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1. Introduction

Driven by a wide range of applications in many fields, from medicine to signal
processing to climate studies and social science, high-dimensional statistical
inference has emerged as one of the most important and active areas of current
research in statistics. There have been tremendous recent efforts to develop new
methodologies and theories for the analysis of high-dimensional data, whose
dimension p can be much larger than the sample size n. The methodological
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and theoretical developments in high-dimensional statistics are mainly driven
by the important scientific applications, but also by the fact that some of these
high-dimensional problems exhibit new features that are very distinct from those
in the classical low-dimensional settings.

Covariance structure plays a particularly important role in high-dimensional
data analysis. A large collection of fundamental statistical methods, including
the principal component analysis, linear and quadratic discriminant analysis,
clustering analysis, and regression analysis, require the knowledge of the covari-
ance structure or some aspects thereof. Estimating a high-dimensional covari-
ance matrix and its inverse, the precision matrix, is becoming a crucial problem
in many applications including functional magnetic resonance imaging, analysis
of gene expression arrays, risk management and portfolio allocation.

The standard and most natural estimator, the sample covariance matrix,
performs poorly and can lead to invalid conclusions in the high-dimensional set-
tings. For example, when p/n → c ∈ (0,∞], the largest eigenvalue of the sample
covariance matrix is not a consistent estimate of the largest eigenvalue of the
population covariance matrix, and the eigenvectors of the sample covariance
matrix can be nearly orthogonal to the truth. See Wachter (1976, 1978), John-
stone (2001), El Karoui (2003), Paul (2007), and Johnstone and Lu (2009). In
particular, when p > n, the sample covariance matrix is not invertible, and thus
cannot be applied in many applications that require estimation of the precision
matrix.

To overcome the difficulty due to the high-dimensionality, structural assump-
tions are needed in order to estimate the covariance or precision matrix con-
sistently. Various families of structured covariance and precision matrices have
been introduced in recent years, including bandable covariance matrices, sparse
covariance matrices, spiked covariance matrices, covariances with a tensor prod-
uct structure, sparse precision matrices, bandable precision matrix via Cholesky
decomposition, and latent graphical models. These different structural assump-
tions are motivated by various scientific applications, such as genomics, genetics,
and financial economics. Many regularization methods have been developed ac-
cordingly to exploit the structural assumptions for estimation of covariance and
precision matrices. These include the banding method in Wu and Pourahmadi
(2009) and Bickel and Levina (2008a), tapering in Furrer and Bengtsson (2007)
and Cai et al. (2010), thresholding in Bickel and Levina (2008b), El Karoui
(2008) and Cai and Liu (2011a), penalized likelihood estimation in Huang et al.
(2006), Yuan and Lin (2007), d’Aspremont et al. (2008), Banerjee et al. (2008),
Rothman et al. (2008), Lam and Fan (2009), Ravikumar et al. (2011), and
Chandrasekaran et al. (2012), regularizing principal components in Johnstone
and Lu (2009), Zou et al. (2006), Cai, Ma, and Wu (2013), and Vu and Lei
(2013), and penalized regression for precision matrix estimation in Meinshausen
and Bühlmann (2006), Yuan (2010), Cai et al. (2011), Sun and Zhang (2013),
and Ren et al. (2015).

Parallel to methodological advances on estimation of covariance and preci-
sion matrices there have been theoretical studies of the fundamental difficulty
of the various estimation problems in terms of the minimax risks. Cai et al.
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(2010) established the optimal rates of convergence for estimating a class of
high-dimensional bandable covariance matrices under the spectral norm and
Frobenius norm losses. Rate-sharp minimax lower bounds were obtained and a
class of tapering estimators were constructed and shown to achieve the optimal
rates. Cai and Zhou (2012a,b) considered the problems of optimal estimation of
sparse covariance and sparse precision matrices under a range of losses, includ-
ing the spectral norm and matrix �1 norm losses. Cai, Ren, and Zhou (2013)
studied optimal estimation of a Toeplitz covariance matrix by using a method
inspired by an asymptotic equivalence theory between the spectral density esti-
mation and Gaussian white noise established in Golubev et al. (2010). Cai et al.
(2015) solved the minimax estimation problem for a large class of sparse spiked
covariance matrices under the spectral norm loss. Recently Ren et al. (2015)
obtained fundamental limits on estimation of individual entries of a sparse pre-
cision matrix.

Standard techniques often fail to yield good results for many of these matrix
estimation problems, and new tools are thus needed. In particular, for estimating
sparse covariance matrices under the spectral norm, a new lower bound tech-
nique was developed in Cai and Zhou (2012b) that is particularly well suited to
treat the “two-directional” nature of the covariance matrices, where one direc-
tion is along the rows and another along the columns. The result can be viewed
as a generalization of Le Cam’s method in one direction and Assouad’s lemma
in another. This new technical tool is useful for a range of other estimation
problems. For example, it was used in Cai et al. (2012) for establishing the opti-
mal rate of convergence for estimating sparse precision matrices and Tao et al.
(2013) applied the technique to obtain the optimal rate for volatility matrix
estimation.

The goal of the present paper is to provide a survey of these recent optimal-
ity results on estimation of structured high-dimensional covariance and precision
matrices, and discuss some key technical tools that are used in the theoretical
analyses. In addition, we will present data-driven adaptive procedures for es-
timation of various structured matrices. The main focus is on the bandable,
Toeplitz, sparse, and sparse spiked covariance matrices as well as sparse pre-
cision matrices. Among these classes of matrices, the optimal procedures for
estimating the bandable, Toeplitz, and sparse covariance matrices are obtained
by “smoothing” or thresholding the sample covariance matrices based on var-
ious sparsity assumptions. In contrast, estimation of sparse spiked covariance
matrices, which have sparse principal components, requires significantly differ-
ent techniques to achieve optimality results. A few related problems such as
sparse principal component analysis, factor models, and hypothesis testing on
the covariance structure are also considered. Some open problems will be dis-
cussed at the end.

Throughout the paper, we assume that we observe a random sample {X(1), . . . ,
X(n)} which consists of n independent copies of a p-dimensional random vec-
tor X = (X1, . . . , Xp)

′ following some distribution with covariance matrix Σ =
(σij). The goal is to estimate the covariance matrix Σ and its inverse, the pre-
cision matrix Ω = Σ−1 = (ωij), based on the sample

{
X(1), . . . , X(n)

}
. Here for
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ease of presentation we assume E(X) = 0. This assumption is not essential. The
non-centered mean case will be briefly discussed in Section 5.

Notations. Before we present a concise summary of the optimality results for
estimating various structured covariance and precision matrices in this section,
we introduce some basic notation that will be used in the rest of the paper.
For any vector x ∈ Rp, we use ||x||ω to denote its �ω norm with the convention
that ||x|| = ||x||2. For any p by q matrix M = (mij) ∈ Rp×q, we use M ′ to
denote its transpose. The matrix �ω operator norm is denoted by ||M ||�ω =
max||x||ω=1 ||Mx||ω with the convention ||M || = ||M ||�2 for the spectral norm.
Moreover, the entrywise �ω norm, that is, the �ω norm ofM viewed as a vector, is
denoted by ||M ||ω and the Frobenius norm is represented by ||M ||F = ||M ||2 =
(
∑

i,j m
2
ij)

1/2. The submatrix with rows indexed by I and columns indexed by
J is denoted by MI,J . When the submatrix is a vector or a real number, we
sometimes also use the lower case m instead of M . We use ||f ||∞ = supx |f(x)|
to denote the sup-norm of a function f(·), and I {A} to denote the indicator
function of an event A. We denote the covariance matrix of a random vector X
by Cov(X) with the convention Var(X) = Cov(X) whenX is a random variable.
For a symmetric matrix M , M � 0 means positive definiteness, M � 0 means
positive semi-definiteness and det(M) is its determinant. We use λmax(M) and
λmin(M) to denote its largest and smallest eigenvalues respectively. Given two
sequences an and bn, we write an = O(bn), if there is some constant C > 0
such that an ≤ Cbn for all n, and an = o(bn) implies an/bn → 0. The notation
an 	 bn means an = O(bn) and bn = O(an). The n×p dimensional data matrix
is denoted by X = (X(1), . . . , X(n))′ and the sample covariance matrix with
known E(X) = 0 is then defined as Σ̂n = X′X/n = (σ̂ij). For any index set
I ⊆ {1, . . . , p}, we denote by XI the submatrix of X consisting of the columns
of X indexed by I. The following definition of sub-Gaussian distributions is used
throughout the paper.

Definition 1. The distribution of a random vectorX is said to be sub-Gaussian
with constant ρ > 0 if

P{|v′(X − EX)| > t} ≤ 2e−t2ρ/2,

for all t > 0 and all deterministic unit vectors ‖v‖ = 1.

Several matrix norms are used for the loss functions and in the technical
analysis. These include the spectral norm ‖·‖, matrix �1 operator norm || · ||�1 ,
matrix �∞ operator norm || · ||�∞ and Frobenius norm || · ||F among others.
In particular, for symmetric matrices, the spectral norm is the largest singular
value. The matrix �1 (�∞) operator norms are the largest column (row) sum of
absolute values. Hence for symmetric matrices, these two norms coincide with
each other. While the choice of the loss function varies according to specific
applications and needs, the minimax behavior of the matrix estimation critically
depends on the norm under which the error is measured. Matrix estimation
under the Frobenius norm loss is essentially a vector estimation problem. What
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really makes matrix estimation apart from it is those estimation problems under
matrix operator norm losses, which are highly non-additive with respect to
entries of the matrix. In particular, estimating covariance and precision matrices
under the spectral norm loss brings in many new challenges as well as insights.
We present the optimality results in the rest of this section under the Gaussian
assumption with the focus on estimation under the spectral norm loss. More
general settings will be discussed in Sections 2 and 3. A brief discussion on
estimation under the Schatten q norm losses is given in Section 6.

1.1. Estimation of structured covariance matrices

We will consider in this paper optimal estimation of a range of structured covari-
ance matrices, including bandable, Toeplitz, sparse and sparse spiked covariance
matrices.

Bandable covariance matrices

The bandable covariance structure exhibits a natural “order” or “distance”
among variables. This assumption is mainly motivated by time series with many
scientific applications such as climatology and spectroscopy. See, for example,
Friston et al. (1994) and Visser and Molenaar (1995). We consider settings where
σij is close to zero when |i− j| is large. In other words, the variables Xi and
Xj are nearly uncorrelated when the distance |i− j| between them is large. The
following parameter space was proposed in Bickel and Levina (2008a) (see also
Wu and Pourahmadi (2003)),

Fα (M0,M)

=

{
Σ : max

j

∑
i

{|σij | : |i− j| > k} ≤ Mk−α for all k, and λmax (Σ) ≤ M0

}
.

(1)

The parameter α specifies how fast the sequence σij decays to zero as j → ∞ for
each fixed i. This can be viewed as the smoothness parameter of the class Fα,
which is usually seen in nonparametric function estimation problems. In partic-
ular, for stationary processes, the parameter α is related to the smoothness of
the corresponding spectral density function, which makes Fα(M0,M) a natu-
ral class of covariance matrices. See Grenander and Szegö (1958) for details. A
larger α implies a smaller number of “effective” parameters in the model. Some
other classes of bandable covariance matrices have also been considered in the
literature, for example,

Gα (M1) =
{
Σp×p : |σij | ≤ M1(|i− j|+ 1)−α−1

}
. (2)

Note that Gα (M1) ⊂ Fα (M0,M) if M0 and M are sufficiently large. We will
mainly focus on the larger class (1) in this paper. Assume that p ≤ exp(εn)
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for some constant ε > 0, then the optimal rate of convergence for estimating
the covariance matrix under the spectral norm loss over the class Fα (M0,M)
is given as follows. See Cai et al. (2010).

Theorem 1 (Bandable Covariance Matrix). Suppose X is Gaussian. The min-
imax risk of estimating the covariance matrix over the bandable class given in
(1) under the spectral norm loss is

inf
Σ̂

sup
Fα(M0,M)

E

∥∥∥Σ̂− Σ
∥∥∥2 	 min

{(
log p

n
+ n− 2α

2α+1

)
,
p

n

}
.

The minimax upper bound is derived by using a tapering estimator and the

key rate n− 2α
2α+1 in the minimax lower bound is obtained by applying Assouad’s

lemma. We will discuss the important technical details in Sections 2.1 and 4.2
respectively. An adaptive block thresholding procedure, not depending on the
knowledge of smoothness parameter α, is also introduced in Section 2.1.

Toeplitz covariance matrices

Toeplitz covariance matrix arises naturally in the analysis of stationary stochas-
tic processes with a wide range of applications in many fields, including engi-
neering, economics, and biology. See, for instance, Franaszczuk et al. (1985),
Fuhrmann (1991) and Quah (2000) for specific applications. It can also be viewed
as a special case of bandable covariance matrices. Similar decay or smoothness
assumption like the one given in (1) is imposed, but each descending diago-
nal from left to right is constant for a Toeplitz matrix. Specifically, suppose
the random vector X = (X1, . . . , Xp)

′ consists of the first p variables of a
fixed zero mean stationary process {Xi} as p → ∞. Then the Toeplitz co-
variance matrix Σ of X is uniquely determined by the autocovariance sequence
(σm) ≡ (σ0, σ1, . . . , σp−1, . . .) of {Xi} with σij = σ|i−j| = E(XiXj).

It is well known that the spectrum of Toeplitz covariance matrix Σ is closely
connected to the spectral density of the stationary process {Xi} given by

f (x) = (2π)−1

[
σ0 + 2

∞∑
m=1

σm cos (mx)

]
, for x ∈ [−π, π] .

See, e.g., Grenander and Szegö (1958). Motivated by time series applications,
we consider the following class of Toeplitz covariance matrices FT α (M0,M)
defined in terms of the smoothness of the spectral density f . Let α = γ+β > 0,
where γ is the largest integer strictly less than α, 0 < β ≤ 1,

FT α (M0,M) =
{
f : ‖f‖∞ ≤ M0 and

∥∥∥f (γ)(·+ h)− f (γ)(·)
∥∥∥
∞

≤ Mhβ
}
.

(3)
In other words, the parameter space FT α (M0,M) contains the Toeplitz co-
variance matrices whose corresponding spectral density functions are of Hölder
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smoothness α. See, e.g., Parzen (1957) and Samarov (1977). Another parame-
ter space, which directly specifies the decay rate of the autocovariance sequence
(σm), has also been considered in the literature, see, Cai, Ren, and Zhou (2013).

Under the assumption (np/ log(np))
1

2α+1 < p/2, the following theorem gives the
optimal rate of convergence for estimating the Toeplitz covariance matrices over
the class FT α (M0,M) under the spectral norm loss.

Theorem 2 (Toeplitz Covariance Matrix). Suppose X is Gaussian. The mini-
max risk of estimating the Toeplitz covariance matrices over the class given in
(3) satisfies

inf
Σ̂

sup
FT α(M0,M)

E

∥∥∥Σ̂− Σ
∥∥∥2 	

(
log(np)

np

) 2α
2α+1

.

The minimax upper bound is attained by a tapering procedure on certain
estimators of autocovariance sequence, which is different from those banding
estimators considered in Bickel and Levina (2008a) or Furrer and Bengtsson
(2007). The minimax lower bound is established through the construction of
a more informative model and an application of Fano’s lemma. The essential
technical details can be found in Sections 2.2 and 4.5 respectively. See Cai, Ren,
and Zhou (2013) for further details.

Sparse covariance matrices

For estimating bandable and Toeplitz covariance matrices, one can take advan-
tage of the information from the natural “order” on the variables. However, in
many other applications such as genomics, there is no knowledge of distance or
metric between variables, but the covariance between most pairs of the variables
are often assumed to be insignificant. The class of sparse covariance matrices
assumes that most of entries in each row and each column of the covariance
matrix are zero or negligible. Compared to the previous two classes, there is no
information on the “order” among the variables. We consider the following large
class of sparse covariance matrices,

H(cn,p) =

{
Σ : max

1≤i≤p

p∑
j=1

min{(σiiσjj)
1/2,

|σij |√
(log p)/n

} ≤ cn,p

}
. (4)

If an extra assumption that the variances σii are uniformly bounded with
maxi σii ≤ ρ for some constant ρ > 0 is imposed, then H(cn,p) can be defined in
terms of the maximal truncated �1 norm max1≤i≤p

∑p
j=1min{1,|σij |(n/log p)1/2},

which has been considered in high-dimensional regression setting (see, for ex-
ample, Zhang and Zhang (2012)).

