understood for mean estimation and linear regres-
sion problems, we focus on characterizing the constrained minimax risk (2.1) in this paper.
More specifically, we establish upper and lower bounds of (2.1) with technical tools to be
introduced in Sections 2.2 and 2.3.

2.2. Construction of differentially private algorithms. It is frequently the case that dif-
ferentially private algorithms are constructed by perturbing the output of a nonprivate algo-
rithm with random noise. Among the most prominent examples are the Laplace and Gaussian
mechanisms.

The Laplace and Gaussian mechanisms. As the name suggests, the Laplace and Gaus-
sian mechanisms achieve differential privacy by perturbing an algorithm with Laplace and
Gaussian noises, respectively. The scale of such noises is determined by the sensitivity of the
algorithm.
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DEFINITION 2. For any algorithm f mapping a data set X to R
d , the �p-sensitivity of

f is

�p(f ) = sup
X,X′ adjacent

∥∥f (X) − f
(
X′)∥∥

p.

The sensitivity of an algorithm f characterizes the magnitude of change in the output of f

resulted from replacing one element in an input data set; naturally, we introduce some pertur-
bation of comparable scale so that the differentially private version of f is stable regardless
of the presence or absence of any individual datum in the data set.

For algorithms with finite �1-sensitivity, differential privacy can be attained by adding
Laplace noises.

EXAMPLE 2.1 (The Laplace mechanism). For any algorithm f mapping a data set X to
R

d such that �1(f ) < ∞, M1(X) := f (X)+ (ξ1, ξ2, . . . , ξd), where ξ1, ξ2, . . . , ξd is an i.i.d.
sample drawn from Laplace(�1f/ε) and achieves (ε,0)-differential privacy.

Adding Gaussian noises to algorithms with finite �2-sensitivity guarantees differential pri-
vacy.

EXAMPLE 2.2 (The Gaussian mechanism). For any algorithm f mapping a data set X to
R

d such that �2(f ) < ∞, M2(X) := f (X) + (ξ1, ξ2, . . . , ξd), where ξ1, ξ2, . . . , ξk is an i.i.d.
sample drawn from N(0,2(�2(f )/ε)2 log(1.25/δ)), achieves (ε, δ)-differential privacy.

Although conceptually simple, these mechanism can often lead to complex differentially
private algorithms thanks to the post-processing and composition properties of differential
privacy.

Post-processing and composition. Conveniently, post-processing a differentially private
algorithm preserves privacy.

FACT 2.1 (Post-processing [16, 48]). Let f be an (ε, δ)-differentially private algorithm
and g be an arbitrary, deterministic mapping that takes f (X) as an input; then g(f (X)) is
(ε, δ)-differentially private.

Further, the privacy parameters are additive with respect to compositions of differentially
private algorithms.

FACT 2.2 (Composition [16]). For i = 1,2, let fi be (εi, δi)-differentially private; then
f1 ◦ f2 is (ε1 + ε2, δ1 + δ2)-differentially private.

The mechanisms and composition theorem reviewed in this section shall later enable us to
construct differentially private algorithms for mean estimation and linear regression.

2.3. Minimax risk lower bounds with differential privacy constraint. Our technique for
proving lower bounds of the minimax risk (2.1) is based on the “tracing adversary” argument
originally proposed by [9]. It has proven to be a powerful tool for obtaining lower bounds
in the context of releasing sample quantities [42, 43] and for Gaussian mean estimation [20,
27]. In this paper, we refine the tracing adversary technique to prove a sharper lower bound
for low-dimensional mean estimation compared to previous works [20, 27] as well as new
lower bounds for sparse mean estimation and linear regression problems.
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Informally, a tracing adversary (or tracing attack) is an algorithm that attempts to detect
the absence/presence of a candidate datum x̃ in a target data set X, by looking at an estimator
M(X) computed from the data set. If one can construct a tracing adversary that is powerful
given an accurate estimator, an argument by contradiction leads to a lower bound: suppose
a differentially private estimator computed from the target data set is sufficiently accurate,
the tracing adversary will be able to determine whether a given datum belongs to the data set
or not, thereby contradicting with the differential privacy guarantee. The privacy guarantee
and the tracing adversary together ensure that a differentially private estimator cannot be “too
accurate.” In Sections 3.1, 3.3, 4.1 and 4.3, we shall formally define and analyze such tracing
attacks for mean estimation and linear regression problems. For now, we illustrate this general
approach with a concrete example of sub-Gaussian mean estimation.

Example: A preliminary lower bound for mean estimation. To illustrate this approach,
we consider a tracing attack proposed by [20] and show how its theoretical properties im-
ply a minimax risk lower bound for differentially private mean estimation of d-dimensional
sub-Gaussian(σ ) distribution. Let X = {x1,x2, . . . ,xn} be an i.i.d. sample drawn from the d-
dimensional product distribution supported on {−σ,σ }d , which is clearly sub-Gaussian(σ ),
with unknown mean vector μ ∈ [−σ,σ ]d . The tracing attack is given by

Aμ
(
x,M(X)

) = 〈
x − μ,M(X)

〉
.

The theoretical properties of this tracing attack are presented in the following lemma.

LEMMA 2.1. Let X = {x1,x2, . . . ,xn} be an i.i.d. sample drawn from the d-dimensional
product distribution supported on {−σ,σ }d with unknown mean vector μ ∈ [−σ,σ ]d .

1. For each i ∈ [n], let X′
i denote the data set obtained by replacing xi in X with an

independent copy, then for every δ > 0, every i ∈ [n] and every μ we have

P
(
Aμ

(
xi ,M

(
X′

i

))
> σ 2

√
8d log(1/δ)

)
< δ.

2. There is a universal constant c1 such that, if n < c1
√

d/ log(1/δ), we can find a prior
distribution π of μ so that

PX,μ

( ∑
i∈[n]

Aμ
(
xi ,M(X)

) ≤ nσ 2
√

8d log(1/δ),
∥∥M(X) − X̄

∥∥
2 < c2σ

√
d

)
< δ

for an appropriate universal constant c2.

The lemma is similar in spirit to Lemma 12 in [20] and proved with a new technical
argument in Section B.1 of the Supplementary Material [10]. According to the lemma, when
M(X) is close to the sample mean X̄, the attack takes large values if the candidate datum
belongs to the data set X from which M(X) is computed.

We would like to point out that Lemma 2.1 is valid without requiring differential privacy
of M(X). For a differentially private M(X) in particular, the lemma makes available a lower
bound for ‖M(X)−X̄‖, as we have sketched informally: if n < c1

√
d/ log(1/δ) and M(X) is

(ε, δ)-differentially private with 0 < ε < 1 and δ = o(1/n), let C = {∑i∈[n]Aμ(xi ,M(X)) ≤
nσ 2√8d log(1/δ)},

PX,μ
(∥∥M(X) − X̄

∥∥
2 < c2σ

√
d
)

≤ PX,μ
(
C ∩ {∥∥M(X) − X̄

∥∥
2 < c2σ

√
d
})

+ ∑
i∈[n]

PX,μ
(
Aμ

(
xi ,M(X)

)
> σ 2

√
8d log(1/δ)

)
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≤ PX,μ
(
C ∩ {∥∥M(X) − X̄

∥∥
2 < c2σ

√
d
})

+ n
(
eε
P

(
Aμ

(
xi ,M

(
X′

i

))
> σ 2

√
8d log(1/δ)

) + δ
)

≤ δ + n
(
eεδ + δ

) = o(1).

The second inequality is due to differential privacy; the third inequality uses Lemma 2.1. It
follows that, when n < c1

√
d/ log(1/δ), we have

(2.3) inf
M∈Mε,δ

sup
μ

E
∥∥M(X) − X̄

∥∥
2 ≥ inf

M∈Mε,δ

EπEX|μ
∥∥M(X) − X̄

∥∥
2 � σ

√
d.

