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1. Introduction

We are deeply grateful to the discussants for providing constructive and stimu-
lating comments and suggestions. Our paper gives a survey of recent optimality
and adaptivity results on estimating various families of structured covariance
and precision matrices in the high-dimensional setting, with a focus on under-
standing the intrinsic difficulty of the problems. To achieve this goal, we present
main results under relative simple and unified assumptions, and hence do not ad-
dress some practical issues. Several such questions are raised by the discussants,
including robustness to outliers, Gaussian assumption, estimation with miss-
ing data, estimation with time-dependent observations, alternative bandwidth
selection, and hybrid procedures for estimating precision matrices. In this re-
joinder we comment on these important points and remark on some challenges
that lie ahead.
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2. Robust estimation

Professor Zou as well as Professors Balasubramanian and Yuan raise questions
on the Gaussian or sub-Gaussian assumption and discuss possible robust meth-
ods when this assumption fails to hold. Robust estimation is an important goal
and deserves a careful investigation in the problems studied in the present paper.

2.1. Semiparametric Gaussian copula model

Professor Zou suggests to consider the semiparametric Gaussian copula model,
in which the data after certain univariate monotone transformations follow
a multivariate Gaussian distribution. Specifically, n copies of random vector
X = (X1, . . . , Xp)

′ are observed, where f(X) = (f1(X1), . . . , fp(Xp))
′ ∼ N(0,Σ)

and {fi}pi=1 are unknown strictly increasing functions. Due to identifiability
issue, the goal is to estimate structured correlation matrix or its inverse.

There has been much recent attention on various high-dimensional statistical
problems under the semiparametric Gaussian copula model. In particular, sev-
eral estimation problems surveyed in the current paper have been considered.
Almost all these methods are based on the rank-based correlation matrix esti-
mators: R̂ = (r̂ij) = sin

(
π
2 τ̂ij

)
or R̂ = (r̂ij) = 2 sin

(
π
6 ρ̂ij

)
, where τ̂ij and ρ̂ij

are Kendall’s tau and Spearman’s rho estimators respectively. Two fundamental
concentration inequalities have been estalished: (i) entrywise deviation bound
|r̂ij − σij |, (Xue and Zou (2012) and Liu et al. (2012)) and (ii) submatrix devi-

ation bound under the spectral norm loss ||(R̂− Σ)S,S || with some index set S
(Mitra and Zhang (2014), Wegkamp and Zhao (2016) and Han and Liu (2013)).
In particular, both bounds enjoy the same properties as those obtained by using
the unobservable sample covariance matrix of f(X(i)).

We briefly discuss some results on optimal estimation of covariance and pre-
cision matrices based on R̂. Xue and Zou (2013) studied optimal estimation of
sparse covariance matrices over the class H(cn,p), noticing that the analysis only

relies on bound (i). When replacing the sample covariance matrix by R̂ in the
CLIME estimator and graphical Lasso estimator in (27) respectively, Xue and
Zou (2012) and Liu et al. (2012) obtained similar theoretical results for esti-
mating sparse precision matrices using the entrywise deviation bound (i). With
the help of the concentration bound (ii), Mitra and Zhang (2014) established
optimal rate over the class of bandable matrices Fα(M0,M) under the spectral
norm loss (also see Xue and Zou (2014)). Recently, Barber and Kolar (2015)
took a similar approach to estimate individual entries of sparse precision ma-
trices over HP(cn,p,M) using both bounds (i) and (ii). It is worth mentioning
that the asymptotic efficiency result cannot be obtained due to the unknown f .

Without too much additional difficulty, the semiparametric Gaussian copula
model can be further extended to semiparametric elliptical copula model (Liu
et al. (2012)) in which f(X) follows an elliptical distribution with scatter matrix
Σ.
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2.2. Robustness to contamination

Professors Balasubramanian and Yuan raise an interesting question on robust
covariance matrix estimation against contamination or outliers among the data.
This is indeed an important question as the statistical performance of the opti-
mal estimators can be completely compromised with only one arbitrary outlier.
This is also reflected in the numerical example provided by Professors Balasubra-
manian and Yuan. In their commentary, to this end, a simple median covariance
matrix Σ̂med = argminA∈Rp×p

∑n
i=1 ‖X(i)X(i)′−A‖F is proposed to replace the

role of the usual sample covariance matrix in the covariance estimation proce-
dures, motivated by the geometric median of a vector. The experiment shows a
very promising result on a bandable covariance estimation example.