For recovering the support of the sparse covariance matrices, it is natural to
consider the following parameter space in which there are at most cn,p nonzero
entries in each row/column of a covariance matrix,

H0(cn,p) =

{
Σ : max

1≤i≤p

p∑
j=1

I {σij �= 0} ≤ cn,p

}
. (5)
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One important feature of the classes H(cn,p) and H0(cn,p) is that they do
not put any constraint on the variances σii, i = 1, . . . , p. Therefore the vari-
ances σii can be in a very wide range and possibly maxi σii → ∞. When the
additional bounded variance condition maxi σii ≤ ρ for some constant ρ > 0
is imposed, it can be shown that the class H(cn,p) contains other commonly
considered classes of sparse covariance matrices in the literature, including an
�q ball assumption maxi

∑p
j=1 |σij |q ≤ sn,p in Bickel and Levina (2008b), and

a weak �q ball assumption max1≤j≤p

{∣∣σj[k]

∣∣q} ≤ sn,p/k for each integer k in

Cai and Zhou (2012a) where
∣∣σj[k]

∣∣ is the kth largest entry in magnitude of
the jth row (σij)1≤i≤p. More specifically, these two classes of sparse covari-

ance matrices are contained in H(cn,p) with cn,p = Cqsn,p(n/ log p)
q/2 for some

constant Cq depending on q only. The class H(cn,p) also covers the adaptive
sparse covariance class U∗

q (sn,p) proposed in Cai and Liu (2011a), in which each
row/column (σij)1≤i≤p is assumed to be in a weighted �q ball for 0 ≤ q < 1,i.e.,

maxi
∑p

j=1(σiiσjj)
(1−q)/2 |σij |q ≤ sn,p. Similarly U∗

q (sn,p) ⊂ H(cn,p) with cn,p =

Cqsn,p(n/ log p)
q/2 for 0 ≤ q < 1. Although the class H(cn,p) is slightly larger

than the classes defined via �q ball, weak �q ball under bounded variances condi-
tion and the class U∗

q (sn,p), the minimax risks of estimation over these different
classes are the same. Indeed, the least favorable subclass of H(cn,p) chosen to
establish the minimax lower bound is contained in other smaller classes. See
Cai and Zhou (2012b) for further details on the minimax lower bound construc-
tion. It is worthwhile to point out that the class H(cn,p) is less general than
the ones considered in El Karoui (2008) for which consistency results under
the spectral norm loss were established. We advocate the larger sparse covari-
ance class H(cn,p) in this paper not only because it contains almost all other
classes considered in the literature, but also the comparison between the noise
level ((σiiσjj log p)/n)

1/2 and the signal level |σij | captures the essence of the
sparsity of the model.

Under some mild conditions 1 ≤ cn,p ≤ C
√
n/(log p)3 and p ≥ nφ for some

constants φ and C > 0, the optimal rate of convergence for estimating sparse
covariance matrices over the class H(cn,p) under the spectral norm is given as
follows. See Cai and Zhou (2012b).

Theorem 3 (Sparse Covariance Matrix). Suppose X is Gaussian. The minimax
risk of estimating a sparse covariance matrix over the class H(cn,p) given in (4)
satisfies

inf
Σ̂

sup
H(cn,p)

E

∥∥∥Σ̂− Σ
∥∥∥2 	 c2n,p

log p

n
.

The distributional assumption on X can be significantly relaxed. See Section
2.3 for further details. Besides, an adaptive thresholding estimator is constructed
in Section 2.3, and it is shown to be adaptive to the variability of the individual
entries and attains the minimax upper bound. The lower bound argument for
estimation under the spectral norm was given in Cai and Zhou (2012b) by
applying Le Cam-Assouad’s method, which is introduced in Section 4.1.
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Sparse spiked covariance matrices

Spiked covariance matrix

Σ =

r∑
i=1

λrviv
′
i + I, (6)

where λ1 ≥ λ2 ≥ · · · ≥ λr > 0 and the vectors v1, . . . , vr are orthonormal,
arises naturally in principal component analysis as well as factor models with
homoscedastic noise. In particular, the first r eigenvalues of Σ are strictly larger
than 1, the remaining eigenvalues. Since the spectrum of Σ has r spikes, (6) was
first named spiked covariance model in Johnstone (2001).

Before defining the sparse spiked covariance structure, we introduce some
notation. Let the set of p by r matrices with orthonormal columns be O(p, r) =
{V ∈ Rp×r : V ′V = I}. For any such V = (v1, v2, . . . , vr) ∈ O(p, r), we denote
its ith row by Vi,∗. The diagonal matrix Λ = diag(λ1, . . . , λr). The class of sparse
spiked covariance matrices imposes the sparsity on the rows of V . Specifically,
we define

J (cn,p, rn,p, λn,p)=

{
Σ = V ΛV ′ + I : 0 < λr ≤ · · · ≤ λ1 ≤ λn,p,

V ∈ O(p, r),
∑p

j=1 I{Vj,∗ �= 0} ≤ cn,p

}
, (7)

where 1 ≤ rn,p ≤ cn,p ≤ p. More concretely, the group-sparse structure is
imposed on the r leading eigenvectors of Σ in J (cn,p, rn,p, λn,p) and the number
of nonzero rows of V is no more than cn,p. As a consequence, as the sum of
a sparse matrix and an identity matrix, the covariance matrix Σ itself is also
sparse. In particular, there are no more than cn,p nonzero entries in each row
and each column of Σ and hence J (cn,p, rn,p, λn,p) ⊂ H0(cn,p) defined in (5).
However, compared with the previous three structures, sparse spiked covariance
matrix has a very different structural component, the rank r matrix

∑r
i=1 λrviv

′
i.

This extra low-rank structure, together with the sparsity assumption yields
a faster minimax rate of convergence for estimating the covariance matrices
over J (cn,p, rn,p, λn,p) than that over sparse covariance class with sparsity cn,p.
Under the assumption

cn,p

n log ep
cn,p

≤ c for some sufficiently small constant c > 0,

the optimal rate of convergence for estimating sparse spiked covariance matrices
over the class J (cn,p, rn,p, λn,p) under the spectral norm is given as follows. See
Cai et al. (2015).

Theorem 4 (Sparse Spiked Covariance Matrix). Suppose X is Gaussian. The
minimax risk of estimating the sparse spiked covariance matrices over the class
given in (7) satisfies

inf
Σ̂

sup
J (cn,p,rn,p,λn,p)

E

∥∥∥Σ̂− Σ
∥∥∥2 	 min

{
(λn,p + 1) cn,p

n
log

ep

cn,p
+

λ2
n,prn,p

n
, λ2

n,p

}
.

The minimax risk essentially has two terms
(λn,p+1)cn,p

n log ep
cn,p

and
λ2
n,prn,p

n .

The first term does not involve rn,p and is the same bound in the rank-one
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r = 1 setting, in which estimation can be reduced into a single sparse vector
estimation problem. The second term is the oracle risk when the support of V
is known and can be treated as the risk in r dimensional setting. The minimax
upper bound is attained by a global searching scheme for the support of V which
is constructed in Section 2.4. The minimax lower bounds of the two terms are
shown through applications of Fano’s lemma and Le Cam’s method respectively,
which are introduced in Sections 4.1. See Cai et al. (2015) for further details.

1.2. Estimation of structured precision matrices

In addition to covariance matrix estimation, there is also significant interest
in estimation of its inverse, the precision matrix, under the structural assump-
tions on the precision matrix itself. Precision matrix is closely connected to the
undirected Gaussian graphical model, which is a powerful tool to model the re-
lationships among a large number of random variables in a complex system and
is used in a wide array of scientific applications. See, for instance, Wille et al.
(2004) and Runge et al. (2014), for some recent applications in genomics and
climate studies. It is well known that recovering the graph structure G = (V,E)
of an undirected Gaussian graphical model is equivalent to recovering the sup-
port of the precision matrix. In fact, if X ∼ N

(
0,Ω−1

)
is a graphical model

with respect to G, then the entry ωij is zero if and only if the variables Xi

and Xj are conditionally independent given all the remaining variables, which
is equivalent to the edge (i, j) /∈ E. (See, e.g., Lauritzen (1996).) Consequently,
a sparse graph corresponds to a sparse precision matrix. We thus focus on es-
timation of sparse precision matrices and present the optimality results under
the Gaussian assumption.

Sparse precision matrices and Gaussian graphical model

The class of sparse precision matrices assumes that most of entries in each
row/column of the precision matrix are zero or negligible. The class of sparse
precision matrices HP(cn,p,M) introduced in this section is similar to the class
of sparse covariance matrices defined in (4), where the sparsity is modeled by
a truncated �1 type norm. We also assume the spectra of Ω are bounded from
below and maxi σii is bounded above for simplicity. More specifically, we define
HP(cn,p,M) by

HP(cn,p,M) =

{
Ω : max1≤i≤p

∑
j �=i min{1, |ωij |√

(log p)/n
} ≤ cn,p,

1
M ≤ λmin(Ω),maxi σii ≤ M,Ω � 0

}
, (8)

where M is some universal constant and the sparsity parameter cn,p is allowed
to grow with p, n → ∞.

This class of precision matrices was proposed in Ren et al. (2015) and contains
similar classes proposed in Cai et al. (2011) and Cai et al. (2012), in which an
extra matrix �1 norm bound Mn,p is included in the definition. As a special case
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where each |ωij | is either zero or above the level (n/ log p)−1/2, such a matrix
in HP(cn,p,M) has at most cn,p nonzero entries on each row/column which is
called the maximum node degree of Ω in the Gaussian graphical model. We
define the following class for the support recovery purpose,

HP0(cn,p,M) =

{
Ω : max1≤i≤p

∑p
j=1 I {ωij �= 0} ≤ cn,p,

1
M ≤ λmin(Ω),maxi σii ≤ M,Ω � 0

}
. (9)

The following theorem provides the optimal rate of convergence for estimating
sparse precision class under the spectral norm loss.

Theorem 5 (Sparse Precision Matrix). Suppose X is Gaussian. Assume that
1 ≤ cn,p ≤ C

√
n/(log p)3. The minimax risk of estimating the sparse precision

matrix over the class HP(cn,p,M) given in (8) satisfies

inf
Ω̂

sup
HP(cn,p,M)

E

∥∥∥Ω̂− Ω
∥∥∥2 	 c2n,p

log p

n
.

In Section 3.1, we establish the minimax upper bound via a neighborhood
regression approach. The estimator ANT introduced in Section 3.2 also achieves
this optimal rate. The lower bound argument is provided by applying Le Cam-
Assouad’s method developed in Cai et al. (2012) which is discussed in Section
4.4.

For estimating sparse precision matrices, besides the minimax risk under the
spectral norm, it is also important to understand the minimax risk of estimating
individual entries of the precision matrix. The solution is not only helpful for
the support recovery problem but also makes important advancements in the
understanding of statistical inference of low-dimensional parameters in a high-
dimensional setting. See Ren et al. (2015).

Theorem 6 (Entry of Sparse Precision Matrix). Suppose X is Gaussian. As-
sume that (cn,p log p)/n = o(1). The minimax risk of estimating ωij for each i, j
over the sparse precision class given in (8) is

inf
ω̂ij

sup
HP(cn,p,M)

E |ω̂ij − ωij | 	 max

{
cn,p

log p

n
,

√
1

n

}
.

The minimax upper bound is based on a multivariate regression approach
given in Section 3.2 while Le Cam’s lemma is used to show the minimax lower
bound in Section 4.3.

1.3. Organization of the paper

The rest of the paper is organized as follows. Section 2 presents several minimax
and adaptive procedures for estimating various structured covariance matrices
and establishes the corresponding minimax upper bounds under the spectral
norm loss. Estimation under the factor models and sparse principal component
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analysis are also discussed. Section 3 considers minimax and adaptive estimation
of sparse precision matrices under the spectral norm loss. Section 3 also discusses
inference on the individual entries of a sparse precision matrix and the latent
graphical model. Section 4 focuses on the lower bound arguments in matrix
estimation problems. It begins with a review of general lower bound techniques
and then applies the tools to establish rate-sharp minimax lower bounds for
various covariance and precision matrix estimation problems. The upper and
lower bounds together yield immediately the optimal rates of convergence stated
earlier in this section. Section 5 briefly discusses the non-centered mean case and
the positive semi-definite issue in covariance and precision matrix estimation.
Hypothesis testing on the covariance structure is also discussed. The paper is
concluded with a discussion on some open problems on estimating covariance
and precision matrices as well as their functionals in Section 6.

2. Estimation of structured covariance matrices

This section focuses on estimation of structured covariance matrices. Minimax
upper bounds and adaptive procedures are introduced. Many estimators are
based on “smoothing” the sample covariance matrices. These include the band-
ing, tapering and thresholding estimators. The optimal estimator for sparse
spiked covariance matrices, however, relies on a global searching scheme. Esti-
mation of precision matrices is considered in the next section.

2.1. Bandable covariance matrices

Minimax upper bound

Bickel and Levina (2008a) introduced the class of bandable covariance matrices
Fα(M0,M) given (1) and proposed a banding estimator

Σ̂B,k = (σ̂ijI {|i− j| ≤ k}) (10)

based on the sample covariance matrix Σ̂n = (σ̂ij) for estimating a covariance

matrix Σ ∈ Fα(M0,M). The bandwidth k was chosen to be kB =
(

log p
n

) 1
2(α+1)

and the rate of convergence
(

log p
n

) α
α+1

for estimation under the spectral norm

loss was proved under the sub-Gaussian assumption on X = (X1, . . . , Xp)
′. It

was unclear if this rate is optimal.
Cai et al. (2010) further studied the optimal estimation problem for the

classes Fα (M0,M) in (1) and Gα (M1) in (2) under the sub-Gaussian assump-
tion. A tapering estimator was proposed. Tapering estimators have been effec-
tively used in the literature of climate studies. See, for instance, Gaspari and
Cohn (1999), Houtekamer and Mitchell (2001) and Hamill et al. (2001). Fur-
rer et al. (2006) and Furrer and Bengtsson (2007) previously also considered
tapering estimators for estimating covariance matrices but in different settings.
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Specifically, for a given even positive integer k ≤ p, let ω = (ωm)0≤m≤p−1 be a
weight sequence with ωm given by

ωm =

⎧⎨
⎩

1, when m ≤ k/2
2− 2m

k , when k/2 < m ≤ k
0, Otherwise

. (11)

The tapering estimator Σ̂T,k of the covariance matrix Σ is defined by

Σ̂T,k = (σ̂ijω|i−j|).

It was shown that the tapering estimator with bandwidth kT = min{n 1
2α+1 , p}

gives the following rate of convergence under the spectral norm.

Theorem 7 (Cai et al. (2010)). Suppose that X is sub-Gaussian distributed with

some finite constant. Then the tapering estimator Σ̂T,k with kT = min{n 1
2α+1 , p}

satisfies

sup
Fα(M0,M)

E

∥∥∥Σ̂T,kT
− Σ
∥∥∥2 ≤ min

{
C

(
log p

n
+ n− 2α

2α+1

)
, C

p

n

}
. (12)

Theorem 7 clearly also holds for Gα (M1), a subspace of Fα(M0,M). Note

that the rate given in (12) is faster than the rate ((log p)/n)
α/(α+1)

obtained in
Bickel and Levina (2008a) for the banding estimator Σ̂B,k with the bandwidth

kB =
(

log p
n

) 1
2(α+1)

, which implies that this banding estimator is sub-optimal. A

minimax lower bound is also established in Cai et al. (2010), which shows that
the rate of convergence in (12) is indeed optimal. We will discuss this minimax
lower bound argument in Section 4.2.

There are two key steps in the technical analysis of the tapering estimator.
In the first step, it is shown that the tapering estimator Σ̂T,k has a simple repre-
sentation and can be written as the average of many small disjoint submatrices
of size no more than k in the sample covariance matrix Σ̂n. Consequently, the

distance
∥∥∥Σ̂T,kT

− Σ
∥∥∥ can be bounded by the maximum of distances of these

submatrices from their respective means. The second key step involves the ap-
plication of a large deviation result for sample covariance matrix of relatively
small size under the spectral norm. This random matrix result, stated in the fol-
lowing lemma, is a commonly used technical tool in high-dimensional statistical
problems. See Cai et al. (2010) for further details.

Lemma 1. Suppose Y = (Y1, . . . , Yk)
′ is sub-Gaussian with constant ρ > 0

and with mean 0 and covariance matrix Σ. Let Y (1), . . . , Y (n) be n independent
copies of Y . Then there exist some universal constant C > 0 and some constant
ρ1 depending on ρ, such that the sample covariance matrix of {Y (1), . . . , Y (n)},
Σ̂Y

n , satisfies

P

(∥∥∥Σ̂Y
n − Σ

∥∥∥ > t
)
≤ 2 exp(−nt2ρ1 + Ck),

for all 0 < t < ρ1.
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See also Davidson and Szarek (2001) for more refined results under the Gaus-
sian assumption.