It should be noted, however, that the lower bound result is unsatisfactory in two important
ways. First, as formulated in Section 2.1, we are in fact interested in lower bounding a related
but distinct quantity, infM∈Mε,δ supμE‖M(X) − μ‖2. Second, the sample size range n <

c1
√

d/ log(1/δ) is somewhat artificial; for low-dimensional mean estimation problems, the
usual setting of n � d is of greater interest. In Section 3.1, we shall resolve these issues and,
on the basis of the same tracing attack and Lemma 2.1, establish an optimal lower bound for
the mean estimation problem.

3. The cost of privacy in mean estimation. In this section, we study the cost of (ε, δ)-
differential privacy in estimating the mean vector of a d-dimensional sub-Gaussian(σ ) distri-
bution. Formally, an R

d -valued random variable x follows a sub-Gaussian(σ ) distribution if
for μ = Ex and any fixed vector ‖v‖2 = 1, we have

E exp
(
λ〈x − μ,v〉) ≤ exp

(
λ2σ 2) ∀λ ∈ R.

We begin with sharpening the preliminary lower bound (2.3), in Section 3.1. The lower bound
is then shown to be optimal via an (ε, δ)-differentially private estimator with convergence rate
attaining the lower bound.

We also study the cost of differential privacy in sparse mean estimation, where the un-
known mean vector μ ∈ R

d has only a small fraction of nonzero coordinates. This sparse
model is useful when the data’s dimension d outnumbers the sample size n, rendering the
usual sample mean estimator sub-optimal. Instead, if the unknown mean vector is indeed
sparse, thresholding the sample mean have been shown to achieve optimal statistical accu-
racy [13, 26]. We establish in Section 3.3 a minimax risk lower bound for estimating sparse
mean with differential privacy constraint, and match this lower bound with a differentially
private estimator of the sparse mean in Section 3.4.

3.1. Lower bound of low-dimensional mean estimation. In this section, we prove a sharp
lower bound for estimating a d-dimensional sub-Gaussian mean by improving the prelimi-
nary lower bound in Section 2.3. We consider the class of d-dimensional sub-Gaussian(σ )

distributions with mean vector in � = {μ ∈ R
d : ‖μ‖∞ < σ } and denote the class by

P(σ, d,�).
The first improvement is a relaxation of the sample size range n �

√
d/ log(1/δ).

LEMMA 3.1. Let Y = {y1,y2, . . . ,yn} be sampled with replacement from a set of deter-
ministic vectors Z = {z1,z2, . . . ,zm} with n = km and k ≥ 1. There exists a choice of Z with
each zi ∈ {−σ,σ }d , m = c1

√
d/ log(1/δ) � 1 and k � log(1/δ)/ε such that

E
∥∥M(Y ) −Ey1

∥∥
2 � σ

√
d

for every (ε, δ)-differentially private M if 0 < ε < 1, n−1 exp(−nε) < δ < n−(1+ω) for some
fixed constant ω > 0, and log(δ)/ log(n) is nonincreasing in n.
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Lemma 3.1 is proved in Section 8.1. In essence, this lemma improves the lower bound (2.3)
by extending its range of validity to n �

√
d log(1/δ)/ε, as the discrete uniform distribution

described in the lemma is sub-Gaussian(σ ) with μ ∈ � thanks to the choice of zi ∈ {−σ,σ }d .
On the basis of Lemma 3.1, we are able to translate the lower bound result to the more

interesting large n regime, as described by the following theorem.

THEOREM 3.1. Let X = {x1,x2, . . . ,xn} be an i.i.d. sample drawn from some distri-
bution in P(d, σ,�) with mean Ex1 = μ. If 0 < ε < 1, n−1 exp(−nε) < δ < n−(1+ω) for
some fixed constant ω > 0 with log(δ)/ log(n) nonincreasing in n, d/ log(1/δ) � 1 and
n �

√
d log(1/δ)/ε, we have

(3.1) inf
M∈Mε,δ

sup
P(d,σ,�)

E
∥∥M(X) − μ

∥∥2
2 � σ 2

(
d

n
+ d2 log(1/δ)

n2ε2

)
.

The theorem is proved in Section 8.2. The minimax lower bound characterizes the cost
of privacy in the mean estimation problem: the cost of privacy dominates the statistical risk
when d log(1/δ)/nε2 � 1. This minimax lower bound matches the sample complexity lower
bound in [42], which considered the deterministic worst case instead of the i.i.d. statistical
setting. [27] studied the Gaussian mean estimation problem but did not obtain a tight bound
with respect to δ; Theorem 3.1 improves the lower bound in [27] by log(1/δ). In Section 3.2,
we exhibit an algorithm for mean estimation that attains the convergence rate of σ 2(d

n
+

d2 log(1/δ)

n2ε2 ), showing that the lower bound (3.1) is in fact rate-optimal.

3.2. Algorithm for low-dimensional mean estimation. In this section, we show that the
minimax lower bound (3.1) can be attained by a differentially private estimator, thereby im-
plying a tight characterization of the cost of privacy in low-dimensional mean estimation.

Let x1,x2, . . . ,xn be an i.i.d. sample drawn from a sub-Gaussian(σ ) distribution on R
d ,

and we denote Ex1 by μ ∈ R
d . It is further assumed that ‖μ‖∞ < c for some constant

c = O(1). We consider the following simple algorithm based on the Gaussian mechanism,
Example 2.2.

The truncation step guarantees that, over a pair of data sets X and X′ which differ by
one single entry, ‖XR − X′

R‖2 < 2R
√

d/n and, therefore, the Gaussian mechanism applies.
When R is selected so that most of the data is preserved, μ̂ is an accurate estimator of the
mean μ.

THEOREM 3.2. If there exists a constant T < ∞ so that ‖x‖∞ < T with probability one,
setting R = T ensures that

E‖μ̂ − μ‖2
2 � σ 2

(
d

n
+ d2 log(1/δ)

n2ε2

)
.

Otherwise, choosing R = Kσ
√

logn for a sufficiently large K guarantees

E‖μ̂ − μ‖2
2 � σ 2

(
d

n
+ d2 log(1/δ) logn

n2ε2

)
.

The theorem is proved in Section A.1 of the Supplementary Material [10]. The first case
applies to distributions with bounded support, for example, Bernoulli, with the rate of con-
vergence exactly matching the lower bound (3.1). The second case includes unbounded sub-
Gaussian distributions such as the Gaussian, where the convergence rate matches the lower
bound up to a gap of O(logn). Overall, the upper and lower bounds suggest that the cost of

(ε, δ)-differential privacy in low-dimensional mean estimation is Õ(
d2 log(1/δ)

n2ε2 ).
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Algorithm 3.1: Differentially Private Mean Estimation
Input : Data set X = {xi}i∈[n], privacy parameters ε, δ, truncation level R.

1 Compute XR : for j ∈ [d], XR,j = n−1 ∑
i∈[n] �R(xij ) ;

2 Compute μ̂ = XR + w, where w ∼ Nd(0,
4R2d log(1/δ)

n2ε2 · I ) ;
Output: μ̂.

It should be noted that Algorithm 3.1 lacks some practicality: the truncation level R is a
tuning parameter that needs to be set at the correct level for the convergence rate to hold;
we included this somewhat simplistic algorithm here for the theoretical analysis of privacy
cost. In Section 5, we consider data-driven and differentially private proxies of the theoretical
choice of R and demonstrate their numerical performance. As the focus of this paper is the-
oretical properties of private estimators, we refer interested readers to [28] and [6] for more
practical methods of differentially private mean estimation.

3.3. Lower bound of sparse mean estimation. We consider lower bounding the min-
imax risk of estimating the mean vector of a sub-Gaussian(σ ) distribution when the
mean vector is s∗-sparse. Concretely, we index this collection of distributions by the set
of mean vectors � = {μ ∈ R

d : ‖μ‖0 ≤ s∗,‖μ‖∞ < 1}, and denote this class of dis-
tributions by P(σ, d, s∗,�). Let X = {x1,x2, . . . ,xn} be an i.i.d. sample drawn from a
sub-Gaussian(σ ) distribution with mean vector μ ∈ �, we would like to establish a lower
bound of infM∈Mε,δ supP(σ,d,s∗,�)E‖M(X) − μ‖2

2 as a function of privacy parameters (ε, δ)

as well as d , n, s∗ and σ .
As sketched in Section 2.3, our strategy for proving the lower bound requires the existence

of a powerful tracing attack. For sparse mean estimation, one reasonable choice of tracing
attack is given by

(3.2) Aμ,s∗
(
x,M(X)

) = 〈
(x − μ)supp(μ),M(X) − μ

〉
.