Recently Chen et al. (2015) investigated this issue under Huber’s ε-contam-
ination model (1 − ε)PΣ + εQ in the minimax decision framework. Under this
model, PΣ is the target distribution with the covariance matrix Σ and Q is
some arbitrary contamination distribution. The goal is to estimate Σ optimally
in some structured parameter spaces robust to the contamination. Chen et al.
(2015) introduced a new concept called matrix depth motivated by Tukey’s
depth for vector estimation (Tukey, 1975) and proposed a robust covariance
matrix estimator by maximizing the empirical depth function. The proposed
estimator was shown to be minimax rate optimal under Huber’s framework for
bandable class Fα(M0,M) and sparse spiked covariance class J (cn,p, rn,p, λn,p).
Interestingly, the optimal rates for classes Fα(M0,M) and J (cn,p, rn,p, λn,p) are

min{ log p
n + n− 2α

2α+1 , p
n} ∨ ε2 and

cn,p

n log ep
cn,p

∨ ε2 respectively.

Compared with the depth-based optimal estimator, median covariance ma-
trix is obtained using the Frobenius norm. It is unclear to what extent this
median covariance estimator leads to optimal rates with the presence of con-
tamination under the spectral norm loss. Much work is still needed to gain
fundamental understanding of robust estimation under ε-contamination model
or other reasonable models.

3. Estimation with missing data

Motivated by the matrix completion problems as well as many high-dimensional
applications, Professor Tsybakov raises an interesting question on estimating
covariance and precision matrices in the presence of missing data. Indeed, in
the high-dimensional setting, missing data problem arises in various applications
such as genetic studies, climate research and cosmology.

Covariance and precision matrix estimation with incomplete data has been
investigated in a few recent papers Lounici (2013, 2014); Kolar and Xing (2012);
Loh and Wainwright (2012); Cai and Zhang (2015). Lounici (2013) and Lounici
(2014) considered the missing data problem in the setting where the sample{
Y (1), . . . , Y (n)

}
is observed with Y

(i)
j = m

(i)
j X

(i)
j , where

{
X(1), . . . , X(n)

}
are

i.i.d. copies of a random vector X, and m
(i)
j (1 ≤ i ≤ n, 1 ≤ j ≤ p) are

i.i.d. Bernoulli variables with parameter δ ∈ (0, 1] and independent of other
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variables. The case δ = 1 corresponds to the standard setting of fully observed
data. Under such a setting, the sample covariance matrix Σ̂Y = Y′Y/n with
Y = (Y (1), . . . , Y (n))′ is no longer an unbiased estimator of the target covariance
Σ = Cov(X) but a simple scaling procedure leads to the following unbiased
estimator

Σ̂(δ) = (σ̂
(δ)
ij ) :=

(
δ−1 − δ−2

)
diag(Σ̂Y ) + δ−2Σ̂Y . (1)

Naturally, one can replace the sample covariance matrix by Σ̂(δ) in most pro-
cedures designed for fully observed data and obtain the corresponding final es-
timators of structured covariance or precision matrices. Indeed, Lounici (2013)
applied this strategy to solve a sparse PCA problem while Lounici (2014) is
focused on covariance matrix estimation when Σ is of low rank or can be ap-
proximated by a low rank matrix. Kolar and Xing (2012) and Loh and Wain-
wright (2012) also used Σ̂(δ) (or its submatrices in a regression approach) to
solve sparse precision matrix estimation problems under the spectral norm loss
for the class of precision matrices similar to HP(cn,p,M).

The technical analysis of the new estimators using unbiased pivotal estimator
Σ̂(δ) heavily relies on a careful study of two fundamental concentration bounds.

They are (i) entrywise deviation bound |σ̂(δ)
ij −σij |, and (ii) submatrix deviation

bound under the spectral norm loss ||(Σ̂(δ) − Σ)S,S ||S with some index set S
(see, for instance, Lounici (2013), Kolar and Xing (2012), Loh and Wainwright
(2012)). It turns out that the main difference between Σ̂(δ) and the sample
covariance matrix Σ̂ without missing data in terms of those two concentration
bounds is that the role of sample size n for Σ̂ is replaced by nδ2 for Σ̂(δ). This
explicit dependency on δ is also implied by (1) since we only have approximately
nδ2 samples to estimate each off-diagonal entry in Σ. Consequently, it is not
surprising to see or expect the same dependency of the minimax optimal rates
of convergence on δ for various structured covariance and precision matrices
such as bandable covariance matrices Fα(M0,M) and sparse covariant matrices
H(cn,p).