For the banding estimator, Bickel and Levina (2008a) used the matrix �1
norm as the upper bound to control the spectral norm. Then bounding the risk
under the spectral norm can be turned into bounding the error on each row of
Σ̂n under the vector �1 norm, which is an easier task. An analysis of the bias and

variance trade-off then leads to their choice of bandwidth kB = (n/ log p)
1

2(α+1) .
The loose control of spectral norm by the matrix �1 norm is the main reason
for the sub-optimal result in Bickel and Levina (2008a) under the spectral norm
loss. It is worthwhile to point out that the result in Bickel and Levina (2008a) is
still not optimal under the matrix �1 norm loss due to the sub-optimal choice of
the bandwidth. See the discussion on estimation under other losses at the end
of this section. An interesting question is whether the banding estimator with
a different bandwidth is also optimal. Indeed it can be shown that the banding

estimator Σ̂B,k with the bandwidth k = min{n 1
2α+1 , p} is rate-optimal. See, for

example, Xiao and Bunea (2014) for a detailed calculation under the Gaussian
assumption.

Adaptive estimation through block thresholding

It is evident that the construction of the optimal tapering estimator Σ̂T,kT

requires the explicit knowledge of the decay rate α which is usually unknown
in practice. Cai and Yuan (2012) considered the adaptive estimation problem
and constructed a data-driven block thresholding estimator, not depending on
α, M0, M or M1, that achieves the optimal rate of convergence simultaneously
over the parameter spaces Fα (M0,M) and Gα (M1) for all α > 0.

The construction of the adaptive estimator consists of two steps. In the first
step, we divide the sample covariance matrix into blocks of increasing sizes as
they move away from the diagonal, suggested by the decay structure of the
bandable covariance matrices. The second step is to simultaneous kill or keep
all the entries within each block to construct the final estimator, where the
thresholding levels are chosen adaptively for different blocks. The underlying
idea is to mimic the analysis for the tapering estimator Σ̂T,kT

in the sense that
the final estimator can be decomposed as the sum of small submatrices. However,
the choice of the bandwidth is chosen adaptively here through using the block
thresholding strategy, where the threshold rule is established by a novel norm
compression inequality. See Theorem 3.4 of Cai and Yuan (2012) for details.

Now we briefly introduce the construction of blocks. First, we construct dis-
joint square blocks of size kad 	 log p along the diagonal. Second, a new layer
of blocks of size kad are created towards the top right corner along the diagonal
next to the previous layer. In particular, this layer of blocks has either two or
one block (of size kad) in an alternating fashion (see Figure 1). After this step,
we note that the odd rows of blocks has three blocks of size kad and even rows
of blocks have two blocks of size kad. This creates space to double the size of
the blocks in the next step. We then repeat the first and second steps building
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Fig 1. Construction of blocks with increasing dimensions away from the diagonal.

on the previous layer of blocks but double the size of the blocks until the whole
upper half of the matrix is covered. In the end, the same blocking construction
is done for the lower half of the matrix. It is possible that the last row and last
column of the blocks are rectangular instead of being square. For the sake of
brevity, we omit the discussion on these blocks. See Cai and Yuan (2012) for
further details. By the construction, the blocks form a partition of {1, . . . , p}2.
We list the indices of those blocks by B = {B1, . . . , BN}, assuming there are N
blocks in total. The construction of the blocks is illustrated in Figure 1.

Once the blocks B are constructed, we define the final adaptive estima-
tor Σ̂Ada

CY by the following thresholding procedure on the blocks of the sam-

ple covariance matrix Σ̂n. First, we keep the diagonal blocks of size kad con-
structed at the very beginning, i.e., (Σ̂Ada

CY )B = (Σ̂n)B for those B in the

diagonal. Second, we set all the large blocks to 0, i.e., (Σ̂Ada
CY )B = 0 for all

B ∈ B with size(B) > n/ logn, where for B = I × J , size(B) is defined
to be max{|I|, |J |}. In the end, we threshold the intermediate blocks adap-
tively according to their spectral norm as follows. Suppose B = I × J . Then
(Σ̂Ada

CY )B = (Σ̂n)BI{||(Σ̂n)B || > λB}, where

λB = 6(||(Σ̂n)I×I || · ||(Σ̂n)J×J ||(size(B) + log p)/n)1/2.

Finally we obtain the adaptive estimator Σ̂Ada
CY , which is rate optimal over the

classes Fα (M0,M) or Gα (M1).

Theorem 8 (Cai and Yuan (2012)). Suppose that X is sub-Gaussian distributed
with some finite constant. Then for all α > 0, the adaptive estimator Σ̂Ada

CY
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constructed above satisfies

sup
Fα(M0,M)

E

∥∥∥Σ̂Ada
CY − Σ

∥∥∥2 ≤ minC

{(
log p

n
+ n− 2α

2α+1

)
,
p

n

}
,

where the constant C depends on α, M0 and M .

In light of the optimal rate of convergence given in Theorem 1, this shows
that the block thresholding estimator adaptively achieves the optimal rate over
Fα(M0,M) for all α > 0.

Estimation under other losses

In addition to estimating bandable covariance matrices under the spectral norm,
estimation under other losses has also been considered in literature. Furrer
and Bengtsson (2007) introduced a general tapering estimator, which gradually
shrinks the off-diagonal entries toward zero with certain weights, to estimate
covariance matrices under the Frobenius norm loss in different settings. Cai
et al. (2010) studied the problem of optimal estimation under the Frobenius
norm loss over the classes Fα (M0,M) and Gα (M1), and Cai and Zhou (2012a)
investigated optimal estimation under the matrix �1 norm.

The optimal estimators for both the Frobenius norm and matrix �1 norm are
again based on the tapering estimator (or banding estimator) with the band-

width kT,F = n
1

2(α+1) and kT,1 = min
{
n

1
2(α+1) , (n/ log p)

1
2α+1

}
respectively. The

rate of convergence under the Frobenius norm of Fα(M0,M) is different from
that of Gα(M1). The optimal rate of convergence under the matrix �1 norm

is min
{(

(log p/n)
2α

2α+1 + n− α
α+1

)
, p2/n

}
. Their corresponding minimax lower

bounds are established in Cai et al. (2010) and Cai and Zhou (2012a). Com-
paring these estimation results, it should be noted that although the optimal
estimators under different norms are all based on tapering or banding, the best
bandwidth critically depends on the norm under which the estimation accuracy
is measured.

2.2. Toeplitz covariance matrices

We turn to optimal estimation of Toeplitz covariance matrices. Recall that if X
is a stationary process with autocovariance sequence (σm), then the covariance
matrix Σp×p has the Toeplitz structure such that σij = σ|i−j|.

Wu and Pourahmadi (2009) introduced and studied a banding estimator
based on the sample autocovariance matrix, and McMurry and Politis (2010)
extended their results to tapering estimators. Xiao and Wu (2012) further im-
proved these two results and established sharp banding estimator under the
spectral norm. All these results are obtained in the framework of causal rep-
resentation and physical dependence measures proposed in Wu (2005). One
important assumption is that there is only one realization available, i.e. n = 1.
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More recently, Cai, Ren, and Zhou (2013) considered the problem of optimal
estimation of Toeplitz covariance matrices over the class FT α(M0,M). The re-
sult is valid not only for fixed sample size but also for the general case when
n, p → ∞.

An optimal tapering estimator is constructed by tapering the sample autoco-
variance sequence. More specifically, recall Σ̂n = (σ̂ij) is the sample covariance
matrix. For 0 ≤ m ≤ p− 1, set

σ̃m = (p−m)−1
∑

s−t=m

σ̂st,

which is an unbiased estimator of σm. The estimator σ̃m was also proposed in
Bickel and Levina (2004). Then the tapering Toeplitz estimator Σ̂Toep

T,k = (σ̆st)
of Σ with bandwidth k is defined as σ̆st = ω|s−t|σ̃|s−t|, where the weight
ωm is defined in (11). By picking the best choice of the bandwidth kTo =

(np/ log (np))
1

2α+1 , the optimal rate of convergence is given as follows.

Theorem 9 (Cai, Ren, and Zhou (2013)). Suppose that X is Gaussian dis-
tributed with a Toeplitz covariance matrix Σ ∈ FT α (M0,M) and suppose

(np/ log (np))
1

2α+1 ≤ p/2. Then the tapering estimator Σ̂Toep
T,k with kTo =

(np/ log (np))
1

2α+1 satisfies

sup
Σ∈FT α(M0,M)

E

∥∥∥Σ̂Toep
T,kTo

− Σ
∥∥∥2 ≤ C

(
log(np)

np

) 2α
2α+1

.

The performance of the banding estimator was also considered in Cai, Ren,
and Zhou (2013). Surprisingly, the best banding estimator is inferior to the
optimal tapering estimator over the class FT α(M0,M), which is due to a larger
bias term caused by the banding estimator. See Cai, Ren, and Zhou (2013) for
further details. At a high level, the upper bound proof is based on the fact that
the spectral norm of a Toeplitz matrix can be bounded above by the sup-norm
of the corresponding spectral density function. which leads to the appearance
of the logarithmic term in the upper bound. A lower bound argument will be
introduced in Section 4.5. The appearance of the logarithmic term indicates the
significant difference in the technical analyses between estimating bandable and
Toeplitz covariance matrices.

2.3. Sparse covariance matrices

We now consider optimal estimation of another important class of structured
covariance matrices – sparse covariance matrices. This problem has been con-
sidered by Bickel and Levina (2008b), Rothman et al. (2009) and Cai and
Zhou (2012a,b). These works assume that the variances are uniformly bounded,
i.e., maxi σii ≤ ρ for some constant ρ > 0. Under such a condition, a uni-

versal thresholding estimator Σ̂U,Th =
(
σ̂U,Th
ij

)
is proposed with σ̂U,Th

ij =
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σ̂ij · I{|σ̂ij | ≥ γ (log p/n)
1/2} for some sufficiently large constant γ = γ(ρ).

This estimator is not adaptive as it depends on the unknown parameter ρ. The

rates of convergence sn,p (log p/n)
(1−q)/2

under the spectral norm and matrix �1
norm in probability are obtained over the classes of sparse covariance matrices,
in which each row/column is in an �q ball or a weak �q ball, 0 ≤ q < 1. i.e.
maxi

∑p
j=1 |σij |q ≤ sn,p or max1≤j≤p

{∣∣σj[k]

∣∣q} ≤ sn,p/k respectively.

Sparse covariance matrices: Adaptive minimax upper bound

Estimation of a sparse covariance matrix is intrinsically a heteroscedastic prob-
lem in the sense that the variances of the entries of the sample covariance matrix
σ̂ij can vary over a wide range. A universal thresholding estimator essentially
treats the problem as a homoscedastic problem and does not perform well in
general. Cai and Liu (2011a) proposed a data-driven estimator Σ̂Ad,Th which
adaptively thresholds the entries according to their individual variabilities,

Σ̂Ad,Th = (σ̂Ad,Th
ij ), θ̂ij =

1

n

n∑
k=1

(XkiXkj − σ̂ij)
2 (13)

σ̂Ad,Th
ij = σ̂ij · I{|σ̂ij | ≥ δ(θ̂ij log p/n)

1/2}.

The advantages of this adaptive procedure are that it is fully data-driven and
no longer requires the variances σii to be uniformly bounded. The estimator
Σ̂Ad,Th attains the following rate of convergence adaptively over sparse covari-
ance classes H(cn,p) defined in (4) under the matrix �ω norms for all ω ∈ [1,∞].

Theorem 10 (Sparse Covariance Matrices). Suppose each standardized com-

ponent Yi = Xi/σ
1/2
ii is sub-Gaussian distributed with some finite constant and

a mild condition minij Var(YiYj) ≥ c0 for some positive constant c0. Then the

adaptive estimator Σ̂Ad,Th constructed above in (13) satisfies

inf
H(cn,p)

P

(
‖Σ̂Ad,Th − Σ‖�ω ≤ Ccn,p((log p)/n)

1/2
)
≥ 1−O((log p)−1/2p−δ+2),

(14)
where ω ∈ [1,∞].

A similar idea was applied in the practical implementation without theoreti-
cal justification in El Karoui (2008). The proof of Theorem 10 essentially follows
from the analysis in Cai and Liu (2011a) for Σ̂Ad,Th under the
matrix �1 norm over a smaller class of sparse covariance matrices U∗

q (sn,p),
where each row/column (σij)1≤i≤p is assumed to be in a weighted �q ball,

maxi(σiiσjj)
(1−q)/2 |σij |q ≤ sn,p. That result is automatically valid for all ma-

trix �ω norms, following the claim in Section 6 of Cai and Zhou (2012b), where
the Riesz-Thorin interpolation theorem is applied. The key technical tool in the
analysis is the following large deviation result for self-normalized entries of the
sample covariance matrix.

Lemma 2. Under the assumptions of Theorem 10, for any small ε > 0,

P( |σ̂ij − σij | /θ̂1/2ij ≥
√

α(log p)/n) = O((log p)−1/2p−(α/2−ε)),
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Lemma 2 follows from a moderate deviation result in Shao (1999). See Cai
and Liu (2011a) for further details.

Theorem 10 states the rate of convergence in probability. The same rate of
convergence holds in expectation with a mild sample size condition p ≥ nφ for
some φ > 0. A minimax lower bound argument under the spectral norm is pro-
vided in Cai and Zhou (2012b) (see also Section 4.4), which shows that Σ̂Ad,Th

is indeed rate optimal under all matrix �ω norms. In contrast, the universal
thresholding estimator Σ̂U,Th is sub-optimal over H(cn,p) due to the possibility
of maxi (σii) → ∞.

Besides the matrix �ω norms, Cai and Zhou (2012b) considered a unified
result on estimating sparse covariance matrices under a class of Bregman diver-
gence losses which include the commonly used Frobenius norm as a special case.
Following a similar proof there, it can be shown that the estimator Σ̂Ad,Th also
attains the optimal rate of convergence under the Bregman divergence losses
over the large parameter class H(cn,p). In addition to the hard thresholding es-
timator introduced above, Rothman et al. (2009) considered a class of threshold-
ing rules with more general thresholding functions including soft thresholding,
SCAD and adaptive Lasso. It is straightforward to extend all results above to
this setting. Therefore, the choice of the thresholding function is not important
as far as the rate optimality is concerned.

It is worthwhile to point out that all related results hold under assumptions on
the marginals of X only. This is significantly different from other covariance ma-
trices estimation problems, where joint distributional assumptions are typically
imposed. Among these results, distributions with polynomial-type tails have
been considered by Bickel and Levina (2008b), El Karoui (2008) and Cai and
Liu (2011a). In particular, Cai and Liu (2011a) showed that the adaptive thresh-
olding estimator Σ̂Ad,Th attains the same rate of convergence cn,p((log p)/n)

1/2

as the one for the sub-Gaussian case (14) in probability over the class U∗
q (sn,p),

assuming that for some γ, C > 0, p ≤ Cnγ and for some ε > 0, such that
E |Xj |4γ+4+ε ≤ K for all j. The superiority of the adaptive thresholding estima-

tor Σ̂Ad,Th for heavy-tailed distributions is also due to the moderate deviation
for the self-normalized statistic σ̂ij/θ̂ij (see Shao (1999)). It is easy to see that
this still holds over the class H(cn,p). Recently, Chen et al. (2013) and Basu
and Michailidis (2015) considered sparse covariance matrix estimation for time
series data based on certain dependence measures, which play an important role
in the rates of convergence. In particular, the results in Basu and Michailidis
(2015) rely on a new measure of stability for stationary processes without using
the commonly imposed functional dependence measure in Wu (2005).

Support recovery

A closely related problem to estimating a sparse covariance matrix is the recov-
ery of the support of the covariance matrix. This problem has been considered
by, for example, Rothman et al. (2009) and Cai and Liu (2011a). For support
recovery, it is natural to consider the parameter space H0(cn,p). Define the
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support of Σ = (σij) by supp (Σ) = {(i, j) : σij �= 0}. Rothman et al. (2009)

applied the universal thresholding estimator Σ̂U,Th to estimate the support of
true sparse covariance in H0(cn,p), assuming bounded variances maxi (σii) ≤ ρ.
In particular, it successfully recovers the support of Σ in probability, provided
that the magnitudes of the nonzero entries are above a certain threshold, i.e.,

min(i,j)∈supp(Σ) |σij | > γ0 (log p/n)
1/2

for a sufficiently large γ0 > 0.

Cai and Liu (2011a) extended this result under a weaker assumption on
entries in the support using the adaptive thresholding estimator Σ̂Ad,Th. We
state the result below.

Theorem 11 (Cai and Liu (2011a)). Let δ ≥ 2. Suppose the assumptions in
Theorem 10 hold and for all (i, j) ∈ supp (Σ)

|σij | > (2 + δ + γ) (θij log p/n)
1/2

,

for some constant γ > 0, where θij = Var (XiXj). Then we have

inf
H0(cn,p)

P(supp(Σ̂Ad,Th) = supp(Σ)) → 1.