In particular, this attack coincides with the tracing attack proposed by [43] for differentially
private top-k selection.

Similar to our lower bound analysis for low-dimensional mean estimation, the key ingre-
dient is to show that the attack typically takes a large value when x̃ belongs to X and a
small value otherwise. This is indeed the case for the tracing attack (3.2), as described by the
following lemma.

LEMMA 3.2. Let X = {x1,x2, . . . ,xn} be an i.i.d. sample drawn from Nd(μ, σ 2I ) with
μ ∈ �. If s∗ = o(d1−ω) for some fixed ω > 0, for every (ε, δ)-differentially private estimator
M satisfying EX|μ‖M(X) − μ‖2

2 = o(1) at every μ ∈ �, the following are true:

1. For each i ∈ [n], let X′
i denote the data set obtained by replacing xi in X with an

independent copy, then

EAμ,s∗
(
xi ,M

(
X′

i

)) = 0, E
∣∣Aμ,s∗

(
xi ,M

(
X′

i

))∣∣ ≤ σ

√
E

∥∥M(X) − μ
∥∥2

2.

2. There exists a prior distribution of π = π(μ) supported over � such that∑
i∈[n]

EπEX|μAμ,s∗
(
xi ,M(X)

)
� σ 2s∗ logd.

The lemma is proved in Section B.2 of the Supplementary Material [10]. On the basis of
Lemma 3.2, we have the following minimax risk lower bound.
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THEOREM 3.3. If s∗ = o(d1−ω) for some fixed ω > 0, 0 < ε < 1 and δ < n−(1+ω) for
some fixed ω > 0, we have

(3.3) inf
M∈Mε,δ

sup
P(σ,d,s∗,�)

E
∥∥M(X) − μ

∥∥2
2 � σ 2

(
s∗ logd

n
+ (s∗ logd)2

n2ε2

)
.

The lower bound is proved in Section B.3 of the Supplementary Material [10]. In this
lower bound, it is worth noting that the term due to privacy, similar to the statistical term,
only depends logarithmically on the dimension d , suggesting that mean estimation in high
dimensions remains viable despite the (ε, δ)-differential privacy constraint. This is in marked
contrast with high-dimensional statistical estimation under the (much more demanding) local
differential privacy constraint [14, 29], where the minimax risk always depends linearly on d .
In the next section, we propose a differentially private estimator that efficiently estimates the
sparse mean vector and attains the lower bound (3.3) up to factors of logn.

3.4. Algorithm for sparse mean estimation. Let x1,x2, . . . ,xn be an i.i.d. sample drawn
from a sub-Gaussian(σ ) distribution on R

d , with mean Ex1 = μ ∈ R
d . It is further assumed

that ‖μ‖0 ≤ s∗ and ‖μ‖∞ < c for some constant c = O(1).
In this section, we propose a differentially private algorithm for estimating the sparse mean

vector μ. At a high level, the algorithm selects the large coordinates of the (truncated) sample
mean vector in a differentially private manner, and sets the remaining coordinates to zero. We
start with describing and analyzing the differentially private selection step.

The following “peeling” algorithm, developed by [21], is an efficient and differentially
private method for selecting the top-s largest coordinates in terms of absolute value. In each
of the s iterations, one coordinate is “peeled” from the original vector and added to the output
set.

The algorithm is guaranteed to be differentially private when the vector v = v(X) has
bounded change in value when any single datum in X is modified.

LEMMA 3.3 ([21]). If for every pair of adjacent data sets Z, Z′ we have ‖v(Z) −
v(Z′)‖∞ < λ, then Algorithm 3.2 is an (ε, δ)-differentially private algorithm.

Another important property of the Peeling algorithm is its (approximate) accuracy, proved
in Section A.2 of the Supplementary Material.

Algorithm 3.2: “Peeling” [21]

Input : vector-valued function v = v(X) ∈ R
d , data X, sparsity s, privacy parameters

ε, δ, noise scale λ.
1 Initialize S = ∅;
2 for i in 1 to s do

3 Generate wi ∈ R
d with wi1,wi2, . . . ,wid

i.i.d.∼ Laplace(λ · 2
√

3s log(1/δ)
ε

);
4 Append j∗ = arg maxj∈[d]\S |vj | + wij to S;
5 end
6 Set P̃s(v) = vS ;

7 Generate w̃ with w̃1, . . . , w̃d
i.i.d.∼ Laplace(λ · 2

√
3s log(1/δ)

ε
);

Output: P̃s(v) + w̃S .
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Algorithm 3.3: Differentially Private Sparse Mean Estimation
Input : Data set X = {xi}i∈[n], privacy parameters ε, δ, truncation level R, sparsity s.

1 Compute XR : for j ∈ [d], XR,j = n−1 ∑
i∈[n] �R(xij ) ;

2 Compute μ̂ = Peeling(XR,X, s, ε, δ,2R/n);
Output: μ̂.

LEMMA 3.4. Let S and {w}i∈[s] be defined as in Algorithm 3.2. For every R1 ⊆ S and
R2 ∈ Sc such that |R1| = |R2| and every c > 0, we have

‖vR2‖2
2 ≤ (1 + c)‖vR1‖2

2 + 4(1 + 1/c)
∑
i∈[s]

‖wi‖2∞.

Now returning to the original problem of sparse mean estimation, we construct a differ-
entially estimator of the sparse mean by applying the “peeling” algorithm to a (truncated)
sample mean, as follows.

The truncation step ensures that, over a pair of data sets X and X′ which differ by one sin-
gle entry, ‖XR − X′

R‖∞ < 2R/n and, therefore, the privacy guarantee, Lemma 3.3, applies.
Algorithm 3.3 further inherits the accuracy of “Peeling” and leads to an accurate estimator of
the sparse mean μ, as stated in the following theorem.

THEOREM 3.4. If R = Kσ
√

logn for a sufficiently large constant K , s ≥ s∗ and s � s∗,
then with probability at least 1 − c1 exp(−c2 logn) − c1 exp(−c2 logd), it holds that

‖μ̂ − μ‖2
2 � σ 2

(
s∗ logd

n
+ (s∗ logd)2 log(1/δ) logn

n2ε2

)
.

Theorem 3.4 is proved in Section A.3. With the usual choice of δ = n−(1+ω), the con-
vergence rate of Algorithm 3.3 attains the lower bound, Theorem 3.3, up to a gap of log2 n.
While the convergence analysis of Algorithm 3.3 requires some theoretical choice of tuning
parameters R and s, in Section 5 we discuss data-driven methods of selecting these tuning
parameters that achieve reasonably good numerical performance.

4. The cost of privacy in linear regression. In this section, we consider the Gaussian
linear model

(4.1) fβ(y|x) = 1√
2πσ

exp
(−(y − x
β)2

2σ 2

)
; x ∼ fx .

Given an i.i.d. sample (y,X) = {(yi,xi )}i∈[n] drawn from the model, we study the cost of
(ε, δ)-differential privacy in estimating the regression coefficients β ∈ R

d . The primary focus
is on the high-dimensional setting (Sections 4.3, 4.4) where the dimension d dominates the
sample size n, and the regression coefficient β is assumed to be sparse; the classical, low-
dimensional case of d = o(n) will also be considered (Sections 4.1, 4.2).