Recently, Cai and Zhang (2015) considered optimal estimation of covariance
matrices under a general missing completely at random (MCR) model. Specif-

ically, the Bernoulli variables m
(i)
j (1 ≤ i ≤ n, 1 ≤ j ≤ p) were only assumed

to be independent of
{
X(1), . . . , X(n)

}
, but otherwise arbitrary. Minimax rates

of convergence for estimating bandable covariance matrices in Fα(M0,M) and
sparse covariant matrices in H(cn,p) are established under the spectral norm
loss. Cai and Zhang (2015) introduced the so-called extended sample mean and
extended sample covariance matrix in the missing data setting and proposed
adaptive rate-optimal covariance matrix estimators based on the these quanti-
ties.

While these simple missing data settings are relatively well understood, much
work is still needed to gain fundamental understanding of optimal covariance
and precision matrix estimation under other important missing data scenar-
ios.
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4. Estimation with time-dependent observations

Professors Paul and Wang point out an important setting when observations
have certain time-dependent structures. In particular, they provide some recent
developments on the empirical spectral distribution (ESD) of autocovariance
matrices as well as the spectral analysis of low rank autoregressive coefficient
matrices in a VAR model. These recent results can be seen as extensions of the
ESD for sample covariance matrices and spectral analysis of spiked covariance
matrices respectively in the i.i.d. setting. They also exhibit the additional inher-
ent difficulties due to the time-dependence. The results can be further applied
to solve many novel testing problems for autocovariance matrices and autore-
gressive coefficients in high-dimensional time series. We look forward to such
fruitful results in their forthcoming papers.

For time-dependent observations, optimal estimation of structured covari-
ance, precision and autocovariance matrices may also critically depend on the
specific time series structures. Hence the techniques used in the analysis can be
quite different from most problems considered in the present paper with i.i.d. ob-
servations. For example, in Section 2.2 of the present paper with n = 1, optimal
estimation of autocovariance sequences in terms of the corresponding Toeplitz
matrices is considered for one-dimensional stationary processes with p obser-
vations. The analysis, especially the lower bound argument, is very different
from those for estimating other structured covariance and precision matrices.
Recently, several extensions of the problems considered in the present paper
to the high-dimensional time series were studied with various time-dependent
structures. For example, besides those mentioned by Professors Paul and Wang,
Chen et al. (2013) considered estimation of sparse covariance and precision ma-
trices in a high-dimensional stationary process setting with autocovariance of
any lag k ≥ 1 treated as nuisance parameters. However, the fundamental dif-
ficulties of such matrix estimation problems in the time series settings remain
largely unknown. New minimax lower bound techniques are much needed. It
is of significant interest to consider optimal estimation with time-dependent
observations.

5. Bandwidth selection for estimating bandable covariance matrices

Optimal selection of tuning parameters is of practical importance for a wide
range of statistical problems including estimation of structured covariance ma-
trices. Professor Zou raises an excellent question on optimal bandwidth selection
for the tapering estimator Σ̂T,k discussed in Section 2.1. This tuning parameter
selection problem is especially relevant to estimating bandable covariance ma-
trices. Indeed, as discussed in Section 2.1, theoretically optimal choices of the
bandwidth k critically depend on the smoothness index α. They also vary sig-
nificantly for various losses including the Frobenius norm, matrix 	1 norm, and
spectral norm losses. This is very different from estimating sparse covariance
matrices in H(cn,p), in which optimal choices of the threshold in the proposed
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thresholding estimator in Section 2.3 are not sensitive to the particular choice
of loss functions considered in the paper or the sparsity parameter cn,p. Profes-
sor Zou suggests using a SURE information criterion proposed in Yi and Zou
(2013); Li and Zou (2014) to adaptively select the bandwidth by minimizing an
unbiased risk estimator under the Frobenius norm loss. The selected bandwidth
is shown to lead to a rate optimal estimator under the Frobenius norm loss
without requiring the knowledge of α.