2.4. Spiked sparse covariance matrices

Minimax upper bound

We now turn to the optimal estimation of sparse spiked covariance matrices over
J (cn,p, rn,p, λn,p) in (7) under the squared spectral norm loss. Recall the spiked
covariance structure Σ = V ΛV ′+I is defined in (6). This structure was originally
considered in Johnstone (2001) and have been studied by several papers under
the sparse principal component analysis setting, including Paul (2007), Nadler
(2008), Johnstone and Lu (2009), Amini andWainwright (2009), Birnbaum et al.
(2013), Ma (2013), Vu and Lei (2013), Cai et al. (2013), Berthet and Rigollet
(2013) and Cai et al. (2015). However, most of the works considered estimating
either individual leading eigenvector vi or the principal subspace V V ′ spanned
by rn,p leading eigenvectors under the Frobenius norm loss. A brief discussion
along this line is presented later in this section. Despite its close relationship
with estimation of the covariance matrix Σ via the well-known sin-theta theorem
(Davis and Kahan (1970)), the optimality estimation of sparse spiked covariance
matrices cannot be obtained immediately, especially under the setting where rn,p
and λn,p go to infinity as n, p → ∞.

In a recent work, Cai et al. (2015) considered minimax estimation of sparse
spiked covariance matrices under the squared spectral norm. The key step of
constructing optimal estimators is a global searching scheme to find the support
of V . More specifically, let the support of V be supp (V ) = {i : Vi,∗ �= 0} ⊂
{1, . . . , p} and the cardinality of any set S be DS . Recall Σ̂ = (σ̂ij) is the sample
covariance matrix. Then the estimator of supp (V ) is defined by an arbitrary
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element in the following set

SV (cn,p)=

{
S ⊂ {1, . . . , p} : DS = cn,p, and for all A ⊂ Sc with DA ≤ cn,p,∥∥Σ̂A,A − I

∥∥ ≤ η(DA, n, p, γ),
∥∥Σ̂A,S

∥∥ ≤ 2
√∥∥Σ̂S,S

∥∥η(cn,p, n, p, γ)
}
,

where the thresholding quantity

η (a, n, p, γ) = 2

(√
a

n
+

√
γ

n
a log(ep/a)

)
+

(√
a

n
+

√
γ

n
a log(ep/a)

)2

,

with γ ≥ 10 under the Gaussian assumption. Intuitively, the two deviation
criterions in SV (cn,p) admit supp (V ) as a feasible element and at the same time
rule out the possibility that Sc overlaps with supp (V ) for any S ∈ SV (cn,p).
The quantity η (a, n, p, γ) is carefully picked under the Gaussian assumption
based on the Davidson-Szarek bound (Davidson and Szarek (2001)). See Cai
et al. (2015) (also Proposition D.1 in Ma (2013)) for further details. Given an
estimator Ŝ ∈ SV (cn,p) of supp (V ), the final sparse spiked covariance matrix
estimator can be defined as

Σ̂CMW =
(
σ̂CMW
ij

)
, where σ̂CMW

ij = σ̂ijI{i ∈ Ŝ, j ∈ Ŝ}+ 1I{i = j /∈ Ŝ}. (15)

We set Σ̂CMW = I if SV (cn,p) is the empty set. It was shown that the global

search estimator Σ̂CMW attains the following rate of convergence under the
spectral norm.

Theorem 12 (Cai et al. (2015)). Suppose that X is Gaussian distributed. If
cn,p

n log ep
cn,p

≤ c for a sufficiently small constant c > 0, then

sup
J (cn,p,rn,p,λn,p)

E

∥∥∥Σ̂CMW − Σ
∥∥∥2 ≤ C

(
(λn,p + 1) cn,p

n
log

ep

cn,p
+

λ2
n,prn,p

n

)
.

At a high level, the first term in the upper bound above does not involve rn,p
and is due to estimation of the leading eigenvector. The second term essentially
follows from the estimation error of eigenvalue for a cn,p by cn,p matrix with rank
rn,p. It is clear that under the setting in which λn,p is bounded by a universal
constant, the rate of convergence reduces to

cn,p

n log ep
cn,p

since rn,p cannot be

larger than cn,p. Under such a setting, it is interesting to compare the rates
of convergence over J (cn,p, rn,p, λn,p) and a larger class H0(cn,p) considered in

Section 2.3. Theorems 10 and 12 imply that the rate is reduced from
c2n,p log p

n
to

cn,p

n log ep
cn,p

. This much faster rate of convergence can be achieved because

of the extra spike structure.
Unlike other estimators considered in the previous sections which are ob-

tained from the sample covariance via a direct “smoothing” step, the estimator
Σ̂CMW is obtained by a global search for the support of V , which is compu-
tationally intensive. It is of interest to ask whether a computationally efficient
while still minimax optimal estimator exists. Consider a special case of rank one
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rn,p = 1. Some recent works imply that without a strong sample size condition,

namely n > Cc2n,p
log p
λ2
n,p

for a sufficiently large constant C > 0, minimax estima-

tion cannot be achieved by any randomised polynomial-time algorithm. Indeed,
Berthet and Rigollet (2013) first showed that there is no computationally effi-
cient algorithm for a sparse principal component detection problem when the
strong sample size condition is violated, assuming the widely-believed hardness
of Planted Clique detection problem. See Wang et al. (2014) for the extension
to the problem of estimating leading eigenvector. Both works established this
computational lower bound by reducing the PCA problems into the Planted
Clique detection problem but required a larger parameter space which includes
many general distributions besides Gaussian distribution. In a recent work, Gao
et al. (2014) bridged the gap and established this result for estimating leading
eigenvector, faithful to the Gaussian spiked covariance model. It is immediate
to extend it into the estimation of covariance matrix Σ because of rn,p = 1. See
Gao et al. (2014) for further details.

When the upper bound in Theorem 12 is larger than λ2
n,p, it is trivial to use

identity matrix as the estimation with an upper bound rate λ2
n,p. A minimax

lower bound is also constructed in Cai et al. (2015) to show that the minimum
of λ2

n,p and the rate of convergence in Theorem 12 is indeed optimal.

Sparse principal component analysis

Principal component analysis (PCA) is one of the most commonly used tech-
niques for dimension reduction and feature extraction with many applications,
including image recognition, data compression, and clustering. PCA is closely
related to, but different from, covariance matrix estimation under the matrix
norm losses. In the classical fixed p setting, the leading eigenvector or eigenspace
of Σ can be consistently estimated by the counterparts operated on the sample
covariance matrix Σ̂n as n → ∞. However this standard PCA approach yields
inconsistent estimators in the high-dimensional settings when the spectra of the
population covariance matrix remain bounded. See, for example, Paul (2007),
d’Aspremont et al. (2007) and Johnstone and Lu (2009). It is worthwhile to
point out that this is different from the high-dimensional factor model consid-
ered in Fan et al. (2013), where leading eigenvalues increase at least in order of
p and as a result the standard PCA still performs well.

Various regularized approaches have been introduced in the literature for
PCA, assuming certain sparsity structures on the leading eigenvectors. Zou et al.
(2006) imposed Lasso type sparsity constraints on the eigenvector after trans-
forming the PCA problem into a regression problem. d’Aspremont et al. (2007)
proposed a semi-definite program as a relaxation to the �0 penalty. Shen and
Huang (2008) applied a regularized low-rank approach with its consistency es-
tablished in Shen et al. (2013). See also Jolliffe et al. (2003) and Witten et al.
(2009) for other methodologies.

Theoretical analysis for PCA has so far mainly focused on the spiked covari-
ance matrix model Σ =

∑r
i=1 λrviv

′
i+I, defined in (6). It is commonly assumed
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that the λi’s are bounded from below and above by some universal constants

and each eigenvector vi is either in a weak �q ball with radius c
1/q
n,p for 0 < q < 2

or exactly sparse with cn,p nonzero entries for q = 0.

Johnstone and Lu (2009) considered the single spike case r = 1 and proposed
a diagonal thresholding (DT) procedure. In particular, a thresholding proce-
dure is applied to each σ̂ii to pick out those coordinates of strong signals with
magnitude at least at the level of ((log p)/n)1/4 and then the standard PCA is
performed on this subset of coordinates. The final estimator of the leading eigen-
vector is obtained by padding zeros to the remaining coordinates. Consistency is
shown in the paper for estimating the leading eigenvector v1 under the squared
�2 loss. Amini and Wainwright (2009) studied the theoretical properties of the
leading eigenvectors obtained in Johnstone and Lu (2009) and d’Aspremont
et al. (2007) with a focus on the model selection setting, in which the leading
eigenvector v1 is exactly sparse, i.e. q = 0.

Birnbaum et al. (2013) established the minimax rates of convergence
cn,p(log p/n)

1−q/2 of the individual leading eigenvectors for finite r with dis-
tinct leading eigenvalues λi �= λj for i �= j. The DT method is shown to be
sub-optimal but can be used as the first step of a two-stage optimal coordinate
selection approach called ASPCA. The purpose of the second stage is to further
pick out those coordinates with magnitude larger than the optimal threshold
level ((log p)/n)1/2. Ma (2013) proposed an iterative thresholding procedure (IT-
SPCA) based on DT, which also attains the same optimal rate for estimating
each leading eigenvector. Estimation of the principal subspace spanned by the
leading r eigenvectors is more appropriate when some of the leading eigenval-
ues have multiplicity great than one. Ma (2013) further established the rates
of convergence of ITSPCA for estimating leading principal subspace under a
loss function defined by the squared Frobenius distance between the projection
matrices of the leading principal subspace V = (v1, v2, . . . , vr) and its estimator
V̂ , i.e., ‖V V ′ − V̂ V̂ ′‖2F .

All results discussed above assumed finite rank r. Cai, Ma, and Wu (2013)
further considered the optimality problems of estimating the leading principal
subspace under a group sparsity assumption, allowing the number of spikes r to
diverge to infinity. Specifically, it is assumed that the vector obtained from the

�2 norm of each row of V is in a weak �q ball with radius c
1/q
n,p for 0 < q < 2 or ex-

actly sparse with cn,p nonzero entries for q = 0. The minimax rate of convergence
is established and an aggregation procedure is constructed and shown to attain
the optimal rate cn,p((r+ log ep

cn,p
)/(nh(λ)))1−q/2, where h(λ) = λ2/(1+λ) and

leading eigenvalues λi 	 λ for all i. In particular, the rate is optimal with re-
spect to all the parameters n, p, r, λ, cn,p. However, this aggregation procedure is
computationally infeasible and an optimal adaptive procedure is then proposed
in Cai, Ma, and Wu (2013). Vu and Lei (2013) extended the spiked covariance
model (6) into a more general setting and considered the problem of optimally
estimating the leading eigenspace under group sparsity or column sparsity in
a slightly difference setting. Compared to the optimal rates in Cai, Ma, and
Wu (2013), the dependency on λ is not optimal for the method proposed in Vu
and Lei (2013). In a related paper, Cai et al. (2015) further studied the mini-
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max estimation the principal subspace V under the squared spectral norm loss
‖V V ′− V̂ V̂ ′‖2 based on the estimator Σ̂CMW in (15) proposed for the minimax
estimation of spiked covariance matrix we discussed at the beginning of this
section.

Factor model

Factor models in the high-dimensional setting have been used in a range of ap-
plications in finance and economics such as modeling wage rates and optimal
portfolio allocations. See, for instance, Engle and Watson (1981) and Goldfarb
and Iyengar (2003). Despite closely related to the spiked covariance models
where the covariance also can be written as the sum of a low-rank and a sparse
matrix, estimation of factor models is different from that of sparse spiked covari-
ance matrices. We consider the following multi-factor model (See Ross (1976,
1977) and Chamberlain and Rothschild (1983).) Xj = b′

jF + Uj , where bj is a
deterministic k by 1 vector of factor loadings, F is the random vector of com-
mon factors and Uj is the error component of Xj . Set U = (U1, . . . , Up)

′
be

the error vector of X and B = (b1, . . . ,bp)
′
. Assume that U and factors F

are independent, then it is easy to see the covariance of X can be written as
Σ = BCov (F )B′ + ΣU , where ΣU = Cov (U) =

(
σU
ij

)
is the error covariance

matrix. Usually a small value of k is assumed and a sparse structure, such as
the diagonal structure, is imposed on ΣU . Therefore in factor models, the co-
variance matrix Σ can be represented as the sum of a low-rank matrix and a
sparse matrix.

Fan et al. (2008) considered a factor model assuming that the error compo-
nents are independent, which results ΣU to be a diagonal matrix. This result
was extended and improved in Fan et al. (2011) by further assuming general
sparse structure on ΣU . More specifically, there are no more than cn,p nonzero
entries in each row/column of ΣU , i.e. ΣU ∈ H0(cn,p). Let the ith observation

X(i) = BF (i) + U (i) for i = 1, . . . , n, where U (i) =
(
U

(i)
1 , . . . , U

(i)
p

)′
is its error

vector. Both works assume that the factors F (i), i = 1, . . . , n are observable
and hence the number of factors k is known as well. In other words, the mod-
els are more about the regression models. Indeed, this allows using ordinary
least squares estimator b̂j to estimate loadings bj accurately first and then es-

timating the errors Û
(i)
j = X

(i)
j − b̂′

jF
(i) by the residuals. Additional adaptive

thresholding procedure is then applied to the error covariance matrix estimator
Σ̂U = 1

n

∑n
i=1 Û

(i)(Û (i))′ to estimate ΣU , motivated by the procedure in (13).
Under certain conditions, including bounded variances maxi Var(Xi), bounded
λmin (ΣU ), λmin (Cov(F )) and exponential tails of F and U , the rates of con-

vergence cn,pk (log p/n)
1/2

under the spectral norm are obtained for estimating
Σ−1

U and Σ−1. Note the number of factors k plays a role on the rates, compared
to the one in (14).

Recently, Fan et al. (2013) considered the setting in which the factors are
unobservable and must be estimated from the data as well. This imposes new
challenges since there are two matrices to estimate while only a noisy version
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of their sum is observed. To overcome this difficulty, Fan et al. (2013) assumed
the factors are pervasive in the sense that a non–negligible fraction of factor
loadings is bounded away from zero by a universal constant. As a result, the k
eigenvalues of the low-rank matrix BCov (F )B′ diverge at the rate O(p) while
the spectra of the sparse matrix ΣU is assumed to be bounded from below and
above. Under this assumption, after simply running the SVD on the sample
covariance matrix Σ̂n, the matrix BCov (F )B′ can be accurately estimated by
the matrix formed by the first k principal components of Σ̂n and the sparse
matrix ΣU can then be estimated by adaptively thresholding the remaining
principal components. k is assumed to be finite rather than diverging in Fan
et al. (2013). Under other similar assumptions as those in Fan et al. (2011),

the rates of convergence cn,p (log p/n)
1/2

for estimating Σ−1
U and Σ−1 under the

spectral norm are derived, assuming ΣU ∈ H0(cn,p).
We would like to point out that there also is a growing literature on the

study of decomposition from the sum of a low-rank matrix and a sparse ma-
trix. However, the focus is mainly on the data matrix instead of the covariance
structure with the goal of identification. The methods are mainly based on cer-
tain “incoherence condition” between the two matrices to ensure identifiability
while the spectra of the two matrices are on the same order. Let L = UΛV ′

be the SVD of the low-rank matrix L with rank r. For example, the incoher-
ence condition with parameter μ defined in Candès et al. (2011) states that

maxi ‖Ui,∗‖2 ≤ μr/n, maxi ‖Vi,∗‖2 ≤ μr/n and ‖UV ′‖∞ ≤ n−1√μr. Hence un-
der this incoherence condition, the low-rank matrix cannot be a sparse matrix.
It is worthwhile to point out that such an incoherence condition is not required
for the factor models discussed in this section and is not satisfied by the sparse
spiked covariance matrices in Section 2.4, where the low-rank matrix is also
sparse. See, e.g., Candès et al. (2011) and Agarwal et al. (2012).

3. Minimax upper bounds of estimating sparse precision structure

We turn in this section to optimal estimation of sparse precision matrices and
recovering its support which have close connections to Gaussian graphical mod-
els. The problem has drawn considerable recent attentions. We have seen in
the last section that optimal estimators of structured covariance matrices, with
the exception of sparse spiked covariance matrices, are usually obtained from
the sample covariance matrix through certain direct “smoothing” operations
such as banding, tapering, or thresholding. Compared to those methods, esti-
mation of the structured precision matrices is more involved due to the lack of
a natural pivotal estimator and is usually obtained through some regression or
optimization procedures.

There are two major approaches to estimation of sparse precision matrices:
neighborhood-based and penalized likelihood approaches. Neighborhood-based
approach runs a Lasso regression or Dantzig selector of each variable on all
other variables to estimate the precision matrix column by column. This ap-
proach requires running p Lasso regressions. We focus on it in Section 3.1 with
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an emphasis on the adaptive rate optimal procedure proposed in Sun and Zhang
(2012). An extension of this approach to regressing two variables against others
lead to a statistical inference result on each entry ωij . In Section 3.2, we intro-
duce such a method proposed in Ren et al. (2015) and consider support recovery
as well. Penalized likelihood approach is surveyed in Section 3.3, together with
latent graphical model structure estimation problems.