4.1. Lower bound of low-dimensional linear regression. Let P(σ, d,�) denote the class
of distributions fβ(y,x), as specified by (4.1), with β ∈ � = {β ∈ R

d : ‖β‖2 ≤ 1}. With
an i.i.d. sample (y,X) = {(yi,xi )}i∈[n] drawn from a distribution in P(σ, d,�), we shall
establish a lower bound of infM∈Mε,δ supP(σ,d,�)E‖M(y,X) − β‖2

�x
via the tracing attack

argument.
Consider the attack given by

(4.2) Aβ

(
(y,x),M(y,X)

) = 〈
M(y,X) − β,

(
y − x
β

)
x

〉
.



2836 T. T. CAI, Y. WANG AND L. ZHANG

Similar to the tracing attacks for mean estimation problems, the attack takes large value when
(y,x) belongs to (y,X) and small value otherwise.

LEMMA 4.1. Let (y,X) be an i.i.d. sample drawn from some distribution in P(σ, d,�)

such that ‖x‖2 ≤ 1 with probability 1, and �x = Exx
 is diagonal and satisfies 0 < 1/L <

dλmin(�x) ≤ dλmax(�x) < L for some constant L = O(1). For every (ε, δ)-differentially
private estimator M satisfying Ey,X|β‖M(y,X) − β‖2

2 = o(1) at every β ∈ �, the following
are true:

1. For each i ∈ [n], let (y′
i ,X

′
i ) denote the data set obtained by replacing (yi,xi ) in (y,X)

with an independent copy, then EAβ((yi,xi ),M(y′
i ,X

′
i )) = 0 and

E
∣∣Aβ

(
(yi,xi ),M

(
y′

i ,X
′
i

))∣∣ ≤ σ

√
E

∥∥M(y,X) − β
∥∥2
�x

.

2. There exists a prior distribution of π = π(β) supported over � such that∑
i∈[n]

EπEy,X|βAβ

(
(yi,xi ),M(y,X)

)
� σ 2d.

The lemma is proved in Section B.4 of the Supplementary Material [10]. These properties
of tracing attack imply a minimax lower bound for (ε, δ)-differentially private estimation
of β .

THEOREM 4.1. If 0 < ε < 1 and δ < n−(1+ω) for some fixed ω > 0, we have

(4.3) inf
M∈Mε,δ

sup
P(σ,d,�)

E
∥∥M(y,X) − β

∥∥2
�x

� σ 2
(

d

n
+ d2

n2ε2

)
.

The lower bound is proved in Section B.5 of the Supplementary Material [10]. In next sec-
tion, we show that the lower bound is sharp up to factors of logn by analyzing a differentially
private algorithm for estimating β .

4.2. Algorithm for low-dimensional linear regression. For the low-dimensional linear
regression problem, we seek a differentially private (approximate) minimizer of the least
square objective function

Ln(β) = 1

n

n∑
i=1

(
yi − x


i β
)2

.

We find this solution via the noisy gradient descent algorithm of [5]. We tailor the conver-
gence analysis to the linear regression problem to obtain convergence in O(logn) iterations,
as opposed to O(n) iterations required by the general-purpose version in [5]. The algorithm
and its theoretical properties are described in detail in this section.

The analysis of Algorithm 4.1 relies on some assumptions about x and β .

(D1) Bounded design: there is a constant cx < ∞ such that ‖x‖2 < cx with probability 1.
(D2) Bounded moments of design: Ex = 0 and the covariance matrix �x = Exx
 satis-

fies 0 < 1/L < d · λmin(�x) ≤ d · λmax(�x) < L for some constant 0 < L < ∞.
(P1) The true parameter vector β satisfies ‖β‖2 < c0 for some constant 0 < c0 < ∞.

In essence, the assumptions on design require that the rows of design matrix are normalized,
and the assumed �2 bound of β is consistent with the parameter regime in our lower bound
analysis, Section 4.1.

Assumptions (D1) and (P1) together guarantee that the algorithm is (ε, δ)-differentially
private if the noise level B is sufficiently large.
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Algorithm 4.1: Differentially Private Linear Regression

Input : Ln(β), data set {(yi,xi )}i∈[n], step size η0, privacy parameters ε, δ, noise scale
B , number of iterations T , truncation level R, feasibility parameter C, initial
value β0.

1 for t in 0 to T − 1 do

2 Generate wt ∈ R
d with wt1,wt2, . . . ,wtd

i.i.d.∼ N(0, (η0)22B2 log(2T/δ)

n2(ε/T )2 );

3 Compute β t+1 = �C(β t − (η0/n)
∑n

i=1(x


i β t − �R(yi))xi + wt );

4 end
Output: βT .

LEMMA 4.2. If assumptions (D1) and (P1) are true, then Algorithm 4.1 is (ε, δ)-
differentially private as long as B ≥ 4(R + c0cx)cx and C ≤ c0.

The lemma is proved in Section A.4 of the Supplementary Material [10]. If (D2) is true as
well, we obtain the following theorem which describes the convergence rate of Algorithm 4.1.

THEOREM 4.2. Let {(yi,xi )}i∈[n] be an i.i.d. sample from the linear model (4.1). Sup-
pose assumptions (D1), (D2), (P1) are true. Let the parameters of Algorithm 4.1 be chosen
as follows:

• Set step size η0 = d/2L, where L is the constant defined in assumption (D2).
• Set R = σ

√
2 logn, B = 4(R + c0cx)cx and C = c0, in accordance with Lemma 4.2.

• Number of iterations T . Let T = (8L2) log(c2
0n), where L is the constant defined in as-

sumption (D2).
• Initialization β0 = 0.

If n ≥ K · (Rd3/2√log(1/δ) logn log logn/ε) for a sufficiently large constant K , the output
of Algorithm 4.1 satisfies

(4.4)
∥∥βT − β∗∥∥2

�x
� σ 2

(
d

n
+ d2 log(1/δ) log3 n

n2ε2

)
,

with probability at least 1 − c1 exp(−c2n) − c1 exp(−c2d) − c1 exp(−c2 logn).

Theorem 4.2 is proved in Section A.5 of the Supplementary Material [10]. For practi-
cal application of the algorithm, we note that the theoretical choice of truncation level R,
which ensures the privacy protection of the algorithm, depends on the often unknown quan-
tity σ . We provide a data-driven, differentially private alternative to this theoretical choice
and demonstrate its numerical performance in Section 5.

4.3. Lower bound of high-dimensional linear regression. We next consider the high-
dimensional linear regression problem where d potentially dominates sample size n, but the
estimand β is sparse. Concretely, let P(σ, d, s∗,�) denote the class of distributions fβ(y,x),
as specified by (4.1), with β ∈ � = {β ∈ R

d : ‖β‖0 ≤ s∗,‖β‖2 ≤ 1}. With an i.i.d. sam-
ple (y,X) = {(yi,xi )}i∈[n] drawn from a distribution in P(σ, d, s∗,�), we consider lower
bounding infM∈Mε,δ supP(σ,d,s∗,�)E‖M(y,X) − β‖2

�x
via the tracing attack argument.

Consider the attack given by

(4.5) Aβ,s∗
(
(y,x),M(y,X)

) = 〈(
M(y,X) − β

)
supp(β),

(
y − x
β

)
x

〉
.

Similar to the tracing attacks for mean estimation problems, the attack takes large value when
(y,x) belongs to (y,X) and small value otherwise.
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LEMMA 4.3. Let (y,X) be an i.i.d. sample drawn from some distribution in P(σ, d,

s∗,�). Let S = supp(β); assume that ‖xS‖2 ≤ 1 and xSc = 0 with probability 1, and that
the restricted covariance matrix �S = {E(xx
)}i,j∈S is diagonal and satisfies 0 < 1/L <

s∗λmin(�x) ≤ s∗λmax(�x) < L for some constant L = O(1).
If s∗ = o(d1−ω) for some fixed ω > 0, then for every (ε, δ)-differentially private estimator

M satisfying Ey,X|β‖M(y,X) − β‖2
2 = o(1) at every β ∈ �, the following are true:

1. For each i ∈ [n], let (y′
i ,X

′
i ) denote the data set obtained by replacing (yi,xi ) in (y,X)

with an independent copy, then EAβ,s∗((yi,xi ),M(y′
i ,X

′
i )) = 0 and

E
∣∣Aβ,s∗

(
(yi,xi ),M

(
y′

i ,X
′
i

))∣∣ ≤ σ

√
E

∥∥M(y,X) − β
∥∥2
�x

.