It is worthwhile to point out that the squared Frobenius norm is entrywise
decomposable. As a consequence matrix estimation under the squared Frobenius
norm loss essentially becomes a vector estimation problem and can be done in
a row by row fashion. From this perspective, the success of the SURE approach
is not very surprising. It is interest to see whether a similar procedure can be
constructed for adaptive estimation under the spectral norm loss.

For the spectral norm loss, the adaptive procedure based on block threshold-
ing discussed in the present paper is shown to be rate optimal. In particular,
the choice of the thresholds is based on the spectral norm of each block matrix.
This strategy can be adopted for estimation problems under other losses. For
example, it can be shown that a Frobenius norm-based block thresholding es-
timator can adaptively achieve the optimal rate of convergence over the class
Fα(M0,M) without knowing α.

6. Two-step sparse precision matrix estimation

For estimation of sparse precision matrices, Professor Zou points out a two-
step approach proposed in Fan et al. (2014). This hybrid method combines the
two major approaches discussed in the current paper, namely neighborhood-
based CLIME and penalized likelihood approaches, and enjoys the merits of
both methods. Specifically, this estimator is guaranteed to be positive semi-
definite without an extra symmetrization step needed for CLIME. In addition,
without the irrepresentibility condition typically required in penalized likelihood
approaches, the hybrid method enjoys a strong oracle property as if the MLE
with the knowledge of true support of the precision matrix Ω = (ωij). In par-
ticular, the estimator achieves the desired support recovery property. However,
it seems that the strong oracle property relies on an extra assumption on the
minimal magnitude of nonzero entries

min
i �=j

|ωij | ≥ C

(√
(‖Ω‖2�1 log p)/n ∨

√
((1 +K3)2 log cn,p) /n

)
,

which can be seen in bounding the undesired probability in Theorem 3 of Pro-
fessor Zou’s discussion. Over the class HP(cn,p,M) defined in (8), both the
quantities ‖Ω‖�1 and K3 are possibly diverging. Compared with the optimal
ANT procedure stated in the Theorem 15 of the present paper, this hybrid
estimator enjoys positive definiteness with the price of a stronger assumption.

This two-step philosophy is not unique: the CLIME estimator is calculated
in the first step as the initializer to make the problem localizable such that
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in the second step, the non-convex optimization is able to provide an optimal
or oracle solution successfully. Indeed for many other non-convex approaches
used in statistical problems, a relative good initial estimator is all needed to
localize the problem. For example, for the sparse PCA problem, Birnbaum et al.
(2013) established the two-step optimal procedure ASPCA with the help of the
consistent estimator DT developed in Johnstone and Lu (2004) in their first
step. For the sparse CCA problem, Gao et al. (2014) used a Fantope estimator
in their first step of the two-step optimal procedure to successfully localize the
CCA problem into a manageable regression model. We appreciate Professor
Zou’s insight and expect such philosophy can be applied to other problems in
estimating structured covariance and precision matrices.

7. Miscellaneous

Professor Tsybakov makes the connection between the covariance matrix esti-
mation problem and matrix estimation with additive noise Y = Σ + W/

√
n,

where W is a random noise matrix with i.i.d. standard normal variables. These
two problems are indeed closely related as the sufficient statistic for covariance
matrix estimation, the sample covariance matrix Σ̂ can be written as the same
form Σ + Ŵ/

√
n although Ŵ has dependent sub-exponential entries. It would

be very interesting to explore whether asymptotic equivalence between the two
models in Le Cam’s sense can be built rigorously.

Finally we thank Professor Tsybakov for the comment on Theorem 4 and for
suggesting the alternative approach to sparse spiked covariance matrix estima-
tion. Indeed, with a fixed bound on λn,p, the minimax rate under the squared
spectral norm loss in Theorem 4 will be reduced to min{1, cn,p log(ep/cn,p)/n}
since the rank rn,p cannot be larger than the sparsity cn,p. In particular, the
optimal rate does not depend on the rank. In such a setting, the alternative
approach proposed by Professor Tsybakov has a simpler proof and provides a
clearer interpretation. However, when allowing a growing λn,p, the rank rn,p
plays a critical role in the minimax rate if rn,pλn,p 
 cn,p log(ep/cn,p). Specif-
ically, the two terms in the optimal rate stated in Theorem 12 depend on λn,p

in different ways. To reveal this important phenomenon, it seems that the al-
ternative approach cannot capture this subtlety and a more delicate procedure
such as (15) is needed.
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