3.1. Sparse precision matrix: Adaptive minimax upper bound under
spectral norm

Under the Gaussian assumption, the motivation of neighborhood-based ap-
proach is the following conditional distribution of Xj given all other variables
Xjc ,

Xj |Xjc ∼ N
(
−ω−1

jj ωjcjXjc , ω
−1
jj

)
, (16)

where ωjcj is the jth column of Ω with the jth coordinate removed. See, for
example, Anderson (2003).

Meinshausen and Bühlmann (2006) first proposed the neighborhood selec-
tion approach and applied the standard Lasso regression on Xj against Xjc

to estimate nonzero entries in each row. The goal of this paper however is to
identify the support of Ω. In the same spirit, Yuan (2010) applied the Dantzig
selector version of this regression to estimate Ω column by column. i.e. min ‖β‖1
s.t.

∥∥(X′
jcXj −X′

jcXjcβ
)
/n
∥∥
∞ ≤ τ . Cai et al. (2011) further proposed an es-

timator called CLIME by solving a related optimization problem

argmin
{
‖Ω‖1 : ‖Σ̂nΩ− I‖∞ ≤ τ

}
.

In practice, the tuning parameter τ is chosen via cross-validation. However the
theoretical choice of τ = CMn,p

√
log p/n requires the knowledge of the matrix

�1 norm Mn,p = ||Ω||�1 , which is unknown. Cai et al. (2012) introduced an

adaptive version of CLIME Ω̂ACLIME , which is data-driven and adaptive to the
variability of individual entries of Σ̂nΩ − I. Over the class HP(cn,p,M), the
estimators proposed in Yuan (2010), Cai et al. (2011) and Cai et al. (2012) can
be shown to attain the optimal rate under the spectral norm if the matrix �1
norm Mn,p is bounded. Besides the Gaussian case, both Cai et al. (2011) and
Cai et al. (2012) also considered sub-Gaussian and polynomial tail distributions.
It turns out that if each Xi has finite 4+ε moments, under some mild condition
on the relationship between p and n, the rate of convergence is the same as
those in the Gaussian case.

Now we introduce the minimax upper bound for estimating Ω under the
spectral norm over the class HP(cn,p,M). Sun and Zhang (2012) constructed
an estimator for each column with the scaled Lasso, a joint estimator for the
regression coefficients and noise level. For simplicity, we assume X is Gaussian.
For each j = 1, . . . , p, the scaled Lasso is applied to the linear regression of the
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jth column Xj of the data matrix against all other columns Xjc as follows:

{
β̂j , η̂j

}
= argmin

b,η

⎧⎨
⎩‖Xj −Xjcb‖2

2nη
+

η

2
+ λ
∑
k �=j

√
σ̂kk |bk|

⎫⎬
⎭ ,

b ∈ Rp−1 and indexed by jc, (17)

where λ = A
√

(log p) /n for some constant A > 2 and σ̂kk is the sample variance
of Xk. The optimization (17) is jointly convex in (b, η), hence an iterative algo-
rithm, which in each iteration first estimates b given η, then estimates η given
the b just estimated, is guaranteed to converge to the global solution. This
iterative algorithm is run until convergence of {β̂j , η̂j} for each scaled Lasso re-

gression (17). After computing the solution {β̂j , η̂j}, the estimate of jth column

ω̂SL
j of Ω is given by ω̂SL

jj = η̂−2
j and ω̂SL

jcj = −β̂j η̂
−2
j . The final estimator Ω̂SL

is obtained by putting the columns ω̂SL
j together and applying an additional

symmetrization step, i.e.,

Ω̃SL = arg min
M :M ′=M

||Ω̂SL −M ||�1 , Ω̂SL = (ω̂SL
ij ).

Without assuming bounded matrix �1 norm on Ω, the rate of convergence of
Ω̃SL is given under the spectral norm as follows

Theorem 13 (Sun and Zhang (2012)). Suppose that X is Gaussian and
cn,p(

log p
n )1/2 = o(1). The parameter class HP(cn,p,M) is defined in (8). Then

the estimator Ω̃SL with λ = A
√
(log p) /n for some constant A > 2 satisfies

sup
HP(cn,p,M)

E

∥∥∥Ω̃SL − Ω
∥∥∥ ≤ Ccn,p

(
log p

n

)1/2

. (18)

The key technical tool in the analysis is the oracle inequality for the prediction
error as well as the bound on the error under the �1 norm in the high-dimensional
sparse linear regression setting for the Lasso estimator and Dantzig selector. We
state the results for Lasso as a lemma in the following simple case. Assume the
observations Y = (Y1, Y2, . . . , Yn)

′ have the following form

Y = Xβ +W,

where X is an n by p design matrix and W = (W1,W2, . . . ,Wn)
′ is the vector of

i.i.d. independent sub-Gaussian noise with variance σ2. Suppose the coefficient
β is sparse with no more than s nonzero coordinates, i.e. ‖β‖0 ≤ s. The Lasso
estimator of β is defined by

β̂L = arg min
β∈Rp

{
‖Y −Xb‖2

2n
+ λ ‖b‖1

}
. (19)

Moreover, we assume that the rows of X are i.i.d. copies of some sub-Gaussian
distribution X with mean 0 and covariance matrix Cov(X) whose spectra are
bounded from below and above by constants.
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Lemma 3. Assume that (s log p)/n = o(1). For any given M > 0, there exists
a sufficiently large constant A > 0 depending on M and the spectra of Cov(X)
such that the following results hold with probability 1 − O(p−M ) for the Lasso
estimator with the tuning parameter λ > Aσ

√
(log p)/n in (19),

∥∥∥β̂L − β
∥∥∥
1
≤ Csσ

√
(log p)/n,∥∥∥X(β̂L − β

)∥∥∥2 ≤ Csσ2(log p)/n,

where the constant C depends on M and the spectra of Cov(X).

Lemma 3 follows from the standard Lasso regression results. See, for example,
Bickel et al. (2009) for further details. Note that under the sub-Gaussian assump-
tion on the random design matrix X and the assumption (s log p)/n = o(1), the
required properties on the Gram matrix X′X/n such as the compatibility factor
condition (van de Geer and Bühlmann (2009)), the restricted eigenvalue con-
dition (Bickel et al. (2009)) or the cone invertibility factors condition (Ye and
Zhang (2010)) are automatically satisfied with probability 1 − c1 exp(−c2n),
where constants c1 and c2 depend on the spectra of Cov(X) and σ. See, for
example, Rudelson and Zhou (2013) for details.

Another contribution of Ω̃SL is that the procedure is tuning-free in the sense
that λ is well specified. Finally, the assumptions in Theorem 13 can be further
weakened and a smaller λ is also valid. See Sun and Zhang (2012) for further
details.

3.2. Individual entries of sparse precision matrix: Asymptotic
normality

Given the connection between the entry ωij and the corresponding edge (i, j) in
a Gaussian graph, it is of significant interest to make inference on and provide
a confidence interval for ωij . Furthermore, the analysis would lead to results on
support recovery. Along this line, to estimate a given entry ωij , Ren et al. (2015)
extended the neighborhood-based approach to regress two variables against the
remaining ones, based on the following conditional distribution,

XA|XAc ∼ N
(
−Ω−1

A,AΩA,AcXAc ,Ω−1
A,A

)
, with ΘA,A = Ω−1

A,A =

(
θii θij
θji θjj

)
(20)

where A = {i, j} is the index set of the two variables. Recall that ωij sits
in the coefficients −ω−1

jj ωjcj of neighborhood selection model in (16), our goal
thus was to estimate the coefficients as a whole under some vector norm loss.
In comparison, here we only need to estimate the noise level in the regression
model (20) since ωij is one of the three parameters in ΘA,A. This leads to the
multivariate regression with two response variables Xi and Xj . Scaled Lasso
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regression is applied in Ren et al. (2015) as follows. For each m ∈ A = {i, j},

{
β̂m, θ̂1/2mm

}
= arg min

b∈Rp−2,σ∈R

{
‖Xm −XAcb‖2

2nσ
+

σ

2
+ λ

∑
k∈Ac

√
σ̂kk |bk|

}
,

(21)
where the vector b is indexed by Ac and σ̂kk is the sample variance of Xk. Define
the (p−2)×2 dimensional coefficients β̂ = (β̂i, β̂j) and the residuals of the scaled

Lasso regression by ε̂A = XA −XAc β̂. The estimator of ΘA,A can be given by

Θ̂A,A = ε̂′Aε̂A/n. Finally, the estimator Ω̂A,A = (ω̂kl)k,l∈A is obtained by simply

inverting Θ̂A,A, i.e. Ω̂A,A = Θ̂−1
A,A. In particular,

ω̂ij = −θ̂ij/(θ̂iiθ̂jj − θ̂2ij). (22)

The rate of convergence of estimating each ωij is then provided under a certain
sparsity assumption over HP(cn,p,M). In particular when cn,p = o (

√
n/ log p),

an asymptotic efficiency result and the corresponding confidence interval are
obtained.

Theorem 14 (Ren et al. (2015)). Let λ =
√

2δ log p
n for any δ > 1 in Equation

(21). Assume (cn,p log p)/n = o(1), then for any small ε > 0, there exists a
constant C1 = C1(ε) > 0 such that

sup
HP(cn,p,M)

sup
i,j

P

{
|ω̂ij − ωij | > C1 max

{
cn,p

log p

n
,

√
1

n

}}
≤ ε. (23)

Furthermore, ω̂ij is asymptotically efficient

√
nFij (ω̂ij − ωij)

D→ N (0, 1) , (24)

when cn,p = o(
√
n

log p ), where F−1
ij = ωiiωjj + ω2

ij.

The key technical tool in the analysis is also related to Lemma 3 but fo-
cuses on the prediction error rather than estimation under the �1 norm. The
advantage of estimator ω̂ij over ω̂SL

ij defined in Section 3.1 is that by estimat-
ing the noise level rather than each coefficient, the estimation accuracy can be
significantly improved. However, we have to pay for the accuracy with the com-
putational costs. If our goal is to estimate all those entries above the threshold
level (log p/n)1/2 individually, we can first apply the method proposed in Liu
(2013) with p regressions to pick those order pcn,p entries above the threshold
level, then order pcn,p regressions have to be done to estimate them individ-
ually. In contrast, methods in Section 3.1 only require p regressions. Minimax
lower bounds are also provided in Ren et al. (2015) to show the estimator ω̂ij

is indeed rate optimal. See Section 4.3 for details. This methodology can be
routinely extended into a more general form with A replaced by some subset
B ⊂ {1, 2, . . . , p} with bounded size. Then the inference result can be obtained
to estimate a smooth functional of Ω−1

B,B .
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Other related works in high-dimensional regression also can be applied to
the current setting. Zhang and Zhang (2014) proposed a relaxed projection
approach for making inference of each coefficient in a regression setting. See
also van de Geer et al. (2014) and Javanmard and Montanari (2014). Although
the procedures in those works seem different from ω̂ij in (22), essentially all
methods try to estimate the partial correlation of Xi and Xj and hence they
are asymptotically equivalent. Liu (2013) recently developed a multiple testing
procedure with the false discovery rate (FDR) control for testing the entries
of Ω, H0ij : ωij = 0. Surprisingly, to test all ωij , it only requires running p
regressions as (17).

The support recovery problem is closely related due to the graphical inter-
pretation as well. Based on the estimator ω̂ij in (22), Ren et al. (2015) applied
an additional thresholding procedure, adaptive to the Fisher information Fij to
recover the sign of Ω. More specifically, define S(Ω) = {sgn(ωij), 1 ≤ i, j ≤ p}
and

Ω̂ANT = (ω̂ANT
ij )p×p, where ω̂ANT

ii = ω̂ii, and ω̂ANT
ij = ω̂ijI{|ω̂ij | ≥ τij}

with τij =
√

(2ξ0(ω̂iiω̂jj + ω̂2
ij) log p)/n for i �= j. (25)

Theorem 15 (Ren et al. (2015)). Let λ =
√

2δ log p
n for any δ > 3 and

ξ0 > 2 in the thresholding level (25). Assume cn,p = o(
√

n/ log p) and |ωij | ≥√
(8ξ0(ωiiωjj + ω2

ij) log p)/n for any ωij �= 0. Then we have

inf
HP0(cn,p,M)

P

(
S(Ω̂ANT ) = S(Ω)

)
→ 1. (26)

The sufficient condition on each nonzero entry in the Theorem 15 is much
weaker compared with other results in the literature, where the smallest magni-
tude of the nonzero entries is required to be above the threshold level
‖Ω‖�1

√
(log p)/n. It is worthwhile to point out that based on Theorem 14, it

can be easily shown that Ω̂ANT also attains the optimal rates of convergence
under the spectral norm over HP(cn,p,M) as that in Theorem 13.

3.3. Related results

Penalized likelihood approaches Penalized likelihood methods have also
been introduced for estimating sparse precision matrices. It is easy to see that
under the Gaussian assumption the negative log-likelihood up to a constant, can
be written as l

(
X(1), . . . , X(n); Ω

)
= tr(Σ̂nΩ)− log det(Ω), where det(Ω) is the

determinant of Ω. To incorporate the sparsity of Ω, we consider the following
penalized log-likelihood estimator with Lasso-type penalty

Ω̂λ = argmin
Ω	0

tr(Σ̂nΩ)− log |Ω|+ λ
∑
i,j

|ωij | , (27)
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where Ω � 0 means symmetric positive definite. Some results are derived by
using �1 penalty on the off-diagonal entries

∑
i �=j |ωij | rather than all entries.

We will review some theoretical properties and computational issue respectively
below.

Yuan and Lin (2007) first proposed using Ω̂λ and studied its asymptotic prop-
erties for fixed p as n → ∞. Rothman et al. (2008) analyzed the high-dimensional
behavior of this estimator. Assuming that spectra of Ω are bounded from below
and above, the rates of convergence ((p+ s) log p/n)1/2 and ((1 + s) log p/n)1/2

under the Frobenius norm and spectral norm are obtained respectively with
s =

∑
i �=j I{ωij �= 0} being the number of nonzero off-diagonal entries. The

sparsity s is defined globally, which is different from the local sparsity cn,p de-
fined in (9) and can be as large as pcn,p over the class HP0(cn,p,M). Hence in
the worst case scenario, the rate of convergence ((1 + s) log p/n)1/2 under the
spectral norm is not as good as that (cn,p log p/n)

1/2 derived by neighborhood-
based approach in (18). Lam and Fan (2009) studied a generalization of (27)
and replace the Lasso penalty by general non-convex penalties such as SCAD
to overcome the bias issue. Ravikumar et al. (2011) applied the primal-dual
witness construction to derive the rate of convergence (log p/n)1/2 under the
sup-norm which in turn leads to convergence rates in the Frobenius and spec-
tral norms as well as support recovery under certain regularity conditions. The
results heavily depend on a strong irrepresentability condition imposed on the
Hessian matrix Γ = Σ⊗Σ, where ⊗ is the tensor (or Kronecker) product. Both
sub-Gaussian and polynomial tail cases are considered. However this method
cannot be extended to allowing many small nonzero entries such as the class
HP(cn,p,M).

Latent Gaussian graphical model We have seen the connections between
the precision matrix and the corresponding Gaussian graph, in which we as-
sume all variables are fully observed. In some applications, one may not have
access to all the relevant variables. Suppose we only observe p coordinates
X = (X1, . . . , Xp)

′ of a (p + r)-dimensional Gaussian vector (X ′, Y ′)′, where
Y = (Y1, . . . , Yr)

′ represent the latent coordinates. Denote the covariance ma-
trix of all variables by Σ(X,Y ). It is natural to assume that the fully observed
(p + r)-dimensional Gaussian graphical model has a sparse dependence graph.
In other words, the precision matrix Ω(X,Y ) = Σ−1

(X,Y ) is sparse. Represent the

precision matrix Ω(X,Y ) in the following block form

Ω(X,Y ) =

(
ΩXX ΩXY

ΩY X ΩY Y

)
.

In such a case, the p× p precision matrix Ω of the observed coordinates X can
be written as the difference by the Schur complement formula,

Ω = ΩXX − ΩXY Ω
−1
Y Y ΩY X = S∗ − L∗.

Here S∗ = ΩXX is a sparse matrix corresponding to the structure of the sub-
graph induced by those observed p variables and L∗ = ΩXY Ω

−1
Y Y ΩY X is a low-
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rank matrix with rank at most r, which is the number of the unobserved latent
variables.

Chandrasekaran et al. (2012) proposed a penalized likelihood approach to
estimate both the sparse structure S∗ and the low-rank part L∗ as the solutions
to

min
(S,L):S−L	0, L
0

tr
(
(S − L) Σ̂n

)
− log det (S − L) + χn

(
γ
∑
i,j

|sij |+ tr (L)

)
.