2. There exists a prior distribution of π = π(β) over � such that∑
i∈[n]

EπEy,X|βAβ,s∗
(
(yi,xi ),M(y,X)

)
� σ 2s∗ logd.

The lemma is proved in Section B.6 of the Supplementary Material [10]. These properties
of tracing attack (4.5) imply a minimax lower bound for (ε, δ)-differentially private estima-
tion of β .

THEOREM 4.3. If s∗ = o(d1−ω) for some fixed ω > 0, 0 < ε < 1 and δ < n−(1+ω) for
some fixed ω > 0, we have

(4.6) inf
M∈Mε,δ

sup
P(σ,d,s∗,�)

E
∥∥M(y,X) − β

∥∥2
�x

� σ 2
(

s∗ logd

n
+ (s∗ logd)2

n2ε2

)
.

The lower bound is proved in Section B.7 of the Supplementary Material [10]. Similar
to the cost of privacy in high-dimensional mean estimation, the lower bound here depends
only logarithmically on dimension d . We show in the next section that this lower bound is
achieved up to factors of logn by an (ε, δ)-differentially private algorithm.

4.4. Algorithm for high-dimensional linear regression. When the dimension of β ex-
ceeds the sample size, directly minimizing Ln(β) = n−1 ∑n

i=1(yi − x

i β)2 no longer leads

to an accurate estimate of β , as seen from the rank deficiency of ∇2Ln(β) = n−1X
X. As
a consequence, the differentially private, noisy gradient algorithm for the low-dimensional
setting is no longer applicable.

To leverage the sparsity of β , we recall the “peeling” algorithm for sparse mean estimation
in Section 3.4, and arrive at the following modification of Algorithm 4.1.

If the “Peeling” step is replaced by nonprivate, exact projection of the gradient step onto
{v ∈ R

d : ‖v‖0 ≤ s}, we recover the well-known iterative hard thresholding algorithm [7, 25]
for high-dimensional sparse regression.

The analysis of Algorithm 4.2 requires some assumptions similar to their low-dimensional
counterparts in Section 4.2, as follows.

(P1′) The true parameter vector β satisfies ‖β‖2 < c0 for some constant 0 < c0 < ∞ and
‖β‖0 ≤ s∗ = o(n).

(D1′) Bounded design: for every index set I ⊆ [d] with |I | = o(n), there is a constant
cx < ∞ such that

√|I |‖xI‖∞ < cx with probability 1.
(D2′) Bounded moments of design: Ex = 0 and for every index set I ⊆ [d] with |I | =

o(n), the (restricted) covariance matrix �I = ExIx


I satisfies 0 < 1/L < |I | · λmin(�I ) ≤

|I | · λmax(�I ) < L for some constant 0 < L < ∞.
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Algorithm 4.2: Differentially Private Sparse Linear Regression

Input : Ln(β), data set (y,X) = {(yi,xi )}i∈[n], step size η0, privacy parameters ε, δ,
noise scale B , number of iterations T , truncation level R, feasibility parameter
C, sparsity s, initial value β0.

1 for t in 0 to T − 1 do
2 Compute β t+0.5 = β t − (η0/n)

∑n
i=1(x



i β t − �R(yi))xi ;

3 β t+1 = �C(Peeling(β t+0.5, (y,X), s, ε/T , δ/T , η0B/n)).
4 end

Output: βT .

These assumptions can be understood as restricted versions of their counterparts, (P1), (D1)
and (D2), in the low-dimensional case, Section 4.2. When assumptions (P1′) and (D1′) hold,
the algorithm is guaranteed to be (ε, δ)-differentially private as long as the noise level B is
chosen properly.

LEMMA 4.4. If assumption (P1′) and (D1′) are true, then Algorithm 4.2 is (ε, δ)-
differentially private as long as B ≥ 4(R + c0cx)cx/

√
s.

The lemma is proved in Section A.6. With assumption (D2′) in addition, we can obtain the
following convergence result for Algorithm 4.2.

THEOREM 4.4. Let {(yi,xi )}i∈[n] be an i.i.d. sample from the linear model (4.1).
Suppose assumptions (P1′), (D1′) and (D2′) are true. Let R = σ

√
2 logn, C = c0 and

B = 4(R + c0cx)cx/
√

s in accordance with Lemma 4.4, and β0 = 0. Then there exists
some absolute constant ρ such that, if s = ρL4s∗, η0 = s/6L, T = ρL2 log(8c2

0Ln) and
n ≥ K · (R(s∗)3/2 logd

√
log(1/δ) logn/ε) for a sufficiently large constant K , the bound

(4.7)
∥∥βT − β

∥∥2
�x

� σ 2
(

s∗ logd

n
+ (s∗ logd)2 log(1/δ) log3 n

n2ε2

)

holds with probability at least 1 − c1 exp(−c2 log(d/s∗ logn)) − c1 exp(−c2n) −
c1 exp(−c2 logn).

The theorem is proved in Section 8.3. This convergence rate attains the corresponding
lower bound (4.6) up to factors of logn, for the usual choice of δ = n−(1+ω). For selecting
tuning parameters R and s in Algorithm 4.2, we demonstrate in Section 5 data-driven and
differentially private alternatives to the theoretical choices required by Theorem 4.4.

5. Simulation studies. In this section, we perform simulation studies of our algorithms
to evaluate their numerical performance and demonstrate the cost of privacy in various esti-
mation problems. The data are generated as follows.

Mean estimation x1, . . . ,xn are independently drawn from Nd(μ, I d). Over repetitions of
the experiments, the coordinates of μ are sample i.i.d. from Uniform(−10,10) for the
low-dimensional problem; in the high-dimensional case, the first s∗ coordinates of μ are
sampled i.i.d. from Uniform(−10,10) and the other coordinates are set to 0.

Linear regression The data (x1, y1), . . . , (xn, yn) are generated from the linear model yi =
x


i β +εi . The entries of design matrix are sampled i.i.d from the uniform distribution over
(−1/

√
d,1/

√
d) so that the row normalization assumption (D1) in Section 4 is satisfied;
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ε1, . . . , εn is an i.i.d sample from N(0,1). β is sampled uniformly from the unit sphere {v ∈
R

d : ‖v‖2 = 1} for the low-dimensional problem; in the high-dimensional problem, the
vector of first s coordinates is sampled uniformly from the unit sphere {v ∈ R

s∗ : ‖v‖2 =
1}, and the other coordinates are set to 0.

We shall carry out three sets of experiments with the simulated data:

• Compare the performance of our algorithms under different choices of R, the truncation
tuning parameter.

• Compare the performance of the high-dimensional algorithms under different choices of
s, the sparsity tuning parameter.

• Compare our algorithms with their nonprivate counterparts, and with other differentially
private algorithms in the literature.

5.1. Tuning of truncation level. For each of our four algorithms, we consider three meth-
ods of determining the truncation tuning parameter R:

• No truncation.
• The theoretical choice: R is set to be the theoretical value of 4σ

√
logn.

• Data-driven: compute differentially private estimates of the data set’s 2.5% and 97.5% per-
centiles by Algorithm 1′ in [31] (see “Extension to distributions supported on (−∞,∞),”
page 6), and truncate the data set at these levels.

As shown in Figure 1 below, the data-driven method incurs comparable errors to the no trun-
cation case and the theoretical choice of R, suggesting that it is a viable method for choosing
R in practice. It should be cautioned that the optimistic performance of constant quantile

FIG. 1. Average �2-error over 100 repetitions plotted against sample size n, with privacy level set at
(0.5,10/n1.1). (a) and (b): mean estimation and linear regression with d = 20 and n from 5000 to 100,000.
(c) and (d): high-dimensional mean estimation and linear regression with n increasing from 100 to 2000, d = n

and s = 20.
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FIG. 2. Average �2-error over 50 repetitions plotted against sample size n, with privacy level set at (0.5,
10/n1.1). (a) and (b): high-dimensional mean estimation and linear regression with n increasing from 100 to
2000, d = n and s = 20.

truncation benefits from the symmetry and light-tailedness of the Gaussian distribution; it
may not be applicable to all types of data distribution.