(28)
Here Σ̂n is the sample covariance matrix of the observed coordinates X and
tr (L) is the trace of L, which is used to induce the low-rank structure on L.
Consistency results were established under a strong irrepresentability condition
and assumptions on the minimum magnitude of the nonzero entries of S∗ and
the minimum nonzero eigenvalue of L∗. Ren and Zhou (2012) relaxed the as-
sumptions by considering the parameter space HP0(cn,p,M) (9) for S∗ with
bounded matrix �1 norm and a “spread-out” parameter space for L∗. Ren et al.
(2015) further removed the matrix �1 norm condition based on the estimator
Ω̂ANT obtained in (25).

3.4. Computational issues

Estimating high-dimensional precision matrices is a computationally challenging
problem. Pang et al. (2014) proposed an efficient parametric simplex algorithm
to implement the CLIME estimator. In particular, their algorithm efficiently
calculates the full piecewise-linear regularization path and provides an accurate
dual certificate as stopping criterion. An R package ‘fastclime’ coded in C has
been developed. See Pang et al. (2014) for more details.

For the semi-definite program (27), Yuan and Lin (2007) solved the prob-
lem using interior-point method for the general max-det problem which is pro-
posed by Vanderberghe et al. (1998). Rothman et al. (2008) derived their al-
gorithm based on the Cholesky decomposition and the local quadratic approx-
imation such that cyclical coordinate descent approach can be applied. Define
W = Ω̂−1

λ . Banerjee et al. (2008) showed that one can solve the dual of (27)
through optimizing over each row/column of W in a block coordinate descent
form (see also d’Aspremont et al. (2008)). In fact, solving this dual form is equiv-
alent to solving p coupled Lasso regression problems, which are related to the
neighborhood-based approach considered in Section 3.1. Friedman et al. (2008)
further proposed the GLasso algorithm which takes advantage of the fast co-
ordinate descent algorithms (Friedman et al. (2007)) to solve it efficiently. The
computational complexity of GLasso is O(p3). In comparison, the algorithms
of Banerjee et al. (2008) and Yuan and Lin (2007) have higher computational
costs. A modified GLasso algorithm is proposed by Witten et al. (2011) to im-

prove the speed from O(p3) to O(p2+
∑m

i=1 |Ci|3) when the solution Ω̂λ is block
diagonal with blocks C1, . . . , Cm, where |Ci| is the size of the ith block.

Hsieh et al. (2011) apply a second-order algorithm to solve (27) and achieve
superlinear rate of convergence. Their algorithm is based on a modified Newton’s



34 T. T. Cai et al.

method which leverages the sparse structure of the solution. Recently, Hsieh
et al. (2013) further improved this result and claimed that the optimization
problem (27) can be solved even for a million variables. A block coordinate
descent method with the blocks chosen via a clustering approach is used to
avoid the memory bottleneck of storing the gradient W when dimension p is
very large.

4. Lower bounds

A major step in establishing a minimax theory is the derivation of rate sharp
minimax lower bounds. In this section, we first review a few effective lower
bound arguments based on hypothesis testing. These include Le Cam’s method,
Assouad’s Lemma and Fano’s Lemma which have been commonly used in the
more conventional nonparametric estimation problems. See Yu (1997) and Tsy-
bakov (2009) for further discussions. We will also discuss a new lower bound
technique developed in Cai and Zhou (2012b) that is particularly well suited for
treating “two-directional” problems such as matrix estimation, where one di-
rection is along the rows and another along the columns. The technique can be
viewed as a generalization of both Le Cam’s method and Assouad’s Lemma. We
will then apply these lower bound arguments to the various covariance and pre-
cision matrix estimation problems discussed in the previous sections to obtain
minimax lower bounds, which match the corresponding upper bound results in
the last two sections. The upper and lower bounds together yield the optimal
rates of convergence given in Section 1.

4.1. General minimax lower bound techniques

Le Cam’s method

Le Cam’s method is based on a two-point testing argument. See Le Cam (1973)
and Donoho and Liu (1991). In nonparametric estimation problems, Le Cam’s
method often provides the minimax lower bound for estimating a real-valued
functional. See, for instance, Bickel and Ritov (1988) and Fan (1991) for the
quadratic functional estimation problems.

Let X be an observation from a distribution Pθ where θ belongs to a param-
eter set Θ. For two distributions Pθ1 and Pθ2 with densities pθ1 and pθ2 with
respect to a common dominating measure μ, the total variation affinity is given
by ‖Pθ1 ∧ Pθ2‖ =

∫
pθ1 ∧ pθ2dμ. Le Cam’s method relates the testing problem

with the total variation affinity. In other words, when the total variation affinity
between the two distributions is bounded away from zero, it is impossible to
test between those two distributions perfectly. As a consequence, a lower bound
can be measured by the distance of the two parameters θ1 and θ2, which index
those two distributions.

In the current paper, we introduce a version of Le Cam’s method which tests
the simple hypothesis H0 : θ = θ0 against a composite alternative H1 : θ ∈ Θ1



Estimating structured high-dimensional covariance and precision matrices 35

with a finite parameter set Θ = {θ0, θ1, . . . , θD}. Let L be a loss function on Θ∗,
the domain of θ. Define

�min = min
1≤i≤D

inf
t∈Θ∗

[L (t, θ0) + L (t, θi)]

and denote P̄ = 1
D

∑D
i=1 Pθi . Le Cam’s method gives a lower bound for the

maximum estimation risk over the parameter set Θ.

Lemma 4 (Le Cam). Let T be any estimator of θ based on an observation X
from a distribution Pθ with θ ∈ Θ = {θ0, θ1, . . . , θD}, then

sup
θ∈Θ

EθL (T, θ) ≥ 1

2
lmin

∥∥Pθ0 ∧ P̄
∥∥ . (29)

Assouad’s lemma

Assouad’s lemma works with a hypercube Θ = {0, 1}r. It is based on testing a
number of pairs of simple hypotheses and is connected to multiple comparisons.
See Assouad (1983). In nonparametric estimation problems, Assouad’s lemma
is often successful in obtaining the minimax lower bound for many global esti-
mation problems such as estimating the whole density or regression functions
in certain smoothness classes.

For a parameter θ = (θ1, . . . , θr) where θi ∈ {0, 1}, one tests whether θi = 0 or
1 for each 1 ≤ i ≤ r based on the observation X. In other words, we decompose
the global estimation problem into r sub-problems. For each sub-problem or
each pair of simple hypotheses, there is a certain loss for making an error in
the comparison. The lower bound given by Assouad’s lemma is a combination
of losses from testing all pairs of simple hypotheses. To make connection to
Le Cam’s method, we can view the loss for making an error due to each sub-
problem is obtained by applying Le Cam’s method. In particular, when r = 1,
Assouad’s lemma becomes Le Cam’s method with D = 1 in Lemma 4, which
tests a simple null hypothesis against a simple alternative.

Let

H
(
θ, θ̃
)
=

r∑
i=1

∣∣∣θi − θ̃i

∣∣∣ (30)

be the Hamming distance on Θ. Assouad’s lemma gives a lower bound for the
maximum risk over the hypercube Θ of estimating an arbitrary quantity ψ (θ)
belonging to a metric space with metric d. It works especially well when the
metric d is decomposable with respect to the Hamming distance.

Lemma 5 (Assouad). Let X ∼ Pθ with θ ∈ Θ = {0, 1}r and let T = T (X) be
an estimator of ψ(θ) based on X. Then for all s > 0

max
θ∈Θ

2sEθd
s (T, ψ (θ)) ≥ min

θ �=θ̃

ds
(
ψ (θ) , ψ

(
θ̃
))

H
(
θ, θ̃
) · r

2
· min
H(θ,θ̃)=1

∥∥Pθ ∧ Pθ̃

∥∥ . (31)
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The lower bound in (31) has three factors. The first factor is the minimum
cost of making a mistake per comparison and the second one is the expected
number of mistakes one would make when each pair of simple hypotheses is indis-
tinguishable. The last factor, which is usually bounded below by some positive
constant in applications, is the total variation affinity for each sub-problem.

Le Cam-Assouad’s method

The Le Cam-Assouad’s method, which was first introduced in Cai and Zhou
(2012b), is designed to treat problems such as estimation of sparse matrices
with constraints on both rows and columns. Again, let X ∼ Pθ where θ ∈ Θ.
The parameter space Θ of interest has a special structure which can be viewed as
the Cartesian product of two components Γ and Λ. For a given positive integer
r and a finite set B ⊂ Rp \ {01×p}, define Γ = {0, 1}r and Λ ⊆ Br. Define

Θ = Γ⊗ Λ = {θ = (γ, λ) : γ ∈ Γ and λ ∈ Λ} . (32)

The Le Cam-Assouad’s method reduces to the classical Assouad’s lemma when
Λ contains only one element, and becomes Le Cam’s method when r = 1. The
advantage of this method is that it breaks down the lower bound calculations
for the whole matrix estimation problem into calculations for individual rows
so that the overall analysis is tractable.

For θ = (γ, λ) ∈ Θ, denote the projection of θ to Γ by γ (θ) = (γi (θ))1≤i≤r

and to Λ by λ (θ) = (λi (θ))1≤i≤r. Let DΛ be the cardinality of Λ. For a given

a ∈ {0, 1} and 1 ≤ i ≤ r, we define the mixture distribution P̄a,i by

P̄a,i =
1

2r−1DΛ

∑
θ

{Pθ : γi(θ) = a}. (33)

So P̄a,i is the mixture distribution over all Pθ with γi(θ) fixed to be a while all
other components of θ vary over all possible values. In the construction of the
parameter set for establishing the minimax lower bound of matrix estimation
problems, each θ = (γ, λ) is uniquely associated with some symmetric matrix.
Usually r is the number of possibly non-zero rows in the upper triangle of the
matrix, and each element λ of Λ is associated with a matrix by making r non-
zero rows of the matrix equal to the r coordinates of λ in order.

Lemma 6 (Le Cam-Assouad). For any estimator T of ψ(θ) based on an obser-

vation from a probability distribution in {Pθ, θ ∈ Θ}, and any s > 0

max
Θ

2sEθd
s (T, ψ (θ)) ≥ α

r

2
min
1≤i≤r

∥∥P̄0,i ∧ P̄1,i

∥∥ (34)

where P̄a,i is defined in Equation (33) and α is given by

α = min
{(θ,θ̃):H(γ(θ),γ(θ̃))≥1}

ds(ψ(θ), ψ(θ̃))

H(γ(θ), γ(θ̃))
. (35)
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Fano’s lemma

Fano’s lemma, like Assouad’s lemma, is also based on multiple hypotheses test-
ing argument and has been widely used for global estimation problems in non-
parametric settings. Fano’s lemma applies to a more general setting and hence
is stronger than Assouad’s lemma, although the latter one seems easier to use in
many applications. For their relationship, we refer to Yu (1997) for more details.

For two probability measures P and Q with density p and q with respect
to a common dominating measure μ, write the Kullback-Leibler divergence as
K(P,Q) =

∫
p log p

qdμ. The following lemma, which can be viewed as a version
of Fano’s lemma, gives a lower bound for the minimax risk over the parameter
set Θ = {θ0, θ1, . . . , θm∗}. See (Tsybakov, 2009, Section 2.6) for more detailed
discussions.

Lemma 7 (Fano). Let Θ = {θi : i = 0, . . . ,m∗} be a parameter set and d be
a distance over Θ. Let {Pθ : θ ∈ Θ} be a collection of probability distributions
satisfying

1

m∗

∑
1≤i≤m∗

K (Pθi ,Pθ0) ≤ c logm∗ (36)

with 0 < c < 1/8. Let θ̂ be any estimator based on an observation from a
distribution in {Pθ, θ ∈ Θ}. Then

sup
θ∈Θ

Ed2
(
θ̂, θ
)
≥ min

i �=j

d2 (θi, θj)

4

√
m∗

1 +
√
m∗

(
1− 2c−

√
2c

logm∗

)
.

Another advantage of Fano’s lemma is that it sometimes only relies on the
analytical behavior of the packing number of the parameter space with respect
to the loss function d and avoids constructing an explicit subsets of parame-
ter spaces, which can be a challenging task in many situations. See Yang and
Barron (1999) for details. Hence the accurate rate of packing number at the
logarithm level is the key to applying Fano’s lemma and obtaining the minimax
lower bounds. Rigollet and Tsybakov (2012) applied this method to improve
the assumptions in the minimax lower bound argument for estimating sparse
covariance matrices under the matrix �1 norm in Cai and Zhou (2012a).

4.2. Application of Assouad’s lemma to estimating bandable
covariance matrices

In Section 2.1, we constructed the tapering estimator Σ̂T,kT
and claimed in

Theorem 7 that it attains the rate of convergence min
{(

log p
n + n− 2α

2α+1

)
, p
n

}
over the bandable class Fα (M0,M) defined in (1) under the spectral norm. We

now apply Assouad’s lemma to give a lower bound n− 2α
2α+1 .

The basic strategy is to carefully construct a finite least favorable subset of
the corresponding parameter space in the sense that the difficulty of estimation
over the subset is essentially the same as that of estimation over the whole
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parameter space. The finite collection that is appropriate for this lower bound
argument is defined as follows. For given positive integers k and m with k ≤ p/2
and 1 ≤ m ≤ k, define the p× p matrix D(m, k) = (dij)p×p with

dij = I {i = m and m+ 1 ≤ j ≤ 2k, or j = m and m+ 1 ≤ i ≤ 2k} .

Set k = n
1

2α+1 and a = k−(α+1). We then define the collection of 2k covariance
matrices as

Fsub =

{
Σ (θ) : Σ (θ) = I + τa

k∑
m=1

θmD(m, k), θ = (θm) ∈ {0, 1}k
}

(37)

where I is the p × p identity matrix and 0 < τ < 2−α−1M . Without loss of
generality we assume that M0 > 1.

Consider the observations X1, . . . ,Xn
i.i.d.∼ N (0,Σ (θ)) with Σ (θ) ∈ Fsub

and the joint distribution Pθ. For 0 < τ < 2−α−1M it is easy to check that
Fsub ⊂ Fα(M0,M) for sufficiently large n. Hence applying Lemma 5 to the
parameter space Fsub, we have

inf
Σ̂

max
Σ∈Fα

22EΣ

∥∥∥Σ̂− Σ
∥∥∥2 ≥ inf

Σ̂
max

θ∈{0,1}k
22Eθ

∥∥∥Σ̂− Σ (θ)
∥∥∥2

≥ min
H(θ,θ̃)≥1

∥∥∥Σ (θ)− Σ
(
θ̃
)∥∥∥2

H
(
θ, θ̃
) k

2
min

H(θ,θ̃)=1

∥∥Pθ ∧ Pθ̃

∥∥ .
It is easy to check by our construction that there exists some constant c1 > 0,
such that the first factor above is lower bounded by c1ka

2, i.e.,

min
H(θ,θ̃)≥1

∥∥∥Σ (θ)− Σ
(
θ̃
)∥∥∥2

H
(
θ, θ̃
) ≥ c1ka

2.

In addition, it can be shown that the total variation affinities between the pairs
of distributions satisfy minH(θ,θ̃)=1

∥∥Pθ ∧ Pθ̃

∥∥ ≥ c2 for some positive constant

c2. Putting all together, the minimax lower bound n− 2α
2α+1 follows from the

above results with the choice of k = n
1

2α+1 .
Other lower bound arguments based on Assouad’s lemma have also been

established in the literature. For instance, The lower bound rates n− 2α+1
2α+2 and

n− α
α+1 of estimating bandable covariance matrix under the Frobenius norm and

matrix �1 norm over class Gα (M1) defined in (2) respectively. See Cai et al.
(2010) and Cai and Zhou (2012a). We omit the details here.

4.3. Application of Le Cam’s method to estimating entries of
precision matrices

In Section 3.2, we discussed that the estimator ω̂ij for each pair of i, j at-
tains the rate of convergence max{C1(cn,p log p)/n,C2n

−1/2}. Since the proof
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of parametric lower bound n−1/2 is trivial, we focus on the novel lower bound
(cn,p log p)/n only and apply Le Cam’s method to show that it is indeed a lower
bound for estimating ωij . Assume p ≥ cυn,p with ν > 2. In particular, a finite
collection of distributions Fsub ⊂ HP(cn,p,M) is carefully constructed in the
next paragraph.