5.2. Tuning of s. Our algorithms for high-dimensional problems require a sparsity tuning
parameter s. We compare their performances when supplied with the true sparsity s∗ and
when s is chosen by 5-fold cross validation. The cross-validation error is first computed over
a uniform grid of values from s∗/2 to 2s∗. We then truncate these cross-validation errors with
Algorithm 1′ in [31], so that the truncated cross-validation errors have bounded sensitivity.
With bounded sensitivity, the exponential mechanism [34] can be applied to the (truncated)
cross-validation errors to select a value of s in a differentially private manner.

Informed by the previous section on tuning R, the truncation tuning parameters for experi-
ments in this section are selected by the data-driven method. In each problem, as the Figures 2
and 3 show, selecting s by cross validation leads to errors comparable with their counterparts
when the algorithms are supplied with the true sparsity s∗.

5.3. Comparisons with other algorithms. We compare our algorithms with their nonpri-
vate counterparts, as well as other differentially private algorithms in the literature. For the
low-dimensional problems, we consider Algorithm 4 in [28] for mean estimation and Al-
gorithm 1 in [40] for regression. For the high-dimensional problems, we compare with the
method in [44].

There are significant gaps in performance between our algorithms and those in [40, 44]. It
is important to note, however, that the primary strength of Algorithm 1 in [40] is its ability to
produce accurate test statistics with differential privacy, and the algorithm by [44] is primarily
targeted at minimizing the excess empirical risk, so these numerical experiments may not be
fully reflective of their advantages.

To further understand the improved numerical performance, we report here some obser-
vations from the numerical experiments. For the private Johnson–Lindenstrauss projection
algorithm in [40], we observed that the ridge regression subroutine of the algorithm is fre-
quently activated even when n is very large, resulting in a ridge regression solution with
regularization parameter of order O(log(1/δ)/ε) and leading to significant bias. For the pri-
vate Frank–Wolfe algorithm in [44], the solution is often nonsparse with large values outside
the true support of β , while our algorithm guarantees a sparse solution by construction and
converges to the nonprivate solution as n grows.
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FIG. 3. Average �2-error over 100 repetitions plotted against sample size n, with privacy level set at
(0.5,10/n1.1). (a) and (b): mean estimation and linear regression with fixed d = 20 and n increasing from 5000
to 100,000. (c) and (d): high-dimensional mean estimation and linear regression with n increasing from 2000 to
4000, d = 2n and s = 20.

6. Data analysis. In this section, we demonstrate the numerical performance of the dif-
ferentially private algorithms on real data sets.

6.1. SNP array of adults with schizophrenia. We analyze the SNP array data of adults
with schizophrenia, collected by [33], to illustrate the performance of our high-dimensional
sparse mean estimator. In the data set, there are 387 adults with schizophrenia, 241 of which
are labeled as “average IQ” and 146 of which are labeled as “low IQ.” The SNP array is
obtained by genotyping the subjects with the Affymetrix Genome-Wide Human SNP 6.0
platform. For our analysis, we focus on the 2000 SNPs with the highest minor allele frequen-
cies (MAFs); the full data set is available at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE106818.

Privacy-preserving data analysis is very much relevant for this data set and genetic data in
general, because as [24] shows, an adversary can infer the absence/presence of an individ-
ual’s genetic data in a large data set by cross-referencing summary statistics, such as MAFs,
from multiple genetic data sets. As MAFs can be calculated from the mean of an SNP array,
differentially-private estimators of the mean allow reporting the MAFs without compromis-
ing any individual’s privacy.

The data set takes the form of a 387 × 2000 matrix. The entries of the matrix take values
0, 1 or 2, representing the number of minor allele(s) at each SNP and, therefore, the MAF of
each SNP location in this sample can be obtained by computing the mean of the rows in this
matrix. Sparsity is introduced by considering the difference in MAFs of the two IQ groups:
the MAFs of the two groups are likely to differ at a small number of SNP locations among the
2000 SNPs considered. For m ranging from 10 to 120, we subsample m subjects from each
of the two IQ groups, say {x11,x12, . . . ,x1m} and {x21,x22, . . . ,x2m}, and apply our sparse
mean estimator to {x11 −x21,x12 −x22, . . . ,x1m −x2m} with s = 20 and privacy parameters

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE106818
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE106818
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FIG. 4. (a): The estimate of E[‖μ̂ − μ‖2] for the differentially private sparse mean estimator as sample size
increases from 50 to 120, with s = 20. (b): The estimate of E[‖β̂−β‖2] for the differentially private OLS estimator,
compared with its differentially private counterpart, as sample size increases from 2000 to 20,000.

(ε, δ) = (0.5,10/n1.1). The error of this estimator is then calculated by comparing with the
mean of the entire sample. This procedure is repeated 100 times to obtain Figure 4(a), which
displays the estimate of E[‖μ̂ − μ‖2] as m increases from 50 to 120. We also plotted the
corresponding curve for the method in [44] for comparison.

6.2. Housing prices in California. For the linear regression problem, we analyze a hous-
ing price data set with economic and demographic covariates, constructed by [37] and avail-
able for download at http://lib.stat.cmu.edu/datasets/houses.zip. In this data set, each subject
is a block group in California in the 1990 Census; there are 20,640 block groups in this data
set. The response variable is the median house value in the block group; the covariates in-
clude the median income, median age, total population, number of households and the total
number of rooms of all houses in the block group. In general, summary statistics such as
mean or median do not have any differential privacy guarantees, so the absence of informa-
tion on individual households in the data set does not preclude an adversary from extracting
sensitive individual information from the summary statistics. Privacy-preserving methods are
still desirable in this case.

For m ranging from 100 to 20,600, we subsample m subjects from the data set to compute
the differentially private OLS estimate, with privacy parameters (ε, δ) = (0.5,10/n1.1). The
error of this estimator is then calculated by comparing with the nonprivate OLS estimator
computed using the entire sample. This procedure is repeated 100 times to obtain Figure 4(b),
which displays the estimate of E[‖β̂ − β‖2] as m increases from 2000 to 20,000. The design
matrix is standardized before applying the algorithm. The corresponding curve for the method
in [40] is also plotted for comparison.

7. Discussion. Our paper investigates the tradeoff between statistical accuracy and pri-
vacy, by providing minimax lower bounds with differential privacy constraint and propos-
ing differentially private algorithms with rates of convergence attaining the lower bounds up
to logarithmic factors. For the lower bounds, we considered a technique based on tracing
adversary and illustrated its utility by establishing minimax lower bounds for differentially
private mean estimation and linear regression. These lower bounds are shown to be tight up
to logarithmic factors via analysis of differentially private algorithms with matching rates of
convergence.

Beyond the theoretical results, numerical performance of the private algorithms are
demonstrated in simulations and real data analysis. The results suggest that the proposed
algorithms have robust performance with respect to various choices of tuning parameters,
achieve accuracy comparable to or better than that of existing differentially private algo-
rithms, and can compute efficiently for sample sizes and dimensions up to tens of thousands.

http://lib.stat.cmu.edu/datasets/houses.zip
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The numerical results corroborate the cost of privacy delineated in the theorems by exhibiting
shrinking but nonvanishing gaps of accuracy between the private algorithms and their non-
private counterparts. The theoretical and numerical results together can inform practitioners
of differential privacy the necessary sacrifice of accuracy at a prescribed level of privacy, or
the appropriate choice of privacy parameters if a given level of accuracy is desired.

There are many promising avenues for future research. It is of significant interest to study
the optimal tradeoff of privacy and accuracy in statistical problems beyond mean estimation
and linear regression. Examples include covariance/precision matrix estimation, graphical
model recovery, nonparametric regression and principal component analysis. Along the way,
it is of importance to further develop general approaches of designing privacy-preserving
algorithms, as well as more general lower bound techniques than those presented in this
work.

One natural extension is uncertainty quantification with privacy constraints, which is
largely unexplored in the statistics literature. Notably, [28] established the rate-optimal length
of differentially private confidence intervals for the (one-dimensional) Gaussian mean. The
technical tools developed in our paper may provide insights for constructing optimal statisti-
cal inference procedures in the context of, say, high-dimensional sparse mean estimation and
linear regression.

Yet another intriguing direction of research is the cost of other notions of privacy, such as
concentrated differential privacy [18], Rényi differential privacy [35] and Gaussian differen-
tial privacy [12]. These notions of privacy have found important applications such as stochas-
tic gradient Langevin dynamics, stochastic Monte Carlo sampling [47] and deep learning
[8].

8. Proofs. In this section, we prove the lower bound of low-dimensional mean estima-
tion, Lemma 3.1 and Theorem 3.1, and the upper bound of high-dimensional linear regres-
sion, Theorem 4.4.

8.1. Proof of Lemma 3.1.

PROOF OF LEMMA 3.1. Let k = (C/2) log( 1
nδ

)/ε, with the value of 0 < C < 1 to be
chosen later. By the assumed regime of δ as a function of n, we have k � log(1/δ)/ε and
k < n/2. We assume that k divides n without the loss of generality.

For an arbitrary M ∈ Mε,δ , we define Mk(Z) ≡ M(Y ). Because M is (ε, δ)-differentially
private, Mk is also differentially private by post-processing. To lower bound E[‖M(Y ) −
Ey1‖2|Z], we observe that it suffices to find some appropriate distribution of Z so that
E‖Mk(Z) − Z̄‖2 can be lower bounded: as ‖M(Y ) − Ey1‖2 = ‖Mk(Z) − Z̄‖2 by construc-
tion, there must be a realization of Z such that E[‖M(Y ) −Ey1‖2|Z] is also lower bounded.

Since the sample size of Z does satisfy the assumption of the preliminary lower bound
(2.3), the bound applies provided that Mk is a differentially private algorithm with respect
to Z. To this end, we consider the group privacy lemma.

LEMMA 8.1 (Group privacy [42]). For every m ≥ 1, if M is (ε, δ)-differentially private,
then for every pair of data sets X = {xk}k and Z = {zk}k satisfying

∑
i 1(xi �= zi ) ≤ m, and

every measurable set S,

P
(
M(X) ∈ S

) ≤ eεm
P

(
M(Z) ∈ S

) + eεm − 1

e − 1
· δ.

The group privacy lemma suggests that, to characterize the privacy parameters of Mk ,
it suffices to upper-bound the number of changes in Y incurred by replacing one element
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of Z. Let mi denote the number of times that zi appears in a sample of size n drawn with
replacement from Z, then our quantity of interest here is simply maxi∈[n/k] mi .

To analyze maxi∈[n/k] mi , we first show that δ as a function of n must satisfy one of the
following two statements:

1. There is a fixed constant τ such that n
(n/k) log(n/k)

≤ Cτ/ε when n is sufficiently large.
2. Case 1 fails to hold: we have k > (C/2)τ/ε log(n/k) for any constant τ , as long as n is

sufficiently large.

The dichotomy is made possible by the assumption that log(δ)/ log(n) is nonincreasing
in n and δ < n−(1+ω) for some fixed ω > 0. Under this assumption, we have either
limn→∞ log(δ)/ log(n) = c < −1 or limn→∞ log(δ)/ log(n) = −∞.

For the first case, we have k = (C/2) log( 1
nδ

)/ε = (C/2ε) · (log(1/δ)− log(n)) ∈ ((C/2ε) ·
c1 logn, (C/2ε) · c2 logn) for some c1, c2 > 0 when n is sufficiently large. Therefore,

n

(n/k) log(n/k)
= k

log(n/k)
≤ c2 · (C/2ε) · logn

log(2nε/(C · c1 · logn))
≤ Cτ/ε,

for some τ > 0. This corresponds to the first statement.
For the second case limn→∞ log(δ)/ log(n) = −∞, we then have for any constant c3 >

0 and sufficiently large n, log(1/δ) > c3 log(n). Then k = (C/2) log( 1
nδ

)/ε = (C/2ε) ·
(log(1/δ) − log(n)) ≥ (C/2ε) · (c3 − 1) logn. Consequently, we have

k

log(n/k)
>

(c3 − 1) · (C/2ε) · logn

log(n)
≤ (c3 − 1) · (C/2ε)

for sufficiently large n. Since c3 can take value of any positive number, this corresponds to
the second statement.

Case 1. As (m1,m2, . . . ,mn/k) follows a uniform multinomial distribution, we consider a
useful result from [38], stated below.

LEMMA 8.2 ([38]). If (y1, y2, . . . , yd) follows a uniform multinomial(�) distribution,
and �

d logd
≤ c for some constant c not depending on � and d , then for every ζ > 0,

P

(
max
i∈[d] yi > (rc + ζ ) logd

)
= o(1),

where rc is the unique root of 1 + y(log c − logy + 1) − c = 0 that is strictly greater than c.

It follows that P(maxi mi ≤ r logn) = 1 − o(1), where r is the unique root of 1 +
x(log(Cτ/ε) − logx + 1) − (Cτ/ε) = 0 that is greater than Cτ/ε. Such a root exists, be-
cause fC,τ,ε(x) := 1 + x(log(Cτ/ε) − logx + 1) − (Cτ/ε) is strictly concave and achieves
the global maximum value of 1 at x = Cτ/ε.

Let E := {maxi mi ≤ r logn}. Under E , Lemma 8.1 implies that Mk is an (εr logn,
δeεr logn)-differentially private algorithm. We may essentially repeat the lower bound argu-
ment leading to the preliminary lower bound (2.3), as follows. Let Z = {z1,z2, . . . ,zn/k}
be sampled i.i.d., from the data distribution specified in Lemma 2.1 including the prior
distribution on μ = Ez1, so that Lemma 2.1 applies to Z. For every i ∈ [n/k], let C =
{∑i∈[n/k]Aμ(zi ,Mk(Z)) ≤ (n/k)σ 2√8d log(1/δ)}. We have

P
(∥∥Mk(Z) − Z̄

∥∥
2 < cσ

√
d
)

≤ P
(
Ec) + P

(
C ∩ {∥∥Mk(Z) − Z̄

∥∥
2 < cσ

√
d
}) + P

(
Cc)

≤ P
(
Ec) + P

(
C ∩ {∥∥Mk(Z) − Z̄

∥∥
2 < cσ

√
d
})
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+ ∑
i∈[n/k]

P
(
Aμ

(
zi ,Mk(Z)

)
> σ 2

√
8d log(1/δ)

)

≤ o(1) + δ + n
(
eεr lognδ + δeεr logn) = o(1) + δ + 2n−τ+εr .

This probability is always bounded away from 1, because εr < τ with appropriately chosen
C: since fC,τ,ε(τ/ε) = (τ/ε)(1 + logC − C) + 1 and 0 < ε < 1, for every τ > 0 there is a
sufficiently small 0 < C < 1 such that fC,τ,ε(τ/ε) < 0. Since fC,τ,ε(Cτ/ε) = 1 is the global
maximum, we have r < τ/ε, or equivalently εr < τ , as desired.

Case 2. Each mi is a sum of n independent Bernoulli(k/n) random variables. Chernoff’s
inequality implies that

P

(
max

i
mi >

1

ε
log

(
1

2nδ

))
≤ n

k
· exp

(
−(1/2C − 1)

3
k

)
.

Recall that k = (C/2) log( 1
2nδ

)/ε by construction. By the assumption of Case 2, we have
k > (C/2)τ/ε log(n/k) for any constant τ , as long as n is sufficiently large. Then we have

P

(
max

i
mi >

1

ε
log

(
1

2nδ

))
≤

(
n

k

)1−(1−C/2)τ/3ε

.