Without loss of generality, we consider estimating ω11 and ω12. Define Ω0 =

(ω
(0)
kl )p×p = Σ−1

0 , where Σ0 = (σ
(0)
kl )p×p is a matrix with all diagonal entries

equal to 1, σ
(0)
12 = σ

(0)
21 = b and the rest all zeros. The constant b will be chosen

later. It is easy to see that Ω0 also has a very simple form with ω
(0)
11 = ω

(0)
22 =

(1 − b2)−1, ω
(0)
12 = −b(1 − b2)−1, ω

(0)
ii = 1 for i ≥ 3 and all other entries being

zeros. Besides, denote by A the collection of all p× p symmetric matrices with
exactly (cn,p − 1) entries equal to 1 between the third and the last entries on
the first row/column and the rest all zeros. Now based on Ω0 and A, the finite
collection Fsub = {Ω0,Ω1, . . . ,Ωm∗} can be defined formally as follows

Fsub =
{
Ω : Ω = Ω0 or Ω = (Σ0 + aA)

−1
, for some A ∈ A

}
,

where a = (τ1 log p/n)
1/2 and b = (1− 1/M) /2 for some sufficiently small

positive τ1, depending onM , b and ν. In other words, we use subscripts 1, . . . ,m∗
to label those Ω = (Σ0 + aA)

−1
over A ∈ A. The cardinality of Fsub is 1 +m∗,

where m∗ =
(

p−2
cn,p−1

)
. To show that Fsub is a subclass of HP(cn,p,M), we check

the sparsity as well as the spectra of each element. First, it is easy to see that
number of nonzero off-diagonal entries in Ωm, 0 ≤ m ≤ m∗ is no more than
cn,p per row/column by its construction. Second, tedious calculations yield that
the spectra of Ω0 are in [(1 + b)−1, (1 − b)−1] and the spectra of Ωm are in
[(1 + g)−1, (1− g)−1], where g =

√
b2 + (cn,p − 1) a2. Hence we obtain that the

spectra of each element of Fsub are between [1/M,M ] by definitions of a and b.
Thus Fsub ⊂ HP(cn,p,M).

The motivation of our construction is that a signal-to-noise ratio level a on
each entry of the covariance matrix with the sparsity cn,p is able to accumulate
to a level of cn,pa

2 	 (cn,p log p)/n on some entry of the precision matrix. Indeed,
it is easy to check that

inf
1≤m≤m∗

∣∣∣ω(m)
11 − ω

(0)
11

∣∣∣ ≥ C11kn,pa
2 and inf

1≤m≤m∗

∣∣∣ω(m)
12 − ω

(0)
12

∣∣∣ ≥ C12kn,pa
2.

Let PΩm denote the joint distribution of X1, . . . , Xn, i.i.d. copies of N(0,Ω−1
m ),

0 ≤ m ≤ m∗. It can be shown that
∥∥PΩ0 ∧ P̄

∥∥ ≥ C0. Finally, applying Lemma 4,
together with above two facts, we obtain the lower bounds of estimating ω11 and
ω12 as follows, which match the upper bounds attained by the corresponding
estimators in Section 3.2.

inf
ω̃11

sup
Ω∈Fsub

EΩ|ω̃11 − ω11| ≥
1

2
lmin

∥∥Pθ0 ∧ P̄
∥∥ ≥ C11C0τ1kn,p log p

2n
,

inf
ω̃12

sup
Ω∈Fsub

EΩ|ω̃12 − ω12| ≥
1

2
lmin

∥∥Pθ0 ∧ P̄
∥∥ ≥ C12C0τ1kn,p log p

2n
.
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The Le Cam’s method is applied to establish the second term of the minimax

lower bound min{λ2
n,prn,p

n , λ2
n,p} for estimating sparse spiked covariance matrices

over the parameter space J (cn,p, rn,p, λn,p) defined in (7) under the squared
spectral norm loss. To calculate the total variation affinity used in Le Cam’s
method, an interesting analysis on the symmetric random walk stopped at a
hypergeometrically distributed time is established. For reasons of space, we omit
the details. See Cai, Ma, and Wu (2015) for further details.

The Le Cam’s method can also be used to obtain the lower bounds of other
covariance/precision matrix estimation problems. For example, the lower bound
(log p/n)1/2 is derived for bandable class Fα (M0,M) defined in (1) under the
spectral norm by picking a collection of covariance/precision matrices with
nonzero value only on the diagonal entries. See Cai et al. (2010). Le Cam’s
method is also applied in Cai and Zhou (2012a) to obtain the lower bound
c2n,p(log p)/n for estimating sparse covariance matrices over the class H(cn,p)
defined in (4) under the matrix �1 norm. It is worthwhile to point out that
the lower bound under the spectral norm loss discussed later using Le Cam-
Assouad’s method immediately implies this lower bound under the matrix �1
norm. However, the construction using Le Cam’s method is much easier when
the loss function is the matrix �1 norm.

4.4. Application of Le Cam-Assouad’s method to estimating sparse
precision matrices

In Section 1.2, we introduced the classes of parameters HP(cn,p,M) defined
in (8) to model the sparse structure of precision matrices. We have seen that
Sun and Zhang (2013) show that the estimator Ω̃SL attains the rate of conver-
gence c2n,p(log p)/n under the spectral norm over HP(cn,p,M) in Theorem 13 of

Section 3.1. Moreover, the estimator Ω̂ANT in Section 3.2 also attains the same
rate. In this section, we will apply Le Cam-Assouad’s method to show that these
estimators are indeed rate optimal. The same technique was also used to show
the rate-optimality of the ACLIME estimator proposed in Cai et al. (2012) over
a different parameter space.

The Le Cam-Assouad’s method was originally developed in Cai and Zhou
(2012b) to establish a rate sharp lower bound for estimating sparse covariance
matrices over the parameter spaceH(cn,p) defined in (4) under the squared spec-
tral norm loss. It was shown that a lower bound in such a setting is c2n,p(log p)/n.
Hence the thresholding estimator defined in (13) attaining the rate of conver-
gence c2n,p(log p)/n is indeed rate optimal over H(cn,p). The main idea for the
lower bound proof is similar to that of estimating sparse precision matrices and
is hence omitted here. See Cai and Zhou (2012b) for the detailed analysis.

Again, the key of the minimax lower bound proof is to carefully construct a
finite collection of distributions in HP(cn,p,M). We assume p > c1n

β for some
β > 1 and c1 > 0. In the current setting of estimating sparse precision matrices
over the class HP(cn,p,M), the parameter subset Fsub is constructed as follows.
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Let r = �p/2� and let B be the collection of all vectors (bj)1≤j≤p such that
bj = 0 for 1 ≤ j ≤ p − r and bj = 0 or 1 for p − r + 1 ≤ j ≤ p under the
constraint ‖b‖0 = k = �cn,p/2�. For each b ∈ B and each 1 ≤ m ≤ r, define a
p× p matrix λm(b) by making the mth row of λm(b) equal to b and the rest of
the entries 0. It is clear that the cardinality of B is

(
r
k

)
. Set Γ = {0, 1}r. Hence

each component bi of λ = (b1, . . . , br) ∈ Λ can be uniquely associated with a
p × p matrix λi(bi). Now it is the time to define Λ as the set of all matrices
λ with every column sum less than or equal to 2k. Define Θ = Γ ⊗ Λ and let
εn,p ∈ R be fixed, whose value will be chosen later. For each θ = (γ, λ) ∈ Θ with
γ = (γ1, . . . , γr) and λ = (b1, . . . , br), we associate θ with a precision matrix
Ω(θ) by

Ω(θ) = I + εn,p

r∑
m=1

γmλm(bm).

Finally we define the finite collection Fsub of precision matrices as

Fsub =

{
Ω(θ) : Ω(θ) = I + εn,p

r∑
m=1

γmλm(bm), θ = (γ, λ) ∈ Θ

}
.

Set εn,p = υ((log p)/n)1/2 for some sufficiently small positive υ. Now we can
check that each Ω(θ) ∈ Fsub is diagonal dominated and further satisfies the
bounded spectrum condition. Clearly for each Ω(θ) ∈ Fsub, we have

max
1≤i≤p

∑
j �=i

min

{
1,

|ωij |√
(log p)/n

}
≤ cn,p.

Therefore, we obtain that Fsub ∈ HP(cn,p,M).
Let X1, . . . , Xn be i.i.d. copies of N(0,Ω(θ)−1) with θ ∈ Θ and denote the

joint distribution by Pθ. Applying Lemma 6 to the parameter space Θ indexing
Fsub with s = 2 and metric d being the spectral norm, we have

inf
Ω̂

max
Ω(θ)∈Fsub

22Eθ

∥∥∥Ω̂− Ω(θ)
∥∥∥2 ≥ α · p

4
·min

i

∥∥P̄0,i ∧ P̄1,i

∥∥ (38)

where the per comparison loss α is defined in (35) and the mixture distributions
P̄0,i and P̄1,i are defined as in (33). It can be shown that the per comparison

loss α ≥ (kεn,p)
2

p and the affinity mini
∥∥P̄0,i ∧ P̄1,i

∥∥ ≥ c1 with a constant c1 > 0.

Plugging these two facts into equation (38), we obtain the desired minimax
lower bound for estimating a sparse precision matrix over HP(cn,p,M),

inf
Ω̂

sup
HP(cn,p,M)

E

∥∥∥Ω̂− Ω(θ)
∥∥∥2 ≥ (kεn,p)

2

p
· c1p
16

= c2c
2
n,p

log p

n

for some constant c2 > 0.
Besides covariance and precision matrix estimation problems, Le Cam-Assouad’s

method is also appropriate for lower bound proofs in other matrix estimation
problems. One particular example is the volatility matrix estimation problem for
high-dimensional diffusions. For more details, please refer to Tao et al. (2013).
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4.5. Application of Fano’s lemma to estimating toeplitz covariance
matrices

In Section 2.2, we consider the problem of estimating Toeplitz covariance matri-
ces. In particular, for estimation over the parameter space FT α (M0,M) which
is defined in terms of the smoothness of the spectral density f in (3), Cai, Ren,

and Zhou (2013) showed that the tapering estimator Σ̂Toep
T,kTo

attains the opti-

mal rate of convergence (log(np)/np)
2α

2α+1 under the spectral norm. We briefly
present a minimax lower bound argument, focusing on the use of Fano’s lemma
in this section.

Let X1, . . . , Xn be i.i.d. copies of N(0,Σ), where the covariance sequence
(σ0, σ1, . . . , σp) is given via its corresponding spectral density f = 1

2π (σ0 +
2
∑∞

m=1 σm cosmx) in FT α (M0,M). There are two main steps in the lower
bound argument. The first step is to construct a more informative model which
is exactly equivalent to a Gaussian scale model under which one observes

Zij = Sp(f)
1/2

(
2πj

2p− 1

)
ξij , with ξij

i.i.d.∼ N (0, 1) , (39)

for |j| ≤ p− 1, and i = 1, 2, . . . n. Here Sp(f)(x) =
1
2π (σ0 + 2

∑p−1
m=1 σm cosmx)

is the partial sum of f with order p. The advantage of this more informative
model is to make the analysis much easier. (see Cai, Ren, and Zhou (2013) for
details). From now on we focus on this more informative model. The second
step is to establish a minimax lower bound for this Gaussian scale model, which
automatically provides a lower bound for the original model. We elaborate on
the second step which mainly involves the construction of finite collection of
spectral densities Fsub =

{
f0, f1, . . . fk∗/2

}
⊂ FT α (M0,M) as follows.

Define f0 = M0/2 and fi as follows,

fi = f0+ τεαn,p

[
A

(
x− εn,p(i− 0.5)

εn,p

)
+A

(
x+ εn,p(i− 0.5)

εn,p

)]
, εn,p = 2π/k∗

(40)

where i = 1, 2, . . . , k∗/2 with k∗ =
⌊
(np/ log (np))

1
2β+1

⌋
, and A(u) =

exp(− 1
1−4u2 )1{|2u|<1}. It is easy to check that each distribution in our col-

lection fi ∈ FT α (M0,M) by setting τ > 0 sufficiently small, noting A ∈
C∞(R) ∩ FT α

(
e−1, 1/2

)
. Therefore, we have Fsub ⊂ FT α (M0,M).

Now we apply Lemma 7 to the parameter space Fsub with the distance d =
‖·‖∞, the sup-norm. Careful calculation implies that the assumption (36) in
Lemma 7 is satisfied with m∗ = k∗/2 and Pfi the probability distribution of the
Gaussian scale model in (39) indexed by fi ∈ Fsub. Hence we obtain that there
exist some positive constants ci, i = 1, 2, 3 such that

inf
f̃

sup
Fsub

E

∥∥∥f̃ − f
∥∥∥2
∞

≥ c1 min
i �=j

‖fi − fj‖2∞

≥ c2
(
τεβn,p

)2 ≥ c3 (np/ log (np))
− 2β

1+2β . (41)
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Finally, a close connection between autocovariance matrix and spectral den-
sity function implies that, for our construction of Fsub, it can be shown that

inf
Σ̂

sup
FT α(M0,M)

E

∥∥∥Σ̂− Σ
∥∥∥2 ≥ c0 inf

f̃
sup
Fsub

E

∥∥∥f̃ − f
∥∥∥2
∞

. (42)

Hence the minimax lower bound for estimating a Toeplitz covariance matrix
over the collection FT α (M0,M) is obtained by putting (41) and (42) together.

For estimating sparse spiked covariance matrices over the parameter space
J (cn,p, rn,p, λn,p) defined in (7) under the squared spectral norm loss, Fano’s
lemma is also used to obtain the first term in the minimax lower bound
min{ (λn,p+1)cn,p

n log ep
cn,p

, λ2
n,p} in Theorem 4. See Theorem 12 in Section 2.4

for the method attaining this minimax optimal rate. Note that this term does
not depend on rn,p and is based on a sparse vector estimation argument only.
Hence the analysis is standard given the packing number of sparse vectors under
the vector �2 norm and we omit the proof in this paper. See Theorem 4 in Cai
et al. (2015) (also Theorem 2 in Birnbaum et al. (2013)) for further details.

Besides covariance and precision matrix estimation problems, Fano’s lemma
has also been used in other matrix estimation problems. For example, Rohde
and Tsybakov (2011) applied it in a trace regression model to provide a lower
bound of low-rank matrix estimation under the Frobenius norm.

5. Discussions

We have considered optimal estimation of high-dimensional covariance and pre-
cision matrices under various structural assumptions. Minimax rates of con-
vergence are established and rate-optimal adaptive procedures are constructed.
For ease of presentation, we have so far assumed that the random vector X is
centered. As mentioned in the introduction, this assumption is not essential.
We will elaborate on this point here. The estimators introduced in the previous
sections are positive definite with high probability, but not guaranteed so for
a given sample. It is sometimes desirable to have estimators that are guaran-
teed to be positive (semi)-definite. We will show that a simple additional step
will lead to a desirable estimator with the same theoretical guarantees. We also
discuss in this section a related problem, hypothesis testing on the covariance
structure.

5.1. Non-centered case

Suppose E(X) = μ with μ unknown. In this case, μ can be estimated by the
sample mean μ̂ = 1

n

∑n
i=1 X

(i). We can then apply the corresponding procedures
such as banding, tapering, thresholding or regression to the sample covariance
matrix Σ̂n = X′X/n − μ̂μ̂′. In fact, all the results remain the same in the
unknown mean case except those for estimating the Toeplitz covariance matrix.

All the rate-optimal procedures introduced so far are translation invariant,
hence we can assume μ = 0. Those covariance estimators, which are directly
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based on the sample covariance matrix, now depends on Σ̂n = X′X/n − μ̂μ̂′.
Compared to the term X′X/n which is the sample covariance matrix when
the mean is known, the term μ̂μ̂′ usually yields a negligible estimation error.
In particular, note that Eμ̂μ̂′ = Σ/n since μ = 0. Clearly the contribution of
this term entrywise is negligible with respect to the noise level n−1/2. Globally,
the contribution of μ̂μ̂′ is usually also negligible following an analysis that is
similar to that of X′X/n, as long as the optimal rate is not faster than n−1/2.
This can be made rigorous for those covariance estimators in Section 2 except
the estimator of Toeplitz covariance matrices. See, for example, Remark 1 in
Cai et al. (2010). In the Toeplitz case, the effective sample size for estimating
each autocovariance σi is far larger than n but there are only n samples for
estimating its mean. The issue due to the unknown mean is no longer negligible
unless extra information on μ is imposed. For example, under the condition that
all coordinates of the mean are equal to some constant cu, we can estimate it

using all np samples by ĉu = 1
np

∑n
i=1

∑p
j=1 X

(i)
j . Then the Toeplitz estimator

depends on X′X/n − ĉu11
′, where the second term ĉu ∼ Op((np)

−1/2) is of
higher order and can be ignored. In this setting, it can be shown that the results
of Toeplitz covariance estimators remain valid.

For the sparse precision matrix classes, we introduced rate optimal matrix
estimators under the spectral norm in Section 3.1 and rate optimal estimators of
each entry ωij in Section 3.2. Both estimators are derived through a regression
approach, motivated by the conditional distribution N

(
−Ω−1

A,AΩA,AcXAc ,Ω−1
A,A

)
of XA|XAc , where either the index set A is a singleton in Equation (16) or
A = {i, j} in Equation (20). The corresponding regression model of the data
matrix can be written asXA = XAcβ + εA. Then the analysis of both estimators
involves the scaled Lasso in Equations (17) and (21). When taking the unknown
mean μ̂ into account, the analysis of scaled Lasso is applied to the data matrix
as follows

XA − μ̂A1 =(XAc − μ̂Ac1)β + εA − ε̄A1,

where ε̄A is the sample mean of the noise vector εA. Note that the extra sample
mean terms introduced above have a higher order, for example, ε̄A ∼ Op(n

−1/2).
As a consequence, the contribution of these terms is also negligible and all the
results remain valid. For more details, see, for instance, the discussion section
in Ren et al. (2015).