The probability can be made arbitrarily small by fixing C = 1/2 and choosing large τ .
Now that we have a high-probability bound for maxi mi , the group privacy lemma and union
bound, as in Case 1, imply that P(C) = o(1) and, therefore, by Lemma 2.1,

P
(∥∥Mk(Z) − Z̄

∥∥
2 < cσ

√
d
)

≤ P
(
Ec) + P

(
C ∩ {∥∥Mk(Z) − Z̄

∥∥
2 < cσ

√
d
}) + P

(
Cc) = o(1).

In each of the two cases, we found that P(‖Mk(Z) − Z̄‖2 < cσ
√

d) = o(1). The proof is
now complete by the reduction from E[‖M(Y ) −Ey1‖2|Z] to E‖Mk(Z) − Z̄‖2. �

8.2. Proof of Theorem 3.1. It suffices to prove the second term of the minimax lower
bound, as the first term is the statistical minimax lower bound for sub-Gaussian mean esti-
mation.

For i ∈ [n], consider xi = 0 ∈ R
d with probability 1 − α and xi = yi with probability

α, where yi follows the discrete uniform distribution specified in Lemma 3.1. When n �√
d log(1/δ)/ε, there exists some 0 < α < 1 such that αn � √

d log(1/δ)/ε. The distribution
of xi is indeed sub-Gaussian(σ ) with μ ∈ �.

Consider the random index set S = {i ∈ [n] : xi �= 0}. For every M ∈ Mε,δ , we have

E
[∥∥M(X) − μ

∥∥
2

] ≥ ∑
S=S⊆[n],|S|≤nα

E
[∥∥M(X) − μ

∥∥
2|S = S

]
P(S = S).

Now for each fixed S, define M̃(XS) = α−1M({xi : i ∈ S} ∪ {0}n−|S|). We note that M̃(XS)

is an (ε, δ)-differentially private algorithm with respect to XS = {xi : i ∈ S}, by observing
that modifying any single datum in XS incurs the same privacy loss to M as it does to M̃ . By
construction, it also holds that μ = Ex1 = αEy1. We then have

E
[∥∥M(X) − μ

∥∥
2|S = S

] ≥ E
[∥∥αM̃(XS) − αEy1

∥∥
2|S = S

]
≥ αE

[∥∥M̃(XS) −Ey1
∥∥

2

]
� ασ

√
d � σ

d
√

log(1/δ)

nε
.

For the last inequality, we invoked the lower bound proved in Lemma 3.1, since the sample
size of Xs is at most αn � √

d log(1/δ)/ε. The proof is complete.
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8.3. Proof of Theorem 4.4.

PROOF OF THEOREM 4.4. Let β̂ = arg min‖β‖2≤c0,‖β‖0≤s∗ Ln(β). While global strong

convexity and smoothness are no longer possible when d > n, because β t and β̂ are sparse,
we have following fact known as restricted strong convexity (RSC) and restricted smoothness
(RSM) [3, 32, 36].

FACT 8.1. Under assumptions of Theorem 4.4, it holds with probability at least 1 −
c1 exp(−c2n) that

(8.1)
1

8Ls

∥∥β t − β̂
∥∥2

2 ≤ 〈∇Ln

(
β t ) − ∇Ln(β̂),β t − β̂

〉 ≤ 4L

s

∥∥β t − β̂
∥∥2

2.

Under the event E1 = {�R(yi) = yi,∀i ∈ [n]}, Fact 8.1 implies that Ln(β
t ) − Ln(β̂) de-

cays exponentially fast in t .

LEMMA 8.3. Under assumptions of Theorem 4.4 and event E1, (8.1) implies that there
exists an absolute constant ρ such that

(8.2) Ln

(
β t+1) −Ln(β̂) ≤

(
1 − 1

ρL2

)(
Ln

(
β t ) −Ln(β̂)

) + c3

( ∑
i∈[s]

∥∥wt
i

∥∥2
∞ + ∥∥w̃t

St+1

∥∥2
2

)
,

for every t , where wt
1,w

t
2, . . . ,w

t
s are the Laplace noise vectors added to β t − (η0/n) ×∑n

i=1(x


i β t − �R(yi))xi when the support of β t+1 is iteratively selected by “Peeling,” St+1

is the support of β t+1 and w̃t is the noise vector added to the selected s-sparse vector.

We take Lemma 8.3, which is proved in Section A.7 of the Supplementary Material [10],
to prove Theorem 4.4. We iterate (8.2) over t and notate W t = c3(

∑
i∈[s] ‖wt

i‖2∞ +‖w̃t
St+1‖2

2)

to obtain

(8.3)

Ln

(
βT ) −Ln(β̂) ≤

(
1 − 1

ρL2

)T (
Ln

(
β0) −Ln(β̂)

) +
T −1∑
k=0

(
1 − 1

ρL2

)T −k−1
W k

≤
(

1 − 1

ρL2

)T

8Lc2
0 +

T −1∑
k=0

(
1 − 1

ρL2

)T −k−1
W k.

The second inequality is a consequence of the upper inequality in (8.1) and the �2 bounds of
β0 and β̂ . We can also bound Ln(β

T ) −Ln(β̂) from below by the lower inequality in (8.1):

(8.4) Ln

(
βT ) −Ln(β̂) ≥ Ln

(
βT ) −Ln

(
β∗) ≥ 1

16Ls

∥∥βT − β∗∥∥2
2 − 〈∇Ln

(
β∗)

,β∗ − βT 〉
.

Now (8.3) and (8.4) imply that, with T = (ρL2) log(8c2
0Ln),

1

16Ls

∥∥βT − β∗∥∥2
2 ≤ ∥∥∇Ln

(
β∗)∥∥∞

√
s + s∗∥∥β∗ − βT

∥∥
2

+ 1

n
+

T −1∑
k=0

(
1 − 1

ρL2

)T −k−1
W k.

(8.5)
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To further bound ‖βT − β∗‖2
2, we observe that under E1 and two other events,

E2 =
{

max
t

W t ≤ K
R2(s∗)3 log2 d log(1/δ) log2 n

n2ε2

}
,

E3 =
{∥∥∇Ln

(
β∗)∥∥∞ ≤ 4σ‖x‖∞

√
logd

n

}
,

(8.5) and assumptions (D1′), (D2′) yield

∥∥βT − β
∥∥2
�x

� σ 2
(

s∗ logd

n
+ (s∗ logd)2 log(1/δ) log3 n

n2ε2

)
.

It remains to show that the events E1, E2, E3 occur simultaneously with high probability. We

have P(Ec
1) ≤ c1 exp(−c2 logn) because y1, y2, . . . , yn

i.i.d.∼ N(0, σ 2) and R � σ
√

logn.
For E2, we invoke Lemma A.1 in the Supplementary Material [10]. For each iterate t ,

the individual coordinates of w̃t , wt
i are sampled i.i.d. from the Laplace distribution with

scale η0 · 2B
√

3s log(T /δ)
nε/T

, where the noise scale B � R/
√

s and T � logn by our choice. If

n ≥ K · (R(s∗)3/2 logd
√

log(1/δ) logn/ε) for a sufficiently large constant K , Lemma A.1
and the union bound imply that, with probability at least 1 − c1 exp(−c2 log(d/(s∗ logn)),

maxt W t is bounded by K
R2(s∗)3 log2 d log(1/δ) log2 n

n2ε2 for some appropriate constant K . For
E3, under assumptions (D1′) and (D2′), it is a standard probabilistic result (see, e.g., [46],
pages 210–211) that P(Ec

3) ≤ 2e−2 logd . �
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SUPPLEMENTARY MATERIAL

Supplement to “The cost of privacy: Optimal rates of convergence for parameter
estimation with differential privacy” (DOI: 10.1214/21-AOS2058SUPP; .pdf). In the Sup-
plementary Material, we prove all the main theorems and the technical lemmas.
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