5.2. Positive (semi-)definiteness

In many applications, the positive (semi-) definiteness of the covariance or pre-
cision matrix estimator is usually required. Although nearly all estimators of
both covariance and precision matrices we surveyed in the current paper are
symmetric, they are not guaranteed to be positive (semi-) definite. Under the
mild condition that the population covariance is nonsingular, it follows from the
consistency results that those estimators are positive definite with high prob-
ability. Whenever an estimator Â is not positive semi-definite, a simple extra
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step can make the final estimator Â+ positive semi-definite and also achieve the
optimal rate of convergence.

Write the eigen-decomposition of the estimator Â as

Â =

p∑
i=1

λ̂iv̂iv̂
′
i,

where eigenvalues λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p and v̂i’s are the corresponding eigenvec-
tors. Define the final estimator

Â+ = Â+ |λ̂p|Ip · I{λ̂p < 0},

where Ip is the p-dimensional identity matrix and I{λ̂p < 0} is the indicator

function that Â is negative definite. Then with A being the target covariance or
precision matrix and λp being its smallest eigenvalue, we have

‖Â+ −A‖ ≤ ‖Â−A‖+ |λ̂p| · I{λ̂p < 0}
≤ ‖Â−A‖+ |λ̂p − λp| · I{λ̂p < 0}
≤ 2‖Â−A‖.

Clearly Â+ is positive semi-definite and enjoys the same rate of convergence as
that of Â. This simple idea has appeared in some papers on matrix estimation.
See, e.g., El Karoui (2008). Another advantage of this final procedure is that
Â+ has the same desirable structure of Â such as bandable, sparse or Toeplitz
structure.

5.3. Hypothesis testing for the covariance structure

In addition to estimation, there have been considerable recent developments on
testing high-dimensional covariance structure. Unlike the estimation problems,
an asymptotic null distribution of a test statistic is required explicitly such
that the significance level of the test can be controlled. The asymptotic analysis
can be very delicate. Various testing methods have been proposed including
likelihood ratio test in Bai et al. (2009) and Jiang et al. (2012), largest eigenvalue
test in Johnstone (2001), Soshnikov (2002) and Peche (2009), Frobenius distance
test in Ledoit and Wolf (2002), Srivastava (2005), Birke and Dette (2005), and
Chen et al. (2010), and maximum entrywise deviation test in Jiang (2004), Zhou
(2007), Liu et al. (2008), Li et al. (2010), Li et al. (2012), Cai and Jiang (2011),
Shao and Zhou (2014), and Cai, Liu, and Xia (2013). But unlike estimation
problems there are only few optimality results on testing, see Baik et al. (2005),
El Karoui (2007), Cai and Ma (2013) and Onatski et al. (2013). To show the
optimality of a test, asymptotic power functions are needed under alternatives
to match the lower bound. We now briefly survey some recent developments on
testing the covariance structure.
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Testing identity We mainly focus on the problem of testing H0 : Σ = I. A
slightly more general testing problem is that of testing sphericity H0 : Σ = σ2I
for some unknown σ2. For reasons of space, we omit the details on testing
sphericity. Four types of test statistics have been proposed and studied in the
literature: likelihood-based, largest eigenvalue-based, Frobenius distance-based
and maximum entrywise deviation-based statistics.

In the classical fixed p regime, it is very natural to consider the likelihood
ratio test where the test statistic LLR

n = tr(Σ̂n) − log det(Σ̂n) − p weakly con-
verges to χ2

p(p+1)/2 under H0, see i.e. Anderson (2003). In the high-dimensional
setting, the Chi-squared limiting null distribution is no longer valid. Bai et al.
(2009) proposed a corrected LRT with the Gaussian limiting null distribution
in the regime p, n → ∞ and p/n → c ∈ (0, 1) with known population mean
E(X) = 0. Recently, Zheng et al. (2015) extended it to the setting with un-
known population mean by applying a substitution principle established for the
Central Limit Theorem for linear spectral statistics of sample covariance matri-
ces with unknown mean. Jiang et al. (2012) further extended it to the regime
p < n → ∞ and p/n → c = 1 with known mean.

Johnstone (2001) established the limiting distribution of the largest eigen-
value of the sample covariance matrix in the case of Gaussian distribution with
the identity covariance matrix, following the work of Johansson (2000) in which a
limit theorem for the largest eigenvalue of a complex Gaussian sample covariance
matrix was proved. It is shown that its scaled limiting law is the Tracy-Widom
distribution, assuming p/n → c ∈ (0,∞). See The result immediately yields a
test for H0 : Σ = I in the Gaussian case by using the largest eigenvalue of the
sample covariance matrix as the test statistic. Johnstone’s result was extended
by Soshnikov (2002) under a sub-Gaussian assumption which is valid only for
n − p = o(p1/3) and by El Karoui (2003) which allows p/n → c ∈ [0,∞] under
the Gaussian assumption. In a later work, Peche (2009) further extended John-
stone’s work to the regime p/n → c ∈ [0,∞] with moment requirements and
no Gaussianity assumption. Ma (2012) studied the convergence rate of Tracy-
Widom approximation. See, for example, Lee and Schnelli (2014) and Knowles
and Yin (2014) for some recent development.

Frobenius distance-based test was originally proposed by John (1971) and
Nagao (1973) in the fixed p regime. The Frobenius distance between Σ and I is

1

p
tr
{
(Σ− I)

2
}
=

1

p
tr
(
Σ2
)
− 2

p
tr(Σ) + 1, (43)

which is zero if and only if H0 holds. Nagao (1973) replaced Σ in (43) with
the sample covariance matrix to obtain the test statistic V = tr(Σ̂n − I)2/p
while John (1971) proposed a similar statistic to test sphericity. In the regime
p/n → c ∈ (0,∞), Ledoit and Wolf (2002) showed that V is inconsistent and
proposed a modification, which has a Gaussian limiting null distribution. Birke
and Dette (2005) further investigated and modified their test statistic in the ex-
treme cases where p/n → c ∈ {0,∞}. Note that expression (43) is a function of
the first two moments of the spectra of Σ. Based on this idea, Srivastava (2005)
constructed similar test statistics in the restricted regime n = O(pδ) with δ ≤ 1.
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In the high-dimensional setting, Chen et al. (2010) also investigated the testing
problem with the Frobenius distance (43). However, instead of plugging in the
sample covariance matrix to estimate

(
tr(Σ), tr(Σ2)

)
, a U -statistic is applied

to derive more accurate and reliable estimators (T̂1,n, T̂2,n) of
(
tr (Σ) , tr

(
Σ2
))
.

Chen et al. (2010) also provided a lower bound for the asymptotic power func-
tion. In particular, as long as ‖Σ− I‖F

√
n/p → ∞, the test is consistent. In

a separate paper, Cai and Ma (2013) showed that this procedure is indeed op-
timal under some natural alternatives. Similar results are obtained for testing
sphericity as well.

Several tests based on the maximum entrywise deviations for testing the
hypothesis H0 : R = I, where R is the correlation matrix, have been proposed
and studied in the literature. Jiang (2004) studied the asymptotic distribution
of the test statistic

Ln = max
1≤i<j≤p

|ρ̂i,j | , (44)

where ρ̂ij is the sample correlation between Xi and Xj . In particular, the Gum-
bel distribution is derived as the null limiting distribution of Ln

lim
n→∞

P
(
nL2

n − 4 log p+ log log p ≤ y
)
= exp

{
− 1√

8π
e−y/2

}
, −∞ < y < ∞,

(45)

under the moment condition E |Xi|30+ε
< ∞ and the regime p/n → γ ∈ (0,∞).

Jiang’s work attracted considerable attention. However, the moment condition
and asymptotic regime seem too restrictive. Zhou (2007) reduced the moment
condition to x6P (|X1X2| ≥ x) → 0 and Liu et al. (2008) further weakened
it to x6/ log3 xP (|X1X2| ≥ x) → 0 as a special case. In general, their result
allowed wide regime cnα ≤ p ≤ Cnα but the moment condition also depends
on α. Liu et al. (2008) also introduced some “intermediate” approximation to
approximate the test statistic Ln with a much faster rate of convergence. In
comparison, the convergence of Ln to the Gumbel distribution has a typical
slow rate log logn/ logn in the regime cnα ≤ p ≤ Cnα. Li et al. (2010) and
Li et al. (2012) further showed that some moment condition is necessary. More
specifically, in the bounded ratio regime lim p/n ∈ (c, C), if X1 has finite second

moment, then E |X1|β < ∞ for all β < 6 is a necessary condition such that
limiting distribution (45) holds. Cai and Jiang (2011) and Shao and Zhou (2014)
generalized the polynomial regime and push it to the ultra-high-dimensional case
log p = o(nβα). Shao and Zhou (2014) showed that under the moment condition
E exp (t |X1,1|α) < ∞ for some t > 0 and α ∈ (0, 1], the necessary and sufficient
conditions for establishing (45) in the ultra-high-dimensional setting in terms of
the optimal βα is that βα = 4/ (4− α).

Testing more general covariance structures Hypothesis testing for other
covariance structures has also been considered in the literature. These include
(i) banded structure with H0 (k) : Σ is k banded, (ii) bandable structure and
(iii) Toeplitz structure. Here a matrix Σ = (σij) is called k banded if σij = 0
for all pairs (i, j) such that |i− j| ≥ k.
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Cai and Jiang (2011) and Shao and Zhou (2014) considered testing k banded
structure. To test this hypothesis H0 (k), analogous to the definition of Ln, Cai
and Jiang (2011) proposed the following test statistic

Ln,k = max
|i−j|≥k

|ρ̂i,j | .

It can be shown that Ln,k has the same limiting Gumbel distribution in (45) as
long as most correlations are bounded away from 1 and k = o(pτ ) for some small
τ . Recently, Xiao and Wu (2011) established a more general result which allows
dependent entries over large range of p. Instead of the Ln,k, a self-normalized
version of maximum entrywise deviation is constructed in Xiao and Wu (2011)
as the new test statistic,

Mn = max
1≤i≤j≤p

|σij − σ̂ij | /
√

τ̂ij ,

where τij = Var(XiXj) and τ̂ij is the empirical counterpart. In different regimes
p = O(nα) and p = o

(
expnβ

)
,Mn is also shown to weakly converge to the Gum-

bel distribution. This result in turn allows testing all three structures (i), (ii),
and (iii) listed above. Qiu and Chen (2012) constructed an unbiased estimator
of Σ|i−j|≥kσ

2
ij via certain U -statistic to test banded covariance structure H0 (k),

motivated by the Frobenius distance-based tests in Chen et al. (2010). A lower
bound of asymptotic power function is also established.

6. Some open problems

Although much progress has been made on estimation of structured high-dimen-
sional covariance and precision matrices, there are still many open problems. We
conclude the paper with a brief discussion on a few interesting open problems.

6.1. Optimality for covariance matrix estimation under Schatten q
norm

In addition to the matrix �ω norm and Frobenius norm considered in this pa-
per, the Schatten q norm, which is unitarily invariant, is another commonly
used matrix norm and considered in many statistical problems, including trace
regression, low-rank matrix recovery and density matrix estimation in quantum
tomography. The Schatten q norm is the vector �q norm of the spectra. Denote
the singular values of Σ by {λi}, i = 1, . . . , p. The Schatten q norm is defined
by

‖Σ‖Sq
=

(
p∑

i=1

λq
i

)1/q

.

When q = 2, it coincides with the Frobenius norm and when q = ∞, it becomes
the spectral norm. Estimating a covariance or precision matrix under the general
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Schatten q norm is an interesting open problem. So far the corresponding opti-
mality results for covariance and precision matrix estimation under the general
Schatten q norm remain unknown. The major difficulty lies in the establishment
of a rate-sharp minimax lower bound. We believe that new technical tools are
needed to solve this problem.

6.2. Lower Bound via packing number

Fano’s lemma is a standard tool for deriving the minimax lower bounds. It
relies on a good bound for the cardinality of a suitable packing set for a given
parameter space. So far little is known about the packing number for the class of
sparse matrices under the spectral norm. Consider the following general sparse
matrix class S(k) in which there are at most k ones in each row and each column

S(k) =
{
Ap×p = (aij) : aij = 0 or 1,max

{
‖A‖�1 , ‖A‖�∞

}
≤ k
}
.

We conjecture that there exists a “good” packing set Ssub(k) ⊂ S(k) under
the spectral norm such that for any A1, A2 ∈ Ssub(k), we have ‖A1 −A2‖ ≥
εk and log |Ssub(k)| > εkp log(p/k) for some small constant ε. If this state-
ment is true, then the standard Fano’s lemma can be applied to obtain the
minimax lower bound under the spectral norm for estimating sparse covari-
ance/precision/volatility matrix. As a consequence, the proof of those lower
bounds in literature using Le Cam-Assouad’s method introduced in Section 4
can be unified and simplified. In addition, we point out that in Theorems 3 and 5,
the optimality results are obtained under the assumption cn,p ≤ C

√
n/(log p)3

rather than the natural one cn,p ≤ C
√
n/(log p), which is due to the Le Cam-

Assouad’s method employed to prove the lower bound. Therefore if the conjec-
ture is true, we can obtain more complete optimality results without such an
unpleasant sparsity condition.

Similarly, a good bound on the packing number for the class of bandable
covariance matrices and the class of sparse covariance matrices under the general
Schatten q norm would be very helpful for the establishment of the minimax
lower bound for estimating the corresponding covariance matrices under the
Schatten q norm.

6.3. Optimal estimation of matrix functionals

Many high-dimensional statistical inference problems such as linear discriminant
analysis (LDA) and quadratic discriminant analysis (QDA) require knowledge
of certain aspects, i.e., functionals, of the covariance structure, instead of the
whole matrix itself. So estimation of the functionals of covariance/precision ma-
trices is an important problem. The most common practice for matrix functional
estimation is the plug-in approach: first estimating the whole matrix in a certain
optimal way and then plugging-in the estimator to estimate the corresponding
functional. This often leads to a sub-optimal solution.



50 T. T. Cai et al.

Despite recent progress on optimality of estimating covariance and precision
matrices under various matrix norms, there have been few optimality results
on estimation of functionals of the covariance matrices. Cai, Liang, and Zhou
(2015) obtained the limiting distribution of the log determinant of the sample
covariance matrix in the Gaussian setting and applied the result to establish
the optimality for estimation of the differential entropy, which is a functional
of the covariance matrix. The problem of optimally estimating an individual
entry of a sparse precision matrix discussed in Section 3.2 can also be viewed
as estimating a functional.

Given two independent samples,X(1), . . . , X(n1) iid∼ Np(μ1,Ω
−1) and Y (1), . . . ,

Y (n2) iid∼ Np(μ2,Ω
−1), an important functional to estimate is Ω(μ1 − μ2). This

is motivated by the linear discriminant analysis. In the ideal case when the pa-
rameters μ1, μ2 and Ω are known, for a new observation Z drawn with equal
probability from either Np(μ1,Ω

−1) or Np(μ2,Ω
−1), the optimal classification

rule is Fisher’s linear discriminant rule which classifies Z to class 1 if and only if
(Z − (μ1 + μ2)/2)

′
Ω (μ1 − μ2) > 0. In applications, the parameters μ1, μ2 and

Ω are unknown and it is a common practice to estimate them separately and
then plug in. This approach has been shown to be inefficient as the discrimi-
nant depends on the parameters primarily through the functional Ω (μ1 − μ2).
Cai and Liu (2011b) introduced a constrained �1 minimization method for esti-
mating the functional Ω (μ1 − μ2) directly and proposed a classification method
based on the estimator. A similar approach was also used in Mai et al. (2012).
Although direct estimators of Ω (μ1 − μ2) have been proposed and used for clas-
sification, the optimality of the estimation problem remains unknown. See also
El Karoui and Kösters (2011) for further discussions. It is of significant interest
to study the problem of optimal estimation of the functional Ω (μ1 − μ2) under
certain sparsity assumptions.
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1024. MR0777600

Bai, Z., D. Jiang, J.-F. Yao, and S. Zheng (2009). Corrections to LRT
on large-dimensional covariance matrix by RMT. The Annals of Statis-
tics 37 (6B), 3822–3840. MR2572444

http://www.ams.org/mathscinet-getitem?mr=2985947
http://www.ams.org/mathscinet-getitem?mr=2541450
http://www.ams.org/mathscinet-getitem?mr=1990662
http://www.ams.org/mathscinet-getitem?mr=0777600
http://www.ams.org/mathscinet-getitem?mr=2572444


Estimating structured high-dimensional covariance and precision matrices 51